XWIN-NMR AU Reference Manual

Copyright (C) 1998 by Bruker Analytik GmbH
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means without the prior consent of the publisher.

Product names used are trademarks or registered trademarks of their respective holders.

Bruker software support is available via Phone, Fax, E-mail, or Internet. Please contact your local office, or directly:

Address: Bruker Analytik GmbH

Software Department

Rudolf-Plank-Str. 23, D-76275 Ettlingen, Germany

Phone: ++49 7243 504-440 Fax: ++49 7243 504-480

E-mail: nmr-software-support@bruker.de

FTP Server: ftp.bruker.de or ftp.bruker.com in /pub/nmr/xwinnmr

WWW Server: www.bruker.de or www.bruker.com

Contents

Chapter 1	Intro	duction	5
-	1.1	What are AU programs?	5
	1.2	Quick reference to using AU programs	5
	1.3	Installing and compiling AU programs	6
	1.4	Executing AU programs	7
	1.5	Viewing AU programs	7
	1.6	About AU macros.	8
	1.7	About Bruker library functions	8
	1.8	Creating your own AU programs	8
	1.9	How an AU program is translated into C-code	4
	1.10	Listing of all predefined C statements	7
Chapter 2	Inve	ntory of AU macros and Bruker library functions $ \ldots 2$	1
	2.1	Naming conventions	1
	2.2	Dataset handling macros	2
	2.3	Macros prompting the user for input	4
	2.4	Macros handling XWIN-NMR parameters	4
	2.5	Acquisition macros	6
	2.6	Macros handling the shim unit and the sample changer	6
	2.7	Macros handling the temperature unit	
	2.8	Macros handling the MAS and HPCU unit	8
	2.9	1D processing macros. 22	8
	2.10	Peak picking, integration and miscellaneous macros	
	2.11	Algebraic operations on datasets	0
	2.12	Bayes, deconvolution and T1/T2 macros	1
	2.13	2D processing macros. 33	
	2.14	Macros reading and writing projections etc	4
	2.15	3D processing macros	
	2.16	XWIN-NMR and XWIN-PLOT plotting macros	6
	2.17	Macros converting datasets from Aspect2000/3000 and other vendors 3	
	2.18	Macros to execute other AU programs, XWIN-NMR macros or commands 3	
	2.19	Useful Bruker library functions	
	2.20	Macros to return from an AU program	9

Chapter 3	General AU macros	41
Chapter 4	Macros changing the current AU dataset	47
Chapter 5	Macros copying datasets	61
Chapter 6	Macros converting datasets	65
Chapter 7	Macros handling XWIN-NMR parameters	
Chapter 8	Macros prompting the user for input	85
Chapter 9	Bruker library functions	91
Chapter 10	List of Bruker AU programs	117
_	10.1 Short description of all Bruker AU programs	117
Chapter 11	XWIN-NMR parameter types	131
	11.1 Integer parameters	132
	11.2 Float parameters	133
	11.3 Double parameters	
	11.4 Character-string parameters	134

Chapter 1

Introduction

1.1 What are AU programs?

AU programs can be considered as user defined XWIN-NMR commands. Any repetitive task is most effectively accomplished through an AU program. All commands which can be entered on the XWIN-NMR command line can also be entered in an AU program in the form of macros. This includes selecting and changing datasets, reading and setting parameters, starting acquisitions, processing data and plotting the result. A simple AU program is nothing else than a sequence of such macros which execute the corresponding XWIN-NMR commands. However, AU programs may also contain C-language statements. In fact, an AU program is a C-program because all AU macros are translated to C-statements. XWIN-NMR automatically compiles AU programs to executable binaries, using a C-compiler.

XWIN-NMR offers two other ways of creating user defined commands: XWIN-NMR macros (not to be confused with AU macros) and Tcl/Tk scripts. They differ from AU programs in that they do not need to be compiled.

1.2 Quick reference to using AU programs

Bruker delivers a library of standard AU programs with XWIN-NMR. After XWIN-NMR has been installed you must do the following in order to use them:

- 1. Run expinstall once to install all AU programs
- 2. Run *compileal1* once to compile all AU programs
- **3.** Enter **listall_au** to get a list and a short description of all AU programs
- **4.** Enter the name of an AU program to execute it

Furthermore, you can write you own AU programs in the following way:

1. Enter edau <name>

The file <name> will be opened with a text editor

- **2.** Do one of the following:
 - Write your own AU program from scratch
 - Read in an existing AU program and modify it according to your needs
- **3.** Save the result and exit from the editor.

Press **return** to answer the question about compilation.

4. Enter the name of the AU program to execute it.

After you have installed a new version of XWIN-NMR, you must run *expinstall* and *compileall* again to install and compile both Bruker's and your own AU programs.

1.3 Installing and compiling AU programs

When you have installed a new version of XWIN-NMR, you must install the library AU programs once by executing the XWIN-NMR command *expinstall*. Your own AU programs which you created under a previous version of XWIN-NMR are still available, they only need to be re-compiled.

After running **expinstall**, there are 5 different commands to compile AU programs:

- compileal1
 compile all library and user-defined AU programs
- cplbruk <name> or cplbruk all compile one or all library AU programs
- cpluser <name> or cpluser all compile one or all user-defined AU programs

• edau <name> create (or view) and compile one AU program

xau <name>
 compile and execute one AU program

1.4 Executing AU programs

Once an AU program has been installed, there are 3 different ways to execute it:

- 1. Enter the name of the AU program. This will work if:
 - The AU program is already compiled
 - No XWIN-NMR command or macro ¹ with the same name exist

2. Enter xau au-program-name

If the AU program is not yet compiled, it will first be compiled and then executed. Otherwise, the program is immediately executed.

3. Enter xau

A list of available AU programs will appear. Click on the AU program you want to execute. If it is not yet compiled, it will first be compiled and then executed. Otherwise, the AU program is immediately executed.

1.5 Viewing AU programs

You can view existing AU programs in the following way:

- 1. View the entire content of one AU program:
 - a) Enter **edau**

A list of all existing AU programs are displayed in two columns. The left column shows the user defined AU programs, the right column the Bruker library AU programs.

b) Click on an AU program in the list

When you select a library AU program it is shown in view mode, you cannot

^{1.} Here we refer to an XWIN-NMR macro created with edmac

edit it. When you click on a user-defined AU program it is shown in *edit* mode and you can change it.

2. Enter listall_au

You will get a list and a short description of all library AU programs.

1.6 About AU macros

We will use the word *macro* rather often throughout this manual referring to AU macros. This should not be confused with XWIN-NMR macros which are files containing a sequence of XWIN-NMR commands. XWIN-NMR macros are created with *edmac* and executed with *xmac*. An AU macro is a statement in an AU program which defines one or more XWIN-NMR commands, library functions or C-language statements. In its simplest form, an AU macro defines one XWIN-NMR command. For example the macros ZG and FT execute the XWIN-NMR commands *zg* and *ft*, respectively. Other macros like FETCHPAR and IEXPNO do not define XWIN-NMR commands, their function is only relevant in the context of an AU program. More complex macros may contain several XWIN-NMR commands and/or C-statements. All macros in AU programs should be written in capital letters. They are automatically translated to the corresponding C-code when the AU program is compiled.

1.7 About Bruker library functions

Bruker library functions are C-functions which are contained in Bruker libraries. They offer several features which are also used in the XWIN-NMR interface, for example the display of a list of datasets from which the user can select one dataset. If you use a Bruker library function in an AU program the corresponding library is automatically linked to the AU program during compilation. The most important and versatile Bruker library functions are described in chapter 9.

1.8 Creating your own AU programs

1.8.1 Writing a simple AU program

Before you start writing an AU program, you might want to check if an AU pro-

gram already exists which (almost) meets your requirements. If this is not the case, you can write your own AU program in the following way:

1. Enter edau <au-name>

Your preferred XWIN-NMR text editor will be opened ¹

- **2.** Do one of the following:
 - Insert an existing library AU program and modify it to your needs.
 - Write a new AU program using the macros as described in this manual.

The first macro in an AU program should always be GETCURDATA, the last macro should always be QUIT (or QUITMSG).

- 3. Save the file and exit from the editor.
- **4.** A dialogue will appear asking you whether you want to compile the AU program, quit without compilation or go back to a listing of all AU programs:
 - Press **Return** to compile the AU program.

1.8.2 Using variables

Since AU programs are C programs you can use C-language variables. Several variables are already predefined for usage in AU programs. In fact we distinguish three different types of variables: predefined dedicated variables, predefined general variables and user defined variables.

1.8.2.1 Predefined dedicated variables

Predefined dedicated variables have the following properties:

- they do not need to be declared in an AU program
- their declaration is automatically added during compilation
- they are known to the AU main body and to possible subroutines
- they are set implicitly by certain macros, e.g. the variable expno is set by macros like GETCURDATA, DATASET and IEXPNO
- they should not be set explicitly, so do <u>NOT</u> use statements like:

$$expno = 11;$$

^{1.} You can change the XWIN-NMR text editor by entering the command setres.

FETCHPAR("NS", &expno)

• they can be evaluated in macros or C-statements, e.g.:

```
DATASET(name, expno, 2, disk, "guest") i1=expno+1;
```

• examples of different types of predefined dedicated variables are:

```
char-string: name, disk, user, name2 integer: expno, procno, loopcount1, loopcount2, lastparflag
```

A complete list of all predefined dedicated variables with their types can be found in Chapter 1.10.2

1.8.2.2 Predefined general variables

Predefined general variables have the following properties:

- they do not need to be declared in an AU program
- their declaration is automatically added during compilation
- they are known to the AU main body but not to possible subroutines
- they can be freely used for various purposes
- examples of different types of predefined general variables are:

```
integer: i1, i2, i3
float: f1, f2, f3
double:d1, d2, d3
char-string: text
```

A complete list of all predefined general variables with their types and initial values can be found in Chapter 1.10.3.

1.8.2.3 User defined variables

For simple AU programs the number of predefined general variables is sufficient, you do not need to declare any additional variables. For more complex AU programs you might need more variables or you might want to use specific names. In these cases you can define your own variables in the AU program. User defined variables have the following properties:

- they must be declared at the beginning of an AU program
- they can be freely used for various purposes

• they are known to the main AU program but not to possible subroutines

• examples of declarations are:

```
int ivar1, ivar2;
float fvar1, fvar2, fvar3;
double dvar1, dvar2, dvar3;
char cstr1[20], cstr2[200];
```

1.8.3 Using AU macros with arguments

Several AU macros take one or more arguments. Arguments can be constants (values) or variables. In fact, an argument can be specified in four different ways as described here for the macro REXPNO:

• as a constant, e.g.:

```
REXPNO(3)
```

• as a predefined dedicated variable e.g.:

```
REXPNO(expno+1)
```

as predefined general variable, e.g.:

```
i1=6;
REXPNO(i1)
```

as a user defined variable,e.g.:

```
int my_exp;
....
my_exp=1;
REXPNO(my_exp)
```

It is very important that the arguments are of the correct type. Macros can take arguments of the type integer (like REXPNO), float, double or character-string.

Some macros, for example STOREPAR, take XWIN-NMR parameters as arguments and each parameter is of a certain type. For example, the AU statement

```
STOREPAR("O1", d1)
```

stores the value of the variable d1 into the parameter O1. The predefined (double) variable d1 is used since O1 is of the type double. The second argument could also be a constant, e.g.:

STOREPAR("01", 287.15)

A list of all XWIN-NMR parameters and their type can be found in Chapter 11.

1.8.4 Using C-language statements

AU programs can contain AU macros but also C-language statements like:

- define statements, e.g.: #define MAXSIZE 32768
- include statements, e.g.: #include <time.h>
- variable declarations, e.g. int ivar;
- variable assignments, e.g.: ivar = 20;
- loop structures, e.g.: for, while, do
- control structures, e.g.: if-else
- C-functions, e.g.: strcpy, strcmp, sprintf

<u>Important</u>: several C-language statements (including declarations of variables) are already predefined and automatically added during compilation of the AU program.

A example of an AU program using macros and C-statements is:

```
int eno, pno;
char datapath [500], dataname[50], datauser[50], datadisk[200];

GETCURDATA
(void) strcpy (dataname,name);
(void) strcpy (datauser,user);
(void) strcpy (datadisk,disk);
eno = expno;
pno = procno;
(void) sprintf (datapath,"%s/data/%s/nmr/%s/%d/pdata/%d/title",
datadisk, datauser, dataname, eno, pno);
if ( (i1 = showfile (datapath)) < 0 )
{
    Proc_err (DEF_ERR_OPT,"Problems with showfile function");
}
OUIT</pre>
```

Note that GETCURDATA and QUIT are AU macros, *strcpy* and *sprintf* are C-functions and *showfile* and *Proc_err* are Bruker library functions.

For an explanation of C-functions and more information on C-language we refer to the literature on C-programming.

1.8.5 Additional hints on C-statements

If you are using C-language code in your AU programs, then there are a few things to be considered.

1. Using C-language header files

Several C-language header files are automatically added to your AU program during compilation. If you are using C-code which requires additional header files you must write your AU program in a special way. The main AU program should be a call to a subroutine which performs the actual task of the AU program. The *include* statements for the header file must be entered between the main AU program and the subroutine. This gives the following structure:

```
GETCURDATA
subroutine(curdat, cmd)
QUIT
#include <headerfile.h>
subroutine(curdat,cmd)
char *curdat, *cmd;
{
    MACRO1
    MACRO2
}
```

This structure is used in several Bruker library AU programs (e.g. amplstab, decon_t1, etc.). Several Bruker library functions like PrintExpTime, gethighest, getxwinvers, pow_next and unlinkpr also require an include statement in the AU program (see Chapter 9).

- 2. Some macros, e.g. IEXPNO and IPROCNO change the current AU dataset but do not make it available for subsequent commands. If they are followed by a CPR_exec or any C-statement which access the current AU dataset, then you must precede that statement with SETCURDATA (see also the descriptions of GETCURDATA, SETCURDATA, IEXPNO etc. in Chapter 4).
- **3.** If you are using C-languages loop statements like *for*, *do* or *while* or control statements like *if*, we strongly recommend to always put the body of such statements between {}. If the body only contains simple macros like ZG or FT you

can omit them because these macro definitions already contain {}. However, more complex macros might internally define C-statements that include loop or control structures. If such a macro is used within a loop or control structure in the AU program, then you create nested loops which require the usage of {}.

1.8.6 Viewing Bruker standard AU programs for macro syntax

The syntax of many AU macros is trivial, just enter the XWIN-NMR command in capital letters. Other macros and especially Bruker library functions are more complex. A detailed description of frequently used AU macros and functions can be found in subsequent chapters of this manual. Alternatively, you can also look for an existing AU program containing this macro or function. If, for example, you want to know the syntax of the macro WRPA you can do the following:

On an UNIX workstation:

- open a UNIX shell
- cd /<var>/prog/au/src.exam
- grep -i wrpa *

where <var> is the directory where XWIN-NMR is installed.

On a Windows NT PC:

- Click Start -> Find -> Files or Folders
- Click Browse and open C:\Bruker\xwin-nmr\prog\au\src.exam
- Click Advanced, in the field Containing text enter wrpa
- Click on Find now

assuming XWIN-NMR is installed in C:\Bruker.

1.9 How an AU program is translated into C-code

This paragraph is intended for users who want to get a deeper understanding of the compilation process. If you simply want to write and use AU programs you can skip this paragraph.er

XWIN-NMR automatically translates your AU program into C-language and compiles it. Files and directories used during AU program compilation are:

/<var>/exp/stan/nmr/au/makeau

```
/<var>/exp/stan/nmr/au/vorspann
/<var>/exp/stan/nmr/au/submacro
/<var>/prog/include/aucmd.h
/<var>/prog/include/inc
```

The compilation process is entirely controlled by the script makeau which performs the following steps.

- 1. The file vorspann is concatenated with your AU program. This file contains a variety of definitions including
 - the C-program main statement
 - #include statements of C-header files (which in turn contain other definitions)
 - #define statements which define constants
 - predefined dedicated variables, e.g.: name, disk, user, expno, procno
 - predefined general variables, e.g.: text, i1, i2, i3, f1, f2, f3, d1, d2, d3
- 2. After vorspann and your code have been concatenated, a pre-processor program called *submacro* scans the file for macro definitions and replaces them. *Submacro* searches for macro definitions in the file aucmd.h and in the inc directory. All AU macros are defined in the ascii file aucmd.h. Additional macros are defined in the files in the inc directory. In some cases, the name of the macro is the name of one of the files in inc directory and the entire content of the file represents that macro.
- 3. After *submacro* has generated a C program source file, this file is compiled and an executable program is created. The compilation is done with the GNU C-compiler *gcc*. The linking process is done with the native linker which is part of the native C-compiler *cc*. All AU program's source files reside in /<var>/exp/stan/nmr/au/src, executables will be stored into /<var>/prog/au/bin.

The following section shows the result of concatenating vorspann with the following AU program:

```
GETCURDATA
EFP
APK
SREF
QUIT
```

For better presentation, only a part of vorspann is shown. All variables declared in vorspann are listed in chapter 1.10.

```
#include <stdio.h>
#include <stdlib.h>
main(argc,argv)
int argc;
char **argv;
char curdat[PATH_MAX];
char arglist[BUFSIZ];
int modret;
modret = AU_program(curdat,arglist);
.....
AU_program(curdat,cmd)
char *curdat;
char *cmd;
int i1=0,i2=0,i3=0;
float f1=0,f2=0,f3=0,f998=0,f999=0;
double d1=0,d2=0,d3=0;
char text[BUFSIZ/2];
GETCURDATA
EFP
APK
SREF
QUIT
```

Note that the macro QUIT defines the closing C-language '}'statement.

1.10 Listing of all predefined C statements

1.10.1 Including header files

The following C-language header files from the directory /usr/include are automatically included during compilation:

stdio.h, stdlib.h, unistd.h, string.h, errno.h, math.h, limits.h, fcntl.h, erropt.h, brukdef.h, lib/uni.h, lib/libcb.h, lib/util.h, sample.h, aucmd.h

1.10.2 Predefined dedicated variables

The following list contains all predefined dedicated variables, their type and the AU macros by which they are set. Note that most variables are set or modified by several macros and only one or two are listed here.

type	variable	set by macros
int	lastparflag	USELASTPARS, USECURPARS
int	loopcount1	TIMES/END
int	loopcount2	TIMES2/END
int	loopcount3	TIMES3/END
int	loopcountinf	TIMESINFINITE
char	disk[256]	GETCURDATA
char	user[15]	GETCURDATA
char	type[15]	GETCURDATA
char	name[15]	GETCURDATA
int	expno	GETCURDATA, IEXPNO
int	procno	GETCURDATA, IPROCNO
char	disk2[256]	GETCURDATA2
char	user2[15]	GETCURDATA2
char	type2[15]	GETCURDATA2

Table 1.1

	. 11	. 1
type	variable	set by macros
char	name2[15]	GETCURDATA2
int	expno2	GETCURDATA2
int	procno2	GETCURDATA2
char	disk3[256]	GETCURDATA3
char	user3[15]	GETCURDATA3
char	type3[15]	GETCURDATA3
char	name3[15]	GETCURDATA3
int	expno3	GETCURDATA3
int	procno3	GETCURDATA3
char	parsettype[10]	PARSETTYP, SETPARSET
char	namelist[10][15]	SETDATASET
char	dulist[10][256]	SETDATASET
char	userlist[10][15]	SETDATASET
char	parsetlist[10][15]	RPARSETLIST
char	pulproglist[10][15]	RPULPROGLIST
int	expnolist[15]	SETDATASET
int	procnolist[15]	SETDATASET
int	loopcountlist[15]	RILOOPCOUNTLIST
float	vtlist[128]	RVTLIST
int	xloopcount	ILOOPCOUNTLIST
int	xpulprog	IPULPROGLIST
int	xparset	IPARSETLIST
int	xdataset	IDATASETLIST
int	xvt	IVTLIST
int	listcount1	TIMESLIST
FILE	*textfilepointer	
FILE	*debug	

Table 1.1

type	variable	set by macros
char	longpath[BUFSIZ/2]	
char	Hilfs_string[BUFSIZ/2]	

Table 1.1

1.10.3 Predefined general variables

The following list contains all predefined general variables, their types and initial values:

type	variable	initial value
int	i1	0
int	i2	0
int	i3	0
double	d1	0
double	d2	0
double	d3	0
float	f1	0
float	f2	0
float	f3	0
float	f998	0
float	f999	0
char	text[BUFSIZ/2]	

Table 1.2

Chapter 2

Inventory of AU macros and Bruker library functions

2.1 Naming conventions

This chapter lists most AU macros and Bruker library functions that are available for AU programming. Simple macros with their short description are only mentioned in this chapter. More complex macros and AU functions are mentioned here and described more extensively in the following chapters. Table 2.1 explains the

macro conventions used in this chapter.

Macro	Explanation
XXX	The macro can be typed "as is". There is no further explanation for the macro in this manual.
XXX(arg1,arg2)	The macro XXX takes two arguments. Because the macro is easy to use, there is no further description in this manual.
XXX *	Like XXX, but there is a detailed description in one of the following chapters.
XXX() *	The macro XXX takes one or more arguments and its usage is described in one of the following chapters.

Table 2.1 Macro conventions

Several AU macros that are described in this chapter require one or more arguments. These arguments can be constants or variables as described in Chapter 1.8.3. It is very important to use the correct type of argument in a macro call. The macros described in the tables of this chapter use the following arguments:

integer: i1, i2, i3, eno, pno

float : f1 double : d1

char-string: text, cmd, file, flag, mac, parm, parset, prog, shim, typ, dsk, usr, nam

Note that the arguments i1, i2, i3, f1, d1 and text have the same names as the corresponding predefined general variables. The predefined general variables are easy to use because they do not need to be declared. You can, however, use your own variables as macro arguments.

2.2 Dataset handling macros

Macro	Description
GETCURDATA *	The first AU program statement; get the foreground dataset
SETCURDATA *	Make the current AU dataset available for subsequent AU statements
GETDATASET *	Prompt the user to specify a new dataset

Macro	Description
DATASET() *	Set the current AU dataset
DATASET2() *	Set the 2nd dataset (like the XWIN-NMR command edc2)
DATASET3() *	Set the 3rd dataset (like edc2)
GETCURDATA2	Read the 2nd dataset (like edc2)
GETCURDATA3	Read the 3rd dataset (like <i>edc2</i>)
DEXPNO *	Decrease the experiment number by one
IEXPNO *	Increase the experiment number by one
REXPNO(i1) *	Set the experiment number to the value of i1
DPROCNO *	Decrease the processing number by one
IPROCNO *	Increase the processing number by one
RPROCNO(i1) *	Set the processing number to the value of i1
GDATASETLIST	Prompt the user to enter a dataset list filename and read its contents
GLIST	Prompt the user to enter the dataset list filename and read its contents. In addition to the GDATASETLIST macro, GLIST also expects a pulse program and a parameter set name in the dataset list file.
DDATASETLIST	Decrement to the previous entry in the dataset list
IDATASETLIST	Increment to the next entry in the dataset list
RDATASETLIST(i1)	Read the dataset at position i1 of the dataset list and make it the current AU dataset
IFEODATASETLIST	Checks if the end of the dataset list is reached. The answer is true if there is no further entry.
SETDATASET	Set the current AU dataset to the one currently defined by the dataset list
DU(dsk)	Set the disk unit to dsk
SETUSER(usr)	Set the user name to the user usr
WRA(i1) *	Copy the raw data to the experiment number i1
WRP(i1) *	Copy the processed data to the processing number i1

Macro	Description
WRPA() *	Copy the raw and processed data to the specified dataset
VIEWDATA *	Show the current AU program dataset in XWIN-NMR

2.3 Macros prompting the user for input

Macro	Description
GETDOUBLE(text,d1) *	Prompt the user to enter a double value
GETFLOAT(text,f1) *	Prompt the user to enter a float value
GETINT(text,i1) *	Prompt the user to enter an integer value
GETSTRING(text,nam) *	Prompt the user to enter a text string

2.4 Macros handling XWIN-NMR parameters

Macro	Description
FETCHPAR(parm,&val) *	Get an acquisition, processing or output parameter
FETCHPAR1(parm,&val)	Get an F1 dimension parameter (2D acquisition/processing)
FETCHPAR3(parm,&val)	Get an F1 dimension parameter (3D acquisition/processing)
FETCHPARS(parm,&val) *	Get a status parameter (acquisition and processing)
FETCHPAR1S(parm,&val)	Get an F1 dimension status parameter (2D)
FETCHPAR3S(parm,&val)	Get an F1 dimension status parameter (3D)
STOREPAR(parm,val) *	Store an acquisition, processing or output parameter
STOREPAR1(parm,val)	Store an F1 dimension parameter (2D)
STOREPAR3(parm,val)	Store an F1 dimension parameter (3D)
STOREPARS(parm,val) *	Store a status parameter (acquisition and processing)
STOREPAR1S(parm,val)	Store an F1 dimension status parameter (2D)
STOREPAR3S(parm,val)	Store an F1 dimension status parameter (3D)
FETCHPARM(parm,&val)	Get a tomography measurement parameter

Macro	Description
STOREPARM(parm,val)	Store a tomography measurement parameter
FETCHPLPAR(parm,&val)	Get a plot parameter
STOREPLPAR(parm,val)	Store a plot parameter
FETCHPLWPAR(parm,&val)	Get a white-washed stacked plot parameter
STOREPLWPAR(parm,val)	Store a white-washed stacked plot parameter
FETCHPLXPAR(parm,&val)	Get an expansion plot parameter
STOREPLXPAR(parm,val)	Store an expansion plot parameter
FETCHT1PAR(parm,&val)	Get a T1 parameter
STORET1PAR(parm,val)	Store a T1 parameter
RPAR(parset,typ) *	Read a parameter set to the current dataset
WPAR(parset,typ) *	Write the current dataset parameters to a parameter set
DELPAR(parset)	Delete the named parameter set
GPARSETLIST	Prompt the user to enter the name of the parameter set list and read its contents
DPARSETLIST	Decrement to the previous parameter set name in the parameter set list
IPARSETLIST	Increment to the next parameter set name in the parameter set list
PARSETTYP(typ)	Set the type of parameter file (acqu, proc, outd or plot) to be read by SETPARSET or RPARSETLIST
RPARSETLIST(i1)	Read the parameter set name from position i1 in the parameter set list and then read the parameters from this parameter set
SETPARSET	Read the parameters from the parameter set name in position i1 of the parameter list
IFEOPARSETLIST	Checks if the end of the parameter set list is reached. The answer is true if there is no further entry.

2.5 Acquisition macros

Macro	Description
ZG	Start acquisition; if raw data already exist, they are overwritten
GO	Continue the acquisition on already existing raw data by adding to them
II	Initialize acquisition interface
RGA	Automatic receiver gain adjustment
MAKE_ZERO_FID	Create an empty FID
DEG90	Determine 90 degree pulse automatically
GPULPROGLIST	Prompt the user to enter the name of a pulse program list file and read its contents
DPULPROGLIST	Decrement to the previous name in the pulse program list
IPULPROGLIST	Increment to the next name in the pulse program list
RPULPROGLIST(i1)	Read the pulse program name in position i1 of the pulse program list and write it to the acquisition parameters
SETPULPROG	Store the current pulse program name from the pulse program list
IFEOPULPROGLIST	Check if the end of the pulse program list is reached. The answer is true if there is no further entry.

2.6 Macros handling the shim unit and the sample changer

Macro	Description
EJ	Eject sample from the magnet
IJ	Insert sample into the magnet
ROT	Turn rotation on (use value RO from acquisition parameters)
ROTOFF	Turn rotation off and wait until rotation was turned off
LOPO	Set the lock parameters (lock power, lock gain, loop filter, loop time and loop gain)

Macro	Description
LFILTER(i1)	Set the loop filter to the value of i1
LG	Auto-adjust the lock gain
LGAIN(f1)	Set the loop gain to the value of f1
LO(f1)	Set the lock power to the value of f1
LTIME(f1)	Set the loop time to the value of f1
LOCK	Lock according to the parameters LOCNUC and SOLVENT using the lock parameters from the <i>edlock</i> table
RSH(file)	Read the shim values from the specified file
SETSH(shim,i1)	Set one shim to the value of i1
WSH(file)	Write the shim values to the specified file
TUNE(file)	Start autoshimming with the specified tune file
TUNESX	Start autoshimming with the tune file defined by the currently defined probehead and solvent
ZSPOIL(i1)	Set value for Z-spoil gradient pulse from BSMS

2.7 Macros handling the temperature unit

Macro	Description
TESET	Read the parameter TE from the foreground acquisition parameters (<i>eda</i>) and set the temperature to this value
TEREADY(i1,f1)	After the temperature is set, wait at most i1 seconds and check if the temperature is accurate to f1 degrees.
TEPAR(file)	Read a file with parameter settings for the temperature unit
GVTLIST	Prompt the user to enter the variable temperature list name and read its contents
RVTLIST	Read the contents of the variable temperature list file defined by the acquisition parameter VTLIST.
DVTLIST	Decrement to the previous value in the vtlist

Macro	Description
IVTLIST	Increment to the next value in the vtlist
VT	Read and set the temperature according to the current value of the vtlist

$2.8 \ Macros \ handling \ the \ MAS \ and \ HPCU \ unit$

Macro	Description
MASE	Eject sample from MAS unit
MASI	Insert sample into MAS unit
MASR	Set spinning rate according to the acquisition parameter MASR
MASRGET	Get spinning rate from the MAS unit and store it in the status acquisition parameters
MASG(i1)	Start spinning of sample in MAS with at the most i1 retries
MASH	Halt spinning of sample in MAS
GETHPCU	Get (read) the HPCU parameters
SETHPCU	Set the HPCU parameters
RACKPOW	Switch the HPCU rack power on or off (depending on what the parameter POWMOD is set to)

2.9 1D processing macros

Macro	Description
ABS	Automatic baseline correction (creates intrng file !)
ABSD	Automatic baseline correction with DISNMR algorithm (creates intrng file !)
ABSF	Automatic baseline correction between limits ABSF1 and ABSF2
APK	Automatic phase correction
APKS	Automatic phase correction especially suitable for polymer spectra
BC	Baseline correction of FID (DC correction)

Macro	Description
CONVDTA	Convert digitally filtered FID into analogue (conventional) form
EF	Exponential window multiplication + Fourier transform
EFP	Exponential window multiplication + Fourier transform + phase correction using the processing parameters PHC0 and PHC1
EM	Exponential window multiplication of FID
FMC	Fourier transformation + magnitude calculation
FP	Fourier transformation + phase correction using the processing parameters PHC0 and PHC1
FT	Fourier transformation
GENFID	Create FID from processed data
GF	Gaussian window multiplication + Fourier transformation
GFP	Gaussian window multiplication + Fourier transformation + phase correction using the processing parameters PHC0 and PHC1
GM	Gaussian window multiplication
HT	Hilbert transformation
IFT	Inverse Fourier transformation
MC	Magnitude calculation
PK	Phase correction using the processing parameters PHC0 and PHC1
PS	Power spectrum calculation
QSIN	Squared sine window multiplication
SAB	Spline baseline correction using base_info file
SINM	Sine window multiplication
SINO	Calculate signal to noise ratio
SREF	Automatic spectral referencing using 2Hlock parameters
TM	Trapezoidal window multiplication
TRF	Processing according to the currently defined processing parameters
UWM	user-defined window multiplication

2.10 Peak picking, integration and miscellaneous macros

Macro	Description
PP	Peak picking according to currently set processing parameters
PPH	Like PP, but with a peak histogram along the listing
PPP	Like PP, but the output is written to the file peaklist in the current processing data directory (PROCNO)
LI	List integrals according to the currently defined intrng file. The macro ABS can be used to create an intrng file.
LIPP	List integrals and all peaks in the integral ranges
LIPPF	Like LIPP, but works always on the full spectrum
NMRQUANT(file)	Do quantitative integration with an nmrquant region file
RLUT(file)	Read color look-up table for 2D or 3D datasets
RMISC(typ,file)	Read a file from one of the following list types: base_info, baslpnts, intrng, peaklist or reg
WMISC(typ,file)	Write a base_info, baslpnts, intrng, peaklist or reg file to its lists directory

2.11 Algebraic operations on datasets

Macro	Description
ADD	Add 2nd and 3rd dataset and put the result into the current dataset. The 3rd dataset is multiplied by DC.
ADDC	Add the constant DC to the current dataset
AND	Put logical "and" of 2nd and 3rd dataset into the current dataset
AT	Same as ADD
CMPL	Put the "complement" of the 2nd and 3rd dataset into the current dataset
DIV	Divide 2nd and 3rd dataset and put the result into the current dataset. The 3rd dataset is multiplied by DC.
DT	Calculate the first derivative of the dataset
FILT	Apply a software digital filter to the current dataset

Macro	Description
LS	Left shift spectrum or FID by NSP points
MUL	Multiply 2nd and 3rd dataset and put the result into the current dataset. The 3rd dataset is multiplied by DC.
MULC	Multiply the current dataset with DC
NM	Negate current spectrum
RS	Right shift spectrum or FID by NSP points
RV	Reverse the spectrum
ZF	Zero the spectrum (1r,1i)
ZP	Zero the first NZP points of the spectrum or FID

2.12 Bayes, deconvolution and T1/T2 macros

Macro	Description
BAYX	Execute Bayesian calculation
BAYED	Edit the Bayes parameters
BAYEDX	Edit the Bayes parameters and then run the calculation
LIBAY	List the result of the Bayesian calculation
VIBAY	Display the result of the Bayesian calculation
GDCON	Gaussian deconvolution of the peaks automatically picked according to the currently set processing parameters
LDCON	Lorentzian deconvolution of the peaks automatically picked according to the currently set processing parameters
MDCON	Mixed Gaussian/Lorentzian deconvolution of the peaks in the peaklist file. The peaklist file can be created with the <i>ppp</i> command and it can be modified using the <i>edmisc</i> command.
DAT1	Calculate T1 value for all peaks picked with PD
DAT2	Calculate T2 value for all peaks picked with PD
PD	Peak pick all peaks defined in a baslpnts file

Macro	Description
PF	Peak pick points from a series of FIDs in a 2D ser file
PFT2	Peak pick points from a single FID

2.13 2D processing macros

Macro	Description
ABS1	Baseline correction in F1 dimension
ABS2	Baseline correction in F2 dimension
ABSD1	Baseline correction in F1 dimension using the DISNMR algorithm
ABSD2	Baseline correction in F2 dimension using the DISNMR algorithm
ABSOT1	Trapezoidal baseline correction in F1 dimension using a slightly different algorithm than abst1
ABSOT2	Trapezoidal baseline correction in F2 dimension using a slightly different algorithm than abst2
ABST1	Trapezoidal baseline correction in F1 dimension using the processing parameters ABSF1, ABSF2, SIGF1, SIGF2
ABST2	Trapezoidal baseline correction in F2 dimension using the processing parameters ABSF1, ABSF2, SIGF1, SIGF2
ADD2D	Add the 2nd dataset to the current dataset.
BCM1	Baseline correction of all columns using the coefficients that were obtained with a manual 1D baseline correction
BCM2	Baseline correction of all rows using the coefficients that were obtained with a manual 1D baseline correction
INVSF	Interchange the frequencies of the two dimensions
LEVCALC	Calculate the levels for the contour representation of the 2D matrix
PTILT	Tilt the 2D matrix by an arbitrary angle
PTILT1	Tilt the 2D matrix along its central vertical line
REV1	Reverse the spectrum in F1 dimension
REV2	Reverse the spectrum in F2 dimension
SUB1	Subtract 1D spectrum in F1 dimension (no change in sign !)

Macro	Description
SUB2	Subtract 1D spectrum in F2 dimension (no change in sign!)
SUB1D1	Subtract 1D spectrum in F1 dimension
SUB1D2	Subtract 1D spectrum in F2 dimension
SYM	Symmetrize COSY spectrum
SYMA	Symmetrize phase sensitive COSY spectrum
SYMJ	Symmetrize J-resolved spectrum
TILT	Tilt J-resolved spectrum by an internally calculated angle
XF1	Fourier transform in F1 dimension
XF1P	Phase correction in F1 dimension using the processing parameters PHC0 and PHC1
XF2	Fourier transform in F2 dimension
XF2P	Phase correction in F2 dimension using the processing parameters PHC0 and PHC1
XFB	Fourier transform in both dimensions
XFBP	Phase correction in both dimensions
XF1M	Magnitude calculation in F1 dimension
XF2M	Magnitude calculation in F2 dimension
XFBM	Magnitude calculation in both dimensions
XF1PS	Power spectrum in F1 dimension
XF2PS	Power spectrum in F2 dimension
XFBPS	Power spectrum in both dimensions
XHT1	Hilbert Transform in F1 dimension
XHT2	Hilbert transform in F2 dimension
XTRF	2D processing according to processing parameter flags (starts always on the raw data !)
XTRF2	2D processing according to F2 processing parameter flags only (starts always on the raw data!)
XTRFP	2D Processing according to the processing parameter flags
XTRFP1	2D processing according to the F1 processing parameter flags only

Macro	Description
XTRFP2	2D processing according to the F2 processing parameter flags only
GENSER	Create a 2D series file from the processed data

2.14 Macros reading and writing projections etc.

Macro	Description
F1SUM(i1,i2,pno)	Read sum of columns from i1 to i2 into the 1D processing number pno
F2SUM(i1,i2,pno)	Read sum of rows from i1 to i2 into the 1D processing number pno
F1DISCO(i1,i2,i3,pno)	Read disco projection between i1 and i2 columns with reference row i3 into the 1D processing number pno
F2DISCO(i1,i2,i3,pno)	Read disco projection between i1 and i2 rows with reference column i3 into the 1D processing number pno
F1PROJN(i1,i2,pno)	Read partial negative projection between columns i1 and i2 into the 1D processing number pno
F1PROJP(i1,i2,pno)	Read partial positive projection between columns i1 and i2 into the 1D processing number pno
F2PROJN(i1,i2,pno)	Read partial negative projection between rows i1 and i2 into the 1D processing number pno
F2PROJP(i1,i2,pno)	Read partial positive projection between rows i1 and i2 into the 1D processing number pno
PROJ	Calculate the projections of the 2D spectrum
RHNP(pno)	Read horizontal (F2) negative projection into the 1D processing number pno
RHPP(pno)	Read horizontal (F2) positive projection into the 1D processing number pno
RSC(i1,pno)	Read column i1 of 2D into the 1D processing number pno

Macro	Description
RSR(i1,pno)	Read row i1 of 2D into the 1D processing number pno
RVNP(pno)	Read vertical (F1) negative projection into the 1D processing number pno
RVPP(pno)	Read vertical (F1) positive projection into the 1D processing number pno
RSER(i1,eno,pno)	Read row i1 of 2D raw data into the eno and pno
WSC(i1,pno,nam,usr,dsk)	Write a column back into position i1 of a 2D matrix defined by pno, nam, usr and dsk
WSC(i1,pno,nam,usr,dsk)	Write a row back into position i1 of a 2D matrix defined by pno, nam, usr and dsk.
WSER(i1,nam,eno,pno,dsk,usr)	Write an FID back into position i1 of a 2D raw data defined by eno, pno, nam, dsk and usr.
WSERP(i1,nam,eno,pno,dsk,usr)	Write a processed FID back into position i1 of a 2D raw data defined by eno, pno, nam, dsk and usr.

2.15 3D processing macros

Macro	Description
TF3(flag,dsk)	Fourier transform in F3 dimension. The flag can be "y" or "n" and determines whether the imaginary parts are stored or not. The processed are stored on disk unit dsk.
TF2(flag)	Fourier transform in F2 dimension (flag as in TF3)
TF1(flag)	Fourier transform in F1 dimension (flag as in TF3)
TF3P(flag)	Phase correction in F3 dimension (flag as in TF3)
TF2P(flag)	Phase correction in F2 dimension (flag as in TF3)
TF1P(flag)	Phase correction in F1 dimension (flag as in TF3)
TABS3	Automatic baseline correction in F3 dimension
TABS2	Automatic baseline correction in F2 dimension
TABS1	Automatic baseline correction in F1 dimension

Macro	Description
R12(i1,eno,flag,dsk)	Read F1-F2 plane into a new expno (with or without imaginary parts according to flag) on the unit dsk
R13(i1,eno,flag,dsk)	Read F1-F3 plane into a new expno (with or without imaginary parts according to flag) on the disk unit dsk
R23(i1,eno,flag,dsk)	Read F2-F3 plane into a new expno (with or without imaginary parts according to flag) on disk unit dsk

2.16 XWIN-NMR and XWIN-PLOT plotting macros

Macro	Description
PLOT	Plot according to current plot parameters (edg)
PLOTX	Plot expansions according to the integral ranges
PLOTS	Suspend plot (put plot in queue)
FLPLOT	Flush all suspended plots
LOCKPLOTS	Lock plot queue for current AU program. No other plot commands can now interfere with the suspended plots generated in the current AU program.
UNLOCKPLOTS	Unlock the plot queue of the current AU program.
RMPLOT	Remove all suspended plots from queue
AUTOPLOT	Use the file defined by the parameter LAYOUT (<i>edo</i>) for a plot with XWIN-PLOT
XWP_LP	Create a parameter listing for a plot with XWIN-PLOT
XWP_PP	Create a peak picking listing for a plot with XWIN-PLOT
GETLIM	Get frequency of leftmost and rightmost peak from a 1D spectrum and adjust the sweep width of the 1D spectrum to the difference $+\ 10\%$
GETLCOSY	Get frequency of leftmost and rightmost peak from a 1D spectrum and adjust the sweep width of a COSY spectrum to the difference + 10%

Macro	Description
GETLXHCO	Get frequency of leftmost and rightmost peak from two 1D spectra and adjust the sweep width of an X-H correlation spectrum to the difference + 10%
GETLJRES	Get frequency of leftmost and rightmost peak from a 1D spectrum and adjust the sweep width of an J-RESolved spectrum to the difference + 10%
GETLINV	Get frequency of leftmost and rightmost peak from a 1D spectrum and adjust the sweep width of an INVerse spectrum to the difference + 10%

2.17 Macros converting datasets from Aspect2000/3000 and other vendors

Macro	Description
CONV() *	Convert Bruker Aspect2000/3000 datasets to XWIN-NMR format
CONVCP() *	Like CONV but with additional backup copy of the original data
FROMJDX() *	Convert a JCAMP-DX file to XWIN-NMR data format
TOJDX() *	Convert a dataset to JCAMP-DX format
JCONV() *	Convert a Jeol dataset to Bruker XWIN-NMR format
VCONV() *	Convert a Varian dataset to Bruker XWIN-NMR format

2.18 Macros to execute other AU programs, XWIN-NMR macros or commands

Macro	Description
CPR_exec() *	C-function for executing special XWIN-NMR commands
WAIT_UNTIL() *	Hold the AU program until the specified date and time
XAUA	Execute the acquisition AU program stored in AUNM (<i>eda</i>). The next line in the AU program is executed after the AU program AUNM has finished.

Macro	Description
XAUP	Execute the processing AU program stored in AUNMP (<i>edp</i>). The next line in the AU program is immediately executed after the AU program AUNMP has been started.
XAUPW	Execute the processing AU program stored in AUNMP (<i>edp</i>). Like XAUP, but now the next line in the AU program is executed after the AU program AUNMP has finished
XAU(prog)	Execute the AU program prog with the wait option
XCMD(cmd) *	Execute the XWIN-NMR command for which no dedicated macro exists
XMAC(mac)	Execute an XWIN-NMR macro mac

2.19 Useful Bruker library functions

Macro	Description
CalcExpTime() *	Calculate the experiment time for the current experiment
PrintExpTime() *	Print the experiment time for the current experiment
check_pwd(usr) *	Prompt the user usr to enter a password
GetNmrSuperUser() *	Get the name of the current XWIN-NMR superuser
getdir() *	Get all file names and/or directory names within a directory
freedir() *	Free memory allocated by getdir
uxselect() *	Display a list from which an entry can be selected by mouse-click
dircp() *	Copy a file
dircp_err(i1) *	Return the error message that corresponds to the error return value of a dircp function call
fetchstorpl() *	Read or store one or several plot parameters
gethighest() *	Return the next highest unused experiment number of a dataset
getstan() *	Return the pathname to the user's current experiment directory

Macro	Description
getxwinvers() *	Return the current version and patchlevel of XWIN-NMR
mkudir() *	Create a complete directory path
PathXWinNMR() *	A class of functions which return pathnames to certain XWIN-NMR directories
pow_next(i1) *	Round i1 to the next larger power of two
Proc_err() *	Show a message in a window on the XWIN-NMR screen
Show_status(text) *	Show a string in the status line of XWIN-NMR
showfile(file) *	Show the contents of a file in an XWIN-NMR window
ssleep(i1) *	Pause in an AU program for i1 seconds
unlinkpr() *	Delete all processed data files (1r, 1i, 2rr, 2ii etc.) of a dataset

$2.20\,$ Macros to return from an AU program

Macro	Description
ABORT	Abort the AU program or any of its subroutines with the return value of -1
ERRORABORT	Return from an AU program or any of its subroutines with the value of AUERR if it is less than 0
QUIT	Return from an AU program with the value of AUERR. QUIT is usually the last statement of the AU program code.
QUITMSG(text)	Print the text message and then return from the AU program with the value of AUERR. This is an alternative to QUIT.
STOP	Return from the AU program with the value of AUERR.

Chapter 3 General AU macros

This chapter contains a description of all general AU macros which can be used for various purposes.

CPR exec

NAME

CPR_exec - C-function for executing special XWIN-NMR commands

SYNTAX

CPR_exec(char *command, int mode);

DESCRIPTION

CPR_exec is a C-library function which can be used for executing XWIN-NMR commands in AU. The first argument of CPR_exec is an XWIN-NMR command, the second argument must be one of the following values:

WAIT_TERM - wait for the command to finish, then start the next command CONT_EX - start the command and immediately start the next command

Most commands are available as a dedicated macro, like ZG for **zg** and FT for **ft**. If you want to use XWIN-NMR commands for which no dedicated macro exist, e.g. editor commands or commands with special arguments, then you can use the general macro XCMD which takes only one argument, the XWIN-NMR command. Dedicated macros and XCMD internally call CPR_exec with WAIT_TERM. The only reason to use CPR_exec explicitly is to start a command with CONT_EX, i.e. to run commands simultaneously. In summary:

- · Use dedicated AU macros whenever you can
- Use XCMD when no dedicated macro is available
- Use CPR_EXEC only when you want to use CONT_EX

NOTES

Dedicated macros and XCMD call SETCURDATA before they do their actual task. This ensures that they operate on the current AU dataset. If you use CPR_exec explicitly, it is recommended to precede it with SETCURDATA. This is not always necessary but hardly ever wrong (see SETCURDATA).

During sample changer automation, processing and plotting commands are started with CONT_EX to allow simultaneous acquisition on the next sample.

General AU macros 43

EXAMPLE

The following AU program gets the foreground dataset, runs an acquisition, starts the Fourier transformation and immediately continues an acquisition on the next experiment number:

```
GETCURDATA
TIMES(10)
ZG
CPR_exec("ft", CONT_EX);
IEXPNO
END
QUIT
```

SEE ALSO

XCMD - general macro to execute commands for which no dedicated macro exists

SETCURDATA - make the current AU dataset available for subsequent AU statements

XCMD

NAME

XCMD - execute a command for which no dedicated macro exists

SYNTAX

XCMD(char *command)

DESCRIPTION

XCMD is a general macro to execute XWIN-NMR commands for which no dedicated macro exists. For most XWIN-NMR commands a dedicated macro does exist and we strongly recommend to:

Use dedicated macros whenever available

EXAMPLE

The following AU program gets the foreground dataset, opens the acquisition parameter editor (*eda*) and runs an acquisition and Fourier transform:

GETCURDATA

XCMD("eda")

ZG

FT

QUIT

SEE ALSO

CPR_exec - C-function for executing special XWIN-NMR commands

General AU macros 45

WAIT_UNTIL

NAME

WAIT_UNTIL - hold the AU program until the specified date and time

SYNTAX

int WAIT_UNTIL(int hour, int minute, int day, int month)

DESCRIPTION

The function WAIT_UNTIL waits in an AU program until the specified date has been reached. The variables are internally converted to seconds. Every sixty seconds, the function checks whether the current date matches with the selected date. This function basically allows to program an event or command to start at a certain date rather than waiting for a certain time until something is executed.

EXAMPLE

Wait in the AU program until the 31st of October, 6 pm, and then continue:

WAIT_UNTIL(18,0,31,10)

SEE ALSO

ssleep - pause in an AU program for a certain number of seconds

Chapter 4

Macros changing the current AU dataset

This chapter contains a description of all AU macros which can be used to change the current AU dataset, i.e. the dataset on which subsequent AU statements operate.

GETCURDATA

NAME

GETCURDATA - the first AU program statement; get the foreground dataset

SYNTAX

GETCURDATA

DESCRIPTION

GETCURDATA should be the first macro in any AU program and should only be used at the beginning of an AU program. GETCURDATA gets the foreground dataset, i.e. the dataset which is visible when the AU program is started. This dataset becomes the current AU dataset. In fact, GETCURDATA sets the predefined data path variables *disk*, *user*, *type*, *name*, *expno* and *procno* which define the pathname of the current dataset. Subsequent macros, like ZG, FT etc. will then work on this dataset. The current AU dataset can be changed within the AU program with macros like DATASET, IEXPNO or IPROCNO.

NOTES

GETCURDATA defines the current AU dataset but it takes another macro, SET-CURDATA, to make this dataset available for subsequent AU statements. For most predefined macros, like ZG and FT, as well as XCMD etc., this is automatic because SETCURDATA is part of the macro definition.

EXAMPLE

The following AU program gets the foreground dataset and runs an acquisition on it:

GETCURDATA ZG

OUIT

SEE ALSO

SETCURDATA - make the current AU dataset available for AU commands
DATASET - set the current AU dataset

CETDATASET - propert the user to specify a pay dataset

GETDATASET - prompt the user to specify a new dataset

SETCURDATA

NAME

SETCURDATA - make the current AU dataset available for subsequent AU statements

SYNTAX

SETCURDATA

DESCRIPTION

SETCURDATA makes the current AU dataset, i.e. the dataset defined by the data path variables *disk*, *user*, *type*, *name*, *expno* and *procno*, available for subsequent AU commands. Normally, you do not need to enter SETCURDATA because it is automatically called by macros which operate on datasets <u>before</u> they perform their actual task. Furthermore, the macros DATASET and GETDATASET, which change the current AU dataset, automatically call SETCURDATA after they performed their actual task. In some cases, however, SETCURDATA must be specified explicitly in the AU program. For example, the macros IEX-PNO and IPROCNO change the current AU dataset, but do not call SETCURDATA. If they are followed by a CPR_exec or any C-statement which access the current AU dataset, then you must precede that statement with SETCURDATA.

EXAMPLE

This example shows the part of the library AU program *multizg* which calculates the total experiment time of all acquisitions performed by this AU program:

```
int expTime;
static void PrintExpTime();
GETCURDATA
....
expTime = 0;
TIMES(i1)
    SETCURDATA;
    expTime += CalcExpTime() + 4;
```

```
IEXPNO;
END
DEXPNO;
....
QUIT
```

Note that IEXPNO is followed by SETCURDATA in the next cycle of the loop.

SEE ALSO

GETCURDATA - the first AU program statement; get the foreground dataset DATASET - set the current AU dataset IEXPNO - increase the experiment number by one

DATASET

NAME

DATASET - set the current AU dataset

SYNTAX

DATASET(char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro DATASET sets the current AU dataset. All data path variables *name*, *expno*, *procno*, *disk* and *user* must be specified as arguments. Subsequent AU commands will operate on this dataset.

EXAMPLE

The following AU program first gets the foreground dataset, then selects a new dataset and runs an acquisition:

```
char[20] newname;
GETCURDATA
strcpy(newname, "glycerine");
DATASET(newname, expno, 3, disk, "peter")
ZG
QUIT
```

The data path variables in this example are entered in the following way:

- expno and disk keep the values which were obtained with GETCURDATA
- name gets the value of newname, a variable defined in this AU program
- *procno* and *user* get the values 3 and *peter*, respectively, which are entered as constants

SEE ALSO

GETCURDATA - the first AU program statement; get the foreground dataset GETDATASET - prompt the user to specify a new dataset DATASET2 - set the second dataset IEXPNO - increase the experiment number by one

DATASET2/DATASET3

NAME

DATASET2 - set the second AU dataset DATASET3 - set the third AU dataset

SYNTAX

DATASET2(char *name, int expno, int procno, char *disk, char *user) DATA /x/xw2.5 cd SET3(char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro DATASET2 sets the second AU dataset. The current (first) AU dataset is not affected by this macro. DATASET2 is typically used in combination with algebra macros, like ADD or MUL, which operate on the second and third dataset.

EXAMPLE

The following AU program gets the foreground dataset, adds the spectra of the next processing number and the one after that and stores the result into the current dataset:

GETCURDATA
DATASET2(name, expno, procno+1, disk, user)
DATASET3(name, expno, procno+2, disk, user)
ADD
QUIT

SEE ALSO

GETCURDATA - the first AU program statement; get the foreground dataset DATASET - set the current AU dataset GETDATASET - prompt the user to specify a new dataset

GETDATASET

NAME

GETDATASET - prompt the user to specify a new dataset

SYNTAX

GETDATASET

DESCRIPTION

The macro GETDATASET prompts the user to specify a new dataset. A dialogue is opened and the user is requested to enter the data path variables *name*, *expno*, *procno*, *user* and *disk*. Subsequent AU commands will operate on this dataset. GETDATASET can be used anywhere in an AU program but, since it requires user input, should not be used in fully automated sequences.

NOTE

GETDATASET is not used very often. In AU programs, datasets are usually changed without user interaction, e.g. with the macros DATASET, IEXPNO etc.

EXAMPLE

The following AU program gets the foreground dataset, prompts the user to specify a new dataset and then processes this dataset:

GETCURDATA GETDATASET EFP OUIT

Actually you could begin this AU program with GETDATASET. This is one of the very few examples where you may omit the macro GETCURDATA.

SEE ALSO

GETCURDATA- the first AU program statement; get the foreground dataset DATASET - set the current AU dataset

IEXPNO - increase the experiment number by one

IPROCNO - increase the processing number by one

IEXPNO

NAME

IEXPNO - increase the experiment number by one

SYNTAX

IEXPNO

DESCRIPTION

The macro IEXPNO increases the experiment number of the current AU dataset by one. In fact, the value of the data path variable *expno* is incremented by one. Subsequent macros will operate on this new *expno*. IEXPNO is typically used in AU programs which run a series of acquisitions on datasets with the same *name* and successive *expnos*.

EXAMPLE

The following AU program gets the foreground dataset and runs acquisitions on eight successive *expnos*:

```
GETCURDATA
TIMES(8)
ZG
IEXPNO
END
QUIT
```

NOTE

IEXPNO must be followed by a SETCURDATA if the AU program continues with an explicit CPR_exec or C-statement (see SETCURDATA).

```
DEXPNO - decrease the experiment number by one
REXPNO - set the experiment number to the specified value
IPROCNO - increase the processing number by one
DATASET- set the current AU dataset
```

DEXPNO

NAME

DEXPNO - decrease the experiment number by one

SYNTAX

DEXPNO

DESCRIPTION

The macro DEXPNO decreases the experiment number of the current AU dataset by one. In fact, the value of the data path variable *expno* is decremented by one. Subsequent macros will operate on this new *expno*. DEXPNO is typically used after a loop which includes an IEXPNO at the end, to revert the effect of the last (unnecessary) IEXPNO.

EXAMPLE

The following AU program gets the foreground dataset, runs acquisitions on eight successive *expnos* and displays the data of the last *expno*:

```
GETCURDATA
TIMES(8)
ZG
IEXPNO
END
DEXPNO
VIEWDATA
QUIT
```

NOTE

DEXPNO must be followed by a SETCURDATA if the AU program continues with an explicit CPR_exec or C-statement (see SETCURDATA).

SEE ALSO

IEXPNO - increase the experiment number by one REXPNO - set the experiment number to the specified value DPROCNO - decrease the processing number by one

REXPNO

NAME

REXPNO - set the experiment number to the specified value

SYNTAX

REXPNO(int number)

DESCRIPTION

The macro REXPNO sets the experiment number of the current AU dataset to the specified value. In fact, the value of the data path variable *expno* is set. Subsequent macros will operate on this new *expno*.

EXAMPLE

The following AU program gets the foreground dataset, runs acquisitions on eight successive *expnos* then sets the current AU dataset back to the first *expno* and Fourier transforms it:

```
GETCURDATA
i1=expno;
TIMES(8)
ZG
IEXPNO
END
REXPNO(i1)
FT
QUIT
```

NOTE

REXPNO must be followed by a SETCURDATA if the AU program continues with an explicit CPR_exec or C-statement (see SETCURDATA).

```
IEXPNO - increase the experiment number by one
DEXPNO - decrease the experiment number by one
RPROCNO - set the processing number to the specified value
```

IPROCNO

NAME

IPROCNO - increase the processing number by one

SYNTAX

IPROCNO

DESCRIPTION

The macro IPROCNO increases the processing number of the current AU dataset by one. In fact, the value of the data path variable *procno* is incremented by one. Subsequent macros will operate on this new *procno*. IPROCNO is typically used in an AU program which processes a series of datasets with same *name* and *expno* and successive *procnos*.

EXAMPLE

The following AU program runs Fourier transforms on eight successive *proc-nos*:

```
GETCURDATA
TIMES(8)
FT
IPROCNO
END
QUIT
```

NOTE

IPROCNO must be followed by a SETCURDATA if the AU program continues with an explicit CPR_exec or C-statement (see setcurdata).

```
DPROCNO - decrease the processing number by one
RPROCNO - set the processing number to the specified value
IEXPNO - increase the experiment number by one
```

DPROCNO

NAME

DPROCNO - decrease the processing number by one

SYNTAX

DPROCNO

DESCRIPTION

The macro DPROCNO decreases the processing number of the current AU dataset by one. In fact, the value of the data path variable *procno* is decremented by one. Subsequent macros will operate on this new *procno*. DPROCNO is typically used after a loop which includes an IPROCNO at the end, to revert the effect of the last (unnecessary) IPROCNO.

EXAMPLE

The following AU program gets the foreground dataset, runs a Fourier transform on eight successive *procnos* and displays the data of the last *procno*:

```
GETCURDATA
TIMES(8)
FT
IPROCNO
END
DPROCNO
VIEWDATA
QUIT
```

NOTE

DPROCNO must be followed by a SETCURDATA if the AU program continues with an explicit CPR_exec or C-statement (see setcurdata).

```
IPROCNO - decrease the experiment number by one
RPROCNO - set the processing number to specified value
DEXPNO - decrease the experiment number by one
```

RPROCNO

NAME

RPROCNO - set the processing number to the specified value

SYNTAX

RPROCNO(int number)

DESCRIPTION

The macro RPROCNO changes the current AU dataset by setting the processing number to the specified value. In fact, the value of the data path variable *procno* is set. Subsequent macros will then operate on this new *procno*.

EXAMPLE

The following AU program gets the foreground dataset and runs a Fourier transform on eight successive *procnos*. Then the current AU dataset is set back to the first *procno* which is then phase corrected:

```
GETCURDATA
i1=procno;
TIMES(8)
FT
IPROCNO
END
RPROCNO(i1)
APK
QUIT
```

NOTE

RPROCNO must be followed by a SETCURDATA if the AU program continues with an explicit CPR_exec or C-statement (see SETCURDATA).

```
IPROCNO - increase the processing number by one DPROCNO - decrease the processing number by one REXPNO - set the experiment number to the specified value
```

VIEWDATA

NAME

VIEWDATA - Show the current AU program dataset in XWIN-NMR

SYNTAX

VIEWDATA

DESCRIPTION

The macro VIEWDATA shows the current AU program dataset in XWIN-NMR. In other words, the current AU dataset becomes the foreground dataset. VIEW-DATA is used whenever the current AU dataset is changed within the AU program, i.e. with DATASET, IEXPNO etc. and this dataset must be shown in XWIN-NMR.

EXAMPLE

The following AU program gets the foreground dataset, increases the processing number and performs a Fourier transform storing the spectrum in this processing number. The spectrum is then shown in XWIN-NMR:

GETCURDATA IPROCNO FT VIEWDATA QUIT

SEE ALSO

GETCURDATA - the first AU program statement; get the foreground dataset GETDATASET - prompt the user to specify a new dataset DATASET - set the current AU dataset IEXPNO - increase the experiment number by one IPROCNO - increase the processing number by one

Chapter 5

Macros copying datasets

This chapter contains a description of all AU macros which can be used to copy the current AU dataset or parts of it to a new dataset.

WRA

NAME

WRA - copy the raw data to the specified experiment number

SYNTAX

WRA(int expno)

DESCRIPTION

The macro WRA copies the raw data, including the acquisition and processing parameters of the current AU dataset to a new experiment number. It does not copy the processed data.

EXAMPLE

The following AU program gets the foreground dataset and copies the raw data to eight successive experiment numbers, starting with *expno* 11:

```
GETCURDATA
i1=11;
TIMES(8)
WRA(i1)
i1++;
END
QUIT
```

SEE ALSO

WRP - copy the processed data to the specified processing number WRPA - copy the raw and processed data to the specified dataset

WRP

NAME

WRP - copy the processed data to the specified processing number

SYNTAX

WRP(int procno)

DESCRIPTION

The macro WRP copies the processed data, including the processing parameters of the current AU dataset, to the specified processing number.

EXAMPLE

The following AU program gets the foreground dataset and copies the processed data to eight successive processing numbers, starting with *procno* 11:

```
GETCURDATA
i1=11;
TIMES(8)
WRP(i1)
i1++;
END
QUIT
```

SEE ALSO

WRA - copy the raw data to the specified experiment number WRPA - copy the raw and processed data to the specified dataset

WRPA

NAME

WRPA - copy the raw and processed data to the specified dataset

SYNTAX

WRPA(char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro WRPA copies the raw and processed data of the current AU dataset to the specified dataset. WRPA takes 5 arguments, *name*, *expno*, *procno*, *disk* and *user*, i.e. the data path variables which define the dataset path. You can set one, several, or all of these variables to new values in order to define the destination dataset. You can, for instance, archive your data to an external medium by changing the value of the variable *disk* and leaving the other path variables the same.

EXAMPLE

The following AU program copies the current dataset to the jaz drive which is mounted as / jaz:

```
GETCURDATA
WRPA(name, expno, procno, "/jaz", user)
QUIT
```

SEE ALSO

WRA- copy the raw data to the specified experiment number WRP- copy the processed data to the specified processing number

Chapter 6

Macros converting datasets

This chapter contains a description of all AU macros which can be used to convert XWIN-NMR data. This includes the conversion of Bruker Aspect2000 and Aspect3000 data, Varian data and Jeol data to XWIN-NMR data format as well as the conversion of XWIN-NMR data to JCAMP-DX.

TOJDX

NAME

TOJDX - convert a dataset to JCAMP-DX format

SYNTAX

TOJDX(char *path, int type, int mode, char *title, char *origin, char *owner)

DESCRIPTION

The macro TOJDX converts the current AU data to standard JCAMP-DX ascii format. It takes 6 arguments:

- 1. the pathname of the output file, e.g. /tmp/data1.dx
- 2. the output type: enter 0, 1 or 2 0=FID (default), 1=real spectrum, 2=complex spectrum.
- **3.** the compression mode: enter 0, 1, 2 or 3 0=FIX, 1=PACKED, 2=SQUEEZED, 3=DIFF/DUP (default)
- 4. the title as it appears in the output file: enter a character-string
- 5. the origin as it appears in the output file: enter a character-string
- 6. the owner as it appears in the output file: enter a character-string

If "*" is entered as an argument, then the default value is used.

EXAMPLE

The following AU program gets the foreground dataset and performs a conversion to JCAMP on 5 successive experiment numbers. The name of the JCAMP file contains the *name* and *expno* of the corresponding XWIN-NMR dataset.

GETCURDATA TIMES(5) sprintf(text,"/tmp/%s_%d.dx", name, expno); TOJDX(text, 0, 3, "*", "*", "*") IEXPNO END QUIT

SEE ALSO

FROMJDX - convert a JCAMP-DX file to XWIN-NMR data format

FROMJDX

NAME

FROMJDX - convert a JCAMP-DX file to XWIN-NMR data format

SYNTAX

FROMJDX(char *input-file, char *overwrite)

DESCRIPTION

The macro FROMJDX converts a JCAMP-DX file to XWIN-NMR data format. It takes 2 arguments:

- 1. the pathname of the input file, e.g. /tmp/data1.dx
- 2. the overwrite flag which is either "o" or "n"

EXAMPLE

The following AU program converts all files with the extension .dx in the directory /tmp to an XWIN-NMR dataset:

```
char **listfile;
GETCURDATA
i1 = getdir ("/tmp",&listfile,"*.dx");
TIMES(i1)
    sprintf(text, "/tmp/%s", listfile[loopcount1]);
    FROMJDX(text, "o")
END
QUIT
```

```
TOJDX - convert a dataset to JCAMP-DX format getdir - get all file names and/or directory names within a directory
```

CONV/CONVCP

NAME

CONV - convert Bruker A2000/3000 datasets to XWIN-NMR format CONVCP - like CONV but with additional backup copy of the original data

SYNTAX

```
CONV(char *instrument, char *filename)
CONVCP(char *instrument, char *filename, char *targetdir)
```

DESCRIPTION

The macro CONV converts Bruker Aspect 2000/3000 datasets to XWIN-NMR data format. Input datasets must be stored in the directory /<var>/bruknet/<instrument>/<user>. CONV takes 2 parameters:

- 1. the instrument where the dataset was acquired, e.g. ac250
- 2. the name of the dataset. If "*" is specified the next available dataset in the storage directory will be converted.

The macro CONVCP is identical to CONV except that it makes a copy of the original data. Therefore, it takes a third argument; the target directory this copy.

EXAMPLE

This example shows the content of the library AU program **remproc** which continuously converts all datasets which are sent from an A3000 computer named *asp*. After conversion it processes each dataset by calling a dataset specific processing AU program with the macro XAUPW:

```
#define STATION "asp"

GETCURDATA

CPR_exec("setdef ackn no",CONT_EX);

TIMESINFINITE

CONV(STATION,"*")

GETCURDATA

XAUPW

END

OUIT
```

VCONV

NAME

VCONV - convert a Varian dataset to Bruker XWIN-NMR format

SYNTAX

VCONV(char *v-name, char *x-name, int expno, char *disk, char *user)

DESCRIPTION

The macro VCONV converts a Varian dataset to XWIN-NMR data format. It takes 5 parameters:

- 1. the name of the input Varian dataset
- 2. the name of the output XWIN-NMR dataset
- 3. the experiment number of the output XWIN-NMR dataset
- 4. the disk unit of the output XWIN-NMR dataset
- **5.** the user of the output XWIN-NMR dataset

EXAMPLE

The following AU program converts a Varian dataset to XWIN-NMR format:

```
GETCURDATA
VCONV("pinen_h.fid", "pinen_h", 1, "u", "joe")
QUIT
```

SEE ALSO

JCONV - convert a Jeol dataset to Bruker XWIN-NMR format

JCONV

NAME

JCONV - convert a Jeol dataset to Bruker XWIN-NMR format

SYNTAX

JCONV(char *j-name, char *x-name, int expno, char *disk, char *user)

DESCRIPTION

The macro JCONV converts a Jeol dataset to XWIN-NMR data format. It takes 5 parameters:

- 1. the name of the input Jeol dataset
- 2. the name of the output XWIN-NMR dataset
- 3. the experiment number of the output XWIN-NMR dataset
- 4. the disk unit of the output XWIN-NMR dataset
- **5.** the user of the output XWIN-NMR dataset

EXAMPLE

The following AU program converts a Jeol dataset to XWIN-NMR format:

```
GETCURDATA
JCONV("gx400h.gxd", "gx400h", 1, "u", "joe")
QUIT
```

SEE ALSO

VCONV - convert a Varian dataset to Bruker XWIN-NMR format

Chapter 7

Macros handling XWIN-NMR parameters

This chapter contains a description of all AU macros which can be used to get and store XWIN-NMR parameters. Parameters are subdivided in acquisition, processing, output and plot parameters. Furthermore, they exist in two different forms; as foreground and status parameters. Finally, multi-dimensional dataset have parameter sets for each dimension. Different AU macros are available for getting and storing parameters of all categories, forms or dimensions.

FETCHPAR

NAME

FETCHPAR - get an acquisition, processing or output parameter

SYNTAX

FETCHPAR(parm, &val)

DESCRIPTION

The macro FETCHPAR gets the value of a foreground parameter and stores it into an AU variable. This AU variable can then be used in subsequent AU statements. FETCHPAR allows to get acquisition parameters (*eda*), processing parameters (*eda*) and output parameters (*edo*). It is typically used to check or modify a parameter prior to an acquisition or processing statement.

The macro FETCHPAR takes two arguments:

- **1.** the name of the parameter
- 2. the AU variable into which the parameter value will be stored

There are two important things to be considered:

- **1.** The type of the AU variable must be the same as the type of the parameter (see Chapter 11).
- 2. The second argument must be specified as the variable's address, i.e. it must be prepended with the '&' character. This, however, does not count for a text variable since a text variable is already an address.

NOTES

FETCHPAR works on 1D, 2D or 3D datasets and always gets a parameter of the first dimension (F2 for 1D, F2 for 2D and F3 for 3D)

The handling of the macros FETCHPAR1, FETCHPAR3, FETCHPARM, FETCHPLARA, FETCHPLWPAR, FETCHPLXPAR and FETCHT1PAR is equivalent to the handling of FETCHPAR.

EXAMPLES

The following AU program gets the value of the processing parameter SI and proc-

esses the data 4 times, each time doubling the spectrum size and storing the data in successive processing numbers:

```
GETCURDATA
FETCHPAR("SI", &i1)
TIMES(4)
EFP
IPROCNO
i1 = i1*2;
STOREPAR("SI", i1)
END
OUIT
```

The following AU statements get the values of the acquisition parameter DW and the processing parameter STSI and stores them in the predefined variables fI and iI, respectively. Then it gets value of the parameter ABSF1 and stores it in the user defined variable *leftlimit*. Finally, it gets the value of the output parameter CURPLOT and stores it in the predefined variable *text*.

```
float leftlimit;
...
FETCHPAR("DW", &f1)
FETCHPAR("STSI", &i1)
FETCHPAR("ABSF1", &leftlimit)
FETCHPAR("CURPLOT", text)
```

SEE ALSO

FETCHPARS - get a status parameter (acquisition and processing) STOREPAR - store an acquisition, processing or output parameter

FETCHPARS

NAME

FETCHPARS - get a status parameter (acquisition and processing)

SYNTAX

FETCHPARS(parm, &val)

DESCRIPTION

The macro FETCHPARS gets the value of a status parameter and stores it into an AU variable. This AU variable can then be used in subsequent AU statements. Acquisition status parameters are set by acquisition commands and describe the status of the dataset after acquisition. Note that the status parameters (*dpa*) describe what really happened and that this is sometimes different from what was set up before the acquisition as foreground parameters (*eda*). For example, the status NS is smaller than originally specified when an acquisition was halted prematurely. Any AU program statement which follows an acquisition command and evaluates acquisition parameters must read status parameters. Therefore, FETCHPARS is typically used after acquisition or processing statements, for example for error or abort conditions (see example below).

The macro FETCHPARS takes two arguments:

- 1. the name of the parameter
- 2. the AU variable into which the value is value will be stored

There are two important things to be considered:

- 1. The type of the AU variable must be the same as the type of the parameter (see Chapter 11).
- **2.** The second argument must be specified as the variable's address, i.e. it must be prepended with the '&' character. This, however, does not count for a text variable since a text variable is already an address.

NOTE

The handling of the macros FETCHPARS1 and FETCHPARS3 is equivalent to the handling of FETCHPARS.

EXAMPLE

The following AU program performs a series of acquisitions on the same dataset until a minimum signal/noise is reached. In a loop 8 scans are acquired, Fourier transformed and phase corrected. Then the signal/noise of the spectrum is calculated and compared with the minimum value. If the minimum signal/noise was not reached yet, 8 more scans are accumulated etc. A maximum of 8000 scans is acquired. After the acquisition has been stopped, the total number of actually acquired scans is displayed.

```
GETCURDATA
STOREPAR("NS", 8)
GETFLOAT("Please enter the minimum signal/noise", f1)
ZG
TIMES(1000)
  FT
   APK
   SINO
  FETCHPARS("SINO", f2)
  if (f1 >= f2)
     break:
   GO
END
FETCHPARS("NS", i1)
Proc_err (DEF_ERR_OPT,"Acquisition stopped after %d scans", i1);
OUIT
```

SEE ALSO

FETCHPAR - get an acquisition, processing or output parameter STOREPARS - store a status parameter (acquisition and processing)

STOREPAR

NAME

STOREPAR - store an acquisition, processing or output parameter

SYNTAX

STOREPAR(parm, val)

DESCRIPTION

The macro STOREPAR stores the value of an AU variable into a parameter. This AU variable can then be used in subsequent AU statements. STOREPAR can be used for acquisition parameters (*eda*), processing parameters (*edp*) and output parameters (*edo*). It is typically used to set parameters prior to an acquisition or processing statement. STOREPAR takes two arguments:

- **1.** the name of the parameter
- 2. the value to be stored which can specified in two different forms:
 - as a constant
 - as the name of an AU variable

Important: the type of the parameter must be the same as the type of the constant or variable. (see Chapter 11).

NOTES

STOREPAR works on 1D, 2D or 3D datasets and always stores a parameter of the first dimension (F2 for 1D, F2 for 2D and F3 for 3D).

The handling of the macros STOREPAR1, STOREPAR3, STOREPARM, STOREPLPAR, STOREPLWPAR, STOREPLXPAR and STORET1PAR is equivalent to the handling of STOREPAR.

EXAMPLE

The following AU program reads a standard parameter set, sets the pulse program and power level, asks the user for the number of scans and sets the plotter. Then a dataset is acquired, processed and plotted according to these parameters.

char curplotter[20];

```
GETCURDATA
RPAR("PROTON", "all")
STOREPAR("PULPROG", "zg30")
STOREPAR("PL 1", 10.0)
GETINT("Please enter the number of scans:", i1)
STOREPAR("NS", i1)
(void) strcpy(curplotter, "hplj51");
STOREPAR("CURPLOT", curplotter)
ZG
EFP
PLOT
OUIT
```

SEE ALSO

STOREPARS - store a status parameter (acquisition and processing) FETCHPAR - get an acquisition, processing or output parameter

STOREPARS

NAME

STOREPARS - store a status parameter (acquisition and processing)

SYNTAX

STOREPARS(parm, val)

DESCRIPTION

The macro STOREPARS stores the value of an AU variable into a status parameter. This AU variable can then be used in subsequent AU statements. Status parameters are set by an acquisition or processing command and describe the status of the dataset after this acquisition or processing command. If the data are now manipulated by AU statements which do not update the status parameters these must be set explicitly with STOREPARS. For example, if you add two fid's with addfid, the total number of scans of the resulting dataset is not automatically updated. This must be done explicitly with STOREPARS.

NOTE

The handling of the macros STOREPAR1S and STOREPAR3S is equivalent to the handling of STOREPARS.

EXAMPLE

The following AU program reads the foreground dataset, adds the fid of the next experiment number and the experiment number after that and store the result in the foreground dataset. The number of scans of the original fid's are added and stored in the status parameter NS of the resulting dataset.

int expno_save;

GETCURDATA

DATASET2(name, expno+1, procno, disk, user)

DATASET3(name, expno+2, procno, disk, user)

expno_save=expno;

IEXPNO

FETCHPARS("NS", &i1)

IEXPNO FETCHPARS("NS", &i2) REXPNO(expno_save) XCMD("addfid") STOREPARS("NS", i1+i2) QUIT

The macro XCMD is used here because no dedicated macro for **addfid** exists.

SEE ALSO

FETCHPARS - get a status parameter (acquisition and processing) STOREPAR - store an acquisition, processing or output parameter

RPAR

NAME

RPAR - read a parameter set to the current AU dataset

SYNTAX

RPAR(char *parset, char *typ)

DESCRIPTION

The macro RPAR reads a parameter set to the current AU dataset. This can be a standard Bruker parameter set or a user defined parameter set which was stored with WPAR. RPAR takes two arguments:

- 1. the name of the parameter set
- 2. the type of parameters which are to be read

The second argument can be:

- acqu for acquisition parameters (eda)
- proc for processing parameters (edo)
- *plot* for plot parameters (*edg*)
- *outd* for output parameters (*edo*)
- all for acquisition, processing, plot and output parameters

EXAMPLE

The following AU program reads the standard Bruker parameter set PROTON, sets the number of scans to 1024 and runs an acquisition:

```
GETCURDATA
RPAR("PROTON", "all")
STOREPAR("NS", 1024)
ZG
QUIT
```

SEE ALSO

WPAR - write the current dataset parameters to a parameter set

WPAR

NAME

WPAR - write the current dataset parameters to a parameter set

SYNTAX

WPAR(char *parset, char *typ)

DESCRIPTION

The macro WPAR writes the parameters of the current AU dataset to a parameter set. You can only write to user defined parameter sets. Bruker standard parameters sets cannot be overwritten. WPAR is typically used in AU programs to store a temporary parameter set. It takes two arguments:

- **1.** the name of the parameter set
- 2. the type of parameters which are to be stored

The second argument can be:

- acqu for acquisition parameters (eda)
- proc for processing parameters (edo)
- *plot* for plot parameters (*edg*)
- *outd* for output parameters (*edo*)
- all for acquisition, processing, plot and output parameters

EXAMPLE

The following AU program reads the acquisition parameters of the Bruker standard parameter set PROTON, sets the number of scans, the frequency offset and time domain data size and writes the acquisition parameters to a temporary parameter set. It then performs 8 successive acquisitions with these parameters.

GETCURDATA RPAR("PROTON", "all") STOREPAR("NS", 16) STOREPAR("O1", 766.23) STOREPAR("TD",8192) WPAR("partemp", "acqu")

```
TIMES(8)
ZG
IEXPNO
RPAR("partemp", "acqu")
END
QUIT
```

SEE ALSO

RPAR - read a parameter set to the current AU dataset

Chapter 8

Macros prompting the user for input.

This chapter contains a description of all AU macros which can be used to prompt the user for input and store the input into an AU variable. Different macros are available for requesting integer, float, double or text values.

GETINT

NAME

GETINT - prompt the user to enter an integer value

SYNTAX

GETINT("Please enter an integer value: ", i1)

DESCRIPTION

The macro GETINT prompts the user to enter an integer value and stores this value into an integer variable. It can be used for various purposes, for example to set the value of an XWIN-NMR (integer) parameter or to specify the number of cycles in an AU program loop. GETINT takes two arguments:

- 1. a text string which prompts the user to enter an integer value
- 2. an integer variable into which the value is stored

EXAMPLE

The following AU program prompts the user for the number of scans per acquisition and the number of experiments to be done:

```
GETCURDATA
GETINT("Please enter the number of scans:", i1)
GETINT("Please enter the number of experiments:", i2)
TIMES(i2)
STOREPAR("NS", i1)
ZG
IEXPNO
END
OUIT
```

SEE ALSO

```
GETFLOAT - prompt the user to enter a float value
GETDOUBLE - prompt the user to enter a double value
GETSTRING - prompt the user to enter a text string
```

GETFLOAT/GETDOUBLE

NAME

GETFLOAT - prompt the user to enter a float value GETDOUBLE - prompt the user to enter a double value

SYNTAX

```
GETFLOAT(text, f1)
GETDOUBLE(text, d1)
```

DESCRIPTION

The macro GETFLOAT prompts the user to enter a float value and stores this value into a float AU variable. It is used to get the value for an XWIN-NMR (float) parameter which can then be stored with STOREPAR. GETFLOAT takes 2 arguments:

- 1. a text string which prompts the user to enter an float value
- 2. the float variable into which the value is store

The description for GETDOUBLE is equivalent, except that it is used for XWIN-NMR (double) parameters.

EXAMPLE

The following AU program prompts the user for the *frequency offset* and *Gaussian broadening*, stores these values into the parameters O1 and GB respectively and then runs an acquisition, Gaussian multiplication and Fourier transform:

```
GETCURDATA
GETDOUBLE("Please enter the frequency offset:", d1)
STOREPAR("o1", d1);
GETFLOAT("Please enter the Gaussian broadening:", f1)
STOREPAR("GB", f1)
ZG
GM
FT
QUIT
```

SEE ALSO

GETINT - prompt the user to enter an integer value GETSTRING - prompt the user to enter a text string

GETSTRING

NAME

GETSTRING - prompt the user to enter a text string

SYNTAX

GETSTRING(text, cval)

DESCRIPTION

The macro GETSTRING prompts the user to enter a text string which is then stored into an AU variable. It can be used for various purposes, for example to ask the user a question or prompt the user to enter a name. GETINT takes two arguments:

- 1. a text string which prompts the user to enter a text string
- 2. the character-string variable into which the value is stored

EXAMPLE

The following AU program asks the user if an integration must be done and, if yes, which intrng file must be used. Then the integrals are calculated and listed:

```
char answer[8];
GETCURDATA
GETSTRING("Do you want to do an integration (yes/no)?", answer)
if (!strcmp(answer,"yes"))
{
    GETSTRING("Which intrng file must be used?", text)
    RMISC("intrng", text)
    LI
}
QUIT
```

SEE ALSO

GETINT - prompt the user to enter an integer value GETFLOAT - prompt the user to enter a float value GETDOUBLE - prompt the user to enter a double value

Chapter 9

Bruker library functions

This chapter contains a description of useful C functions which are available as part of Bruker libraries. Several of them concern the handling of dataset lists or directory lists. You can, for instance, get a list of filenames, display it, select a file from the list and then copy the file to a different directory. The functions described in this chapter are particularly useful for files located in the directories /<var>/conf and /<var>/exp. For copying datasets, we recommend to use the macros described in Chapter 4.

CalcExpTime/PrintExpTime

NAME

CalcExpTime - calculate the experiment time for the current experiment PrintExpTime - print the experiment time for the current experiment

SYNTAX

```
int CalcExpTime ();
int PrintExpTime (int exptime, int expno);
```

DESCRIPTION

The function CalcExpTime calculates the experiment time for the current experiment. The return value is the experiment time in seconds. The function PrintExpTime can be used to print the experiment time in the form "days hours minutes seconds".

EXAMPLE

The following AU program calculates and prints the experiment time of a sequence of 10 experiments starting with the foreground dataset.

```
static void PrintExpTime();
GETCURDATA
TIMES(10)
    PrintExpTime(CalcExpTime(),loopcount1);
    IEXPNO
END
QUIT
#include<inc/exptutil>
```

NOTE

It is important to declare the function PrintExpTime at the beginning of the AU program and to have the #include statement at the end of the AU program. Without these lines, the AU program does not compile.

SEE ALSO

multiexpt - a standard Bruker library AU program

check_pwd/GetNmrSuperUser

NAME

check_pwd - prompt the user to enter a password

GetNmrSuperUser - get the name of the XWIN-NMR NMR superuser

SYNTAX

```
int check_pwd (char *username);
char *GetNmrSuperUser();
```

DESCRIPTION

The function <code>check_pwd</code> prompts the user for the password of the specified user. The return value is 0, if the correct password was entered. In all other cases, the return value is -1. This function can be combined with the function <code>GetN-mrSuperUser</code> which returns the name of the XWIN-NMR NMR superuser.

EXAMPLE

```
GETCURDATA
if ( check_pwd (GetNmrSuperUser()) != 0)
{
    Proc_err(DEF_ERR_OPT,"Sorry, you are not privileged");
    ABORT
}
else
{
    Proc_err(DEF_ERR_OPT,"OK, you may proceed !");
}
QUIT
```

getdir

NAME

getdir - get all file names and/or directory names within a directory

SYNTAX

int getdir (char *directory, char ***filelist, char *match-code);

DESCRIPTION

The function <code>getdir</code> opens a directory and gets all file and directory names in that directory. This list is stored in a 2 dimensional character-string variable which can be evaluated by subsequent AU statements. The list can be limited by specifying a match-code; only names matching this string are entered into the list. <code>getdir</code> takes three arguments:

- 1. the source directory
- 2. the variable into which the list of names is stored
- **3.** the match-code; an arbitrary string of characters

The return value of getdir is the number of successfully matched file names and/or directory names.

EXAMPLE

The following AU statements will create a list of experiment directories from an XWIN-NMR dataset. All entries are returned because no match-code was specified.

```
char sourcedir[200], **listfile;
GETCURDATA
sprintf (sourcedir, "%s/data/%s/%s/%s/",disk,user,type,name);
i1 = getdir (sourcedir,&listfile,NULL);
```

The following AU statements will create a list of shim files starting with the letters a to p from the bsms directory.

```
char sourcedir[200], **listfile;
GETCURDATA
sprintf (sourcedir, "%s/lists/bsms/",getstan(0,0));
i1 = getdir (sourcedir,&listfile,"[a-p]*");
```

The following AU statement will create a list of all files but not directories from the users home directory. In this case the third argument is not a match-code but a flag ("/files") which must be specified exactly as described here.

```
i1 = getdir (getenv("HOME"),&listfile,"/files");
```

The following AU statement will return a list of all directory names from the users home directory. In this case the third argument is not a match-code but a flag ("/dir") which must be specified exactly as described here.

```
i1 = getdir (getenv("HOME"),&listfile,"/dir");
```

NOTE

The function getdir is frequently used in connection with the uxselect function which is also described in this chapter. getdir internally allocates memory for the list of names. Officially, you must free this memory with the Bruker library function freedir. In practice, however, you can omit freedir because all memory allocated by the AU program is automatically freed when the AU program finishes.

SEE ALSO

uxselect - display a list from which an entry can be selected by mouse-click freedir - free memory allocated by getdir

freedir

NAME

freedir - free memory allocated by getdir

SYNTAX

void freedir (char **listfile);

DESCRIPTION

The function freedir frees the memory that was allocated by a getdir function call.

EXAMPLE

See the example under the function uxselect.

SEE ALSO

getdir - get all file names and/or directory names within a directory uxselect - display a list from which an entry can be selected by mouse-click

uxselect

NAME

uxselect - display a list from which an entry can be selected by mouse-click

SYNTAX

char *uxselect (char *sourcedir, char **listfile, char *headerline, int mode);

DESCRIPTION

The function uxselect displays a list of names, like file names or directory names, and allows the user to select of one of these names. Depending on the mode with which uxselect was called the entries in the list can be viewed, renamed, deleted, new entries can be added etc.. Before you use uxselect in an AU program, you must first create a list of names with another AU statement, e.g. with the function getdir. The function uxselect takes four arguments:

- 1. the directory in which the listed files/directories reside
- 2. the variable containing the list of names
- 3. the header line which appears at the top of the selection window
- **4.** the mode which determines the layout and functionality of the selection window

The first argument is not needed for creating the list of names. This list is always obtained from another AU statement, e.g. the function <code>getdir</code>. However, the first argument must be specified when the fourth argument (mode) is <code>SEL_DIR_SUB</code>, <code>SEL_WR_CONF</code>, <code>SEL_RENAME</code> or <code>SEL_DELETE</code>. In those cases, the <code>uxselect</code> function needs to know the source directory because it will access it. For all other modes, the first argument of <code>uxselect</code> can be <code>NULL</code>.

The return value of uxselect is a character-string, usually the selected file or the directory name. The return value can be assigned to a variable and used in subsequent AU statements. If, however, you close the selection window by clicking the *Cancel* button the return value of uxselect is NULL.

The following modes are available.

• SEL_READ 0

A list of names is displayed in *select* mode. If you select an entry it becomes

the return value of uxselect and can be used in subsequent AU statements.

• SEL WRITE

A list of names is displayed in *select* mode. Furthermore, a new name can be entered at the bottom of the screen. If you select an entry or enter a new name, this will be the return value of uxselect. Note that entering a new name does not automatically create a file or directory with this name. You can use the return value in subsequent AU statements.

SEL_DIR_ONLY 2

A list of names is displayed in *view only* mode. No entry can be selected, but the whole listing can be printed out.

SEL DIR SUB 3

A list of directory names is displayed in *view only* mode. This mode can only be used for lists of directory names, not file names. All entries in the directories (files and subdirectories) are also displayed.

SEL RD WIDE 4

A list of names is displayed in *select* mode in an extra wide window. If the user selects an entry, this becomes the return value of uxselect. This mode is similar to SEL READ.

• SEL WR CONF 5

A list of names is displayed in *select* mode. Furthermore, a new name can be entered at the bottom of the screen. If you select an entry or enter a new name, the overwrite permissions of the corresponding file or directory are checked. If it is writable, the name will be the return value of uxselect. This mode is used in the XWIN-NMR command *wpar*. There are hardly any applications for this mode in AU programs.

SEL_RENAME 6

A list of names is displayed in *write* mode. Selecting an entry allows to rename it.

SEL_ED_WIDE 7

The list of names is displayed in *write* mode. An empty entry is added in which a new name can be entered. Every entry in the list can be renamed. This mode is used in the XWIN-NMR command *edhead*. There are hardly any applications for this mode in AU programs.

SEL ALL 8

A list of names is displayed in *select* mode. You can select a single entry or click the button *Select all* to select all entries.

• SEL DELETE 9

A list of names is displayed in *select* mode. The selection window contains the buttons *execute* and *select* all. When you select an entry and click on *execute* the corresponding file or directory is deleted. When you click *select* all and then *execute*, all files/directories in the list are deleted.

We strongly recommend to specify the mode with its symbolic name rather than with its number. The reason is that the numbers might change in future releases of XWIN-NMR, but the symbolic names will not.

EXAMPLE

The following AU program will get a listing of all shim files with the extension .mike and will display this list in a selection window. If an entry is selected, then the corresponding shim file is read with the macro *RSH*. If no entries were found or selected, the AU program aborts.

```
char sourcedir[200], **listfile, *answer;

GETCURDATA
sprintf (sourcedir, "%s/lists/bsms/",getstan(0,0));
if ( (i1 = getdir (sourcedir,&listfile,"*.mike")) <= 0 )

{
    Proc_err (DEF_ERR_OPT,"No shim files with extension .mike found");
    ABORT
}
else
{
    if ( (answer = uxselect(NULL,listfile,"shim files",SEL_READ)) != 0 )
    {
        RSH(answer)
    }
}
freedir (listfile);
QUIT</pre>
```

SEE ALSO

getdir - get all file names and/or directory names within a directory getstan - return the pathname to the user's current experiment directory

dircp

NAME

```
dircp - copy a file dircp_err - return the error message that corresponds to the error return value of a dircp function call
```

SYNTAX

```
dircp (char *sourcefile, char *targetfile);
char *dircp_err (int return-value);
```

DESCRIPTION

The function dircp copies the sourcefile into the targetfile. If the targetfile exists, it will be overwritten. A negative number is returned if copying was not possible. The function dircp_err will return the corresponding C error message. A return value of 0 indicates successful execution.

EXAMPLE

The following AU program copies the title file of the foreground dataset to the users home directory.

fetchstorpl

NAME

fetchstorpl - read or store one or several plot parameters

SYNTAX

int fetchstorpl (char *directory, int mode, int where, varargs);

DESCRIPTION

The function fetchstorpl can read or write one or several plot parameters in one function call. This routine is primarily used when several plot parameters are to be stored. Fetchstorpl is also used when plot parameters are to be stored in a parameter set rather than an XWIN-NMR dataset. fetchstorpl takes four arguments:

1. directory

If the third argument (where) is 0, it must be *curdat*If the third argument (where) is 1, it must be the pathname to a parameter set.

2. mode

Must be 0 if the parameters are to be stored.

Must be 1 if the parameters are to be read.

3. where

Must be 0 if the parameters are to be stored in a dataset. Must be 1 if the parameters are to be stored in a parameter set.

- 4. varargs consists of two parts
 - A list of plot parameters separated by white spaces. This list must be double quoted with " " which makes it a character-string.
 - A list of values or variables, all separated by commas. Each value or variable must match the type of parameter from the above mentioned list.

EXAMPLE

 This example stores CX and CY in the parameter set PROTON.AB: (void) sprintf (text,"%s/par/PROTON.AB",getstan(0,0));
 i1 = fetchstorpl(text,0,1,"CX CY",20.0,12.0); Note that this will only work, if the parameter set is writable for the user who runs the AU program.

- This example stores CX and CY in the current AU program dataset:
 i1 = fetchstorpl(curdat,0,0,"CX CY",20.0,12.0);
 Note that the variable curdat has a special meaning. In any AU program, curdat always and automatically refers to the current AU program dataset.
- This example reads SXLLEFT, SHEI, DHEI and CY from the current AU program dataset:

float sxlleft, shei, dhei, cy; i1 = fetchstorpl(curdat,1,0,"SXLLEFT SHEI DHEI CY", &sxlleft,&shei,&dhei,&cy);

SEE ALSO

FETCHPLPAR - get a plot parameter

STOREPLPAR - store a plot parameter

stack1d - generate a stacked plot of 1D spectra from a series of experiments

gethighest

NAME

gethighest - return the next highest unused experiment number of a dataset

SYNTAX

```
int gethighest (char *directory);
```

DESCRIPTION

The function gethighest scans a directory for all subdirectories which are a number. This is the case for the subdirectories (experiment numbers) under the dataset name of an XWIN-NMR dataset. If the highest used experiment number is 56, the function will return the value 57. The function can also be used to return the highest unused processing number of a dataset.

EXAMPLE

The following AU program will copy the current XWIN-NMR experiment into the next highest unused experiment dataset.

```
GETCURDATA
(void) sprintf (text,"%s/data/%s/nmr/%s",disk,user,name);
i1 = gethighest (text);
WRA(i1)
QUIT
#include <inc/sysutil>
```

NOTE

It is important to have the #include statement at the end of the AU program. Without this line, the AU program does not compile.

getstan

NAME

getstan - return the pathname to the user's current experiment directory

SYNTAX

char *getstan (char *pathname, const char *subdir);

DESCRIPTION

The function getstan returns the pathname to the user's current experiment directory. The returned pathname can be concatenated with a known subdirectory pathname as a part of the same getstan function call.

EXAMPLE

The following AU program will get the pulse program of the current AU dataset. It will then prompt the user to confirm the name of the pulse program or to enter a new name. Finally, the pulse program will be shown in an XWIN-NMR window.

```
char pulprog[80];

GETCURDATA

FETCHPAR("PULPROG",pulprog)

GETSTRING ("Enter the name of the pulse program: ",pulprog);

(void) sprintf (text,"%s/%s",getstan (NULL,"lists/pp"),pulprog);

show_file (text);

QUIT
```

NOTE

In the above example, the function call <code>getstan</code> (NULL, "lists/pp") returns the pathname /u/exp/stan/nmr/lists/pp. The function call <code>getstan(NULL,NULL)</code> returns /u/exp/stan/nmr/.

SEE ALSO

PathXWinNMR - a class of functions which return pathnames to certain XWIN-NMR directories

multi_integ - an AU program for multiple integrations in AI mode.

getxwinvers

NAME

getxwinvers - return the current version and patchlevel of XWIN-NMR

SYNTAX

```
int getxwinvers (char *curversion);
```

DESCRIPTION

The function getxwinvers returns the version and patchlevel of the currently running XWIN-NMR program into the variable curversion. This variable can then be printed out.

EXAMPLE

The following AU program prints the current version and patchlevel in the status line of XWIN-NMR.

```
char curversion[80];
GETCURDATA
i1 = getxwinvers(curversion);
show_status (curversion);
OUIT
```

#include <inc/sysutil>

NOTE

It is important to have the #include statement at the end of the AU program. Without this line, the AU program does not compile.

mkudir

NAME

mkudir - create a complete directory path

SYNTAX

```
int mkudir (char *directory);
```

DESCRIPTION

The function mkudir scans the specified directory for the last /. Then it checks recursively for the existence of all components of the directory path and creates them if necessary. The function returns -1 if an error occurs, otherwise 0.

NOTE

If the full pathname is to be created, then the directory must end with a / (see the example below).

EXAMPLE

The following AU program will create a dataset which has an experiment number one higher than the current foreground dataset.

GETCURDATA

PathXWinNMR

NAME

PathXWinNMR - a class of functions which return pathnames to certain XWIN-NMR directories

SYNTAX

```
char *PathXWinNMRConf ();
char *PathXWinNMRCurDir ();
char *PathXWinNMRDotXWinNMR ();
char *PathXWinNMRExp ();
char *PathXWinNMRPlot ();
char *PathXWinNMRProg ();
```

DESCRIPTION

The above functions return pathnames to certain XWIN-NMR directories. In a standard installation, the XWIN-NMR program will reside in /u. In a user-defined installation, /u will be replaced by \$XWINNMRHOME which points to the directory into which XWIN-NMR was installed. The following table lists the directory pathnames returned by the above functions. For examples, please check the Bruker AU program library.

char *PathXWinNMRConf : returns /u/conf

char *PathXWinNMRCurDir : returns /u/prog/curdir

char *PathXWinNMRDotXWinNMR : returns \$HOME/.xwinnmr-hostname

char *PathXWinNMRExp : returns /u/exp

char *PathXWinNMRPlot : returns /u/plot

char *PathXWinNMRProg : returns /u/prog

SEE ALSO

getstan - return the pathname to the user's current experiment directory

pow_next

NAME

pow_next - round to the next larger power of two

SYNTAX

```
int pow next (int i1);
```

DESCRIPTION

The function pow_next takes i1 and rounds it to the next larger integer value which is a power of two. The return value of the function is this power of two value. The function has no error handling. If i1 is smaller than 1, then the function will return 1.

EXAMPLE

The following AU program will return 8192 in i2 because this is the next larger number (compared to i1) which is a power of two.

```
GETCURDATA

i1 = 7000;

i2 = pow_next(i1);

QUIT

#include <inc/sysutil>
```

NOTE

It is important to have the #include statement at the end of the AU program. Without this line, the AU program does not compile.

Proc err

NAME

Proc_err - show a error message in a window on the XWIN-NMR screen

SYNTAX

```
int Proc_err (int flag, char *format);
int Proc_err (int flag, char *format, varargs);
```

DESCRIPTION

The function Proc_err can be used to construct a error message which will be displayed in a window on the XWIN-NMR screen. The function takes two or three arguments:

- **1.** a flag which determines the type and the number (2 or 3) of buttons in the error window.
- 2. the error message to be displayed. If this argument contains %d, %f, or %s statements, then Proc_err needs a third argument which provides the corresponding variables.
- **3.** variables who's values replace the corresponding %d, %f, or %s statements of the second argument.

The first argument (flag) can have the following values:

• DEF_ERR_OPT

The error window has one button (*OK*). The AU programs holds until the user clicks *OK*.

INFO_OPT

The error window has one button (Seen). The AU program continues but the error window remains on the screen until it is cleared by another error window or the user clicks **Seen**.

QUESTION_OPT

The error window has two buttons, OK and CANCEL. Proc_err returns ERR_OK (0) if the **OK** button is clicked and ERR_CANCEL (-1) if the **CANCEL** button is clicked. The return value is normally used by subsequent control statements to decide whether or not to continue the AU program.

Note that the message in the Proc_err window is constructed in the same way as the C function sprintf constructs its strings.

EXAMPLE

The following examples show several possibilities of constructing error messages for the Proc_err function call.

SEE ALSO

Show_status - show a string in the status line of XWIN-NMR

All AU programs from the Bruker AU program library which use Proc_err

Show status

NAME

Show_status - show a string in the status line of XWIN-NMR

SYNTAX

```
int Show status (char *text);
```

DESCRIPTION

The function Show_status displays the specified text in the XWIN-NMR status line. This function can be used as an alternative to the Proc_err function. One difference to Proc_err is that there is no window that needs to be acknowledged.

EXAMPLE

The following AU program will display the line "The AU program test has started" in the status line of XWIN-NMR:

```
GETCURDATA
```

```
(void) strcpy(text,"The AU program test has started");
i1 = Show_status (text);
QUIT
```

SEE ALSO

Proc_err - show a message in a window on the XWIN-NMR screen

showfile

NAME

showfile - show the contents of a file in an XWIN-NMR window

SYNTAX

```
int showfile (char *file);
```

DESCRIPTION

The function showfile reads the specified file and displays it in an XWIN-NMR window. This display is a read-only display, so manipulations are not possible.

EXAMPLE

The following AU program will show the title file in an XWIN-NMR window.

GETCURDATA

```
(void) sprintf (text,"%s/data/%s/nmr/%s/%d/pdata/%d/title",
disk,user,name,expno,procno);
i1 = showfile (text);
QUIT
```

ssleep

NAME

ssleep - pause in an AU program for a certain number of seconds

SYNTAX

```
int ssleep (int seconds);
```

DESCRIPTION

The function ssleep will cause the AU program to wait with the execution of the next statement until the specified number of seconds has elapsed.

EXAMPLE

The following AU program will wait for 3 minutes before it resumes execution.

```
GETCURDATA
i1 = ssleep (180);
EFP
QUIT
```

SEE ALSO

WAIT_UNTIL - hold the AU program until the specified date and time

unlinkpr

NAME

unlinkpr - delete all processed data files (1r, 1i, 2rr, 2ii etc.) of a dataset

SYNTAX

```
int unlinkpr (char *directory);
```

DESCRIPTION

The function unlinkpr deletes all processed data files (1r, 1i, 2rr, 2ii, 2ri, 2ir, dsp, dsp.hdr, dsp_low) in the specified dataset directory. There is no error check whether the files could be deleted; the return value of the function is always 0 and can be ignored.

EXAMPLE

The following AU program will delete the processed data files of the foreground dataset.

```
GETCURDATA
```

```
(void) sprintf (text,"%s/data/%s/nmr/%s/%d/pdata/%d",
disk,user,name,expno,procno);
i1 = unlinkpr (text);
QUIT
#include <inc/sysutil>
```

NOTE

It is important to have the #include statement at the end of the AU program. Without this line, the AU program does not compile.

Chapter 10 List of Bruker AU programs

10.1 Short description of all Bruker AU programs

This chapter contains a list with the names and short-descriptions of all Bruker library AU programs. This list was made for XWIN-NMR 2.5. Some AU programs are not available for older versions of XWIN-NMR.

1	
Z-spoil	Set a Z-spoil value within the SCM.
abs2.water	Performs an F2 baseline correction on a 2D dataset left and right of the water.
abs2D	Performs a baseline correction on a 2D dataset in both dimensions.
acqu_fid_ser	Acquires a single FID of the current 2D experiment and replaces the old fid in the ser file.
acqulist	Set up and start acquisitions using f1, f2, f3, vt, vc, vd, vp lists.
amplstab	Calculates the amplitude stability based on a peaklist file.
angle	Perform multiple acquisitions and ft's. This program is particularly interesting when you want to adjust the magic angle for MAS type experiments.
asclev	Converts the level file in the current processed data directory to ASCII and writes it to the file
au_equilte	Used by Iconnmr to change samples for temperature experiments
au_getl1d	Acquire sweep width optimized 1D spectra.
au_getlcosy	Acquire sweep width optimized COSY spectra.
au_getlcosyp	Acquire sweep width optimized phase sensitive COSY spectra.
au_getlinv	Acquire sweep width optimized 2D inverse spectra.
au_getlxhco	Acquire sweep width optimized XH correlated spectra.
au_mult	AU program for C13 multiplicity analysis.
au_noediff	noe difference spectroscopy using different expnos.
au_noemult	noe difference spectroscopy with multiple irradiation points for each multiplet using different expnos.
au_water	Acquire water-suppression spectra for use in foreground (xau,xaua).
au_watersc	Acquire water-suppression spectra for use in automation, e.g., with sample changer.
au_zg	General AU program for data acquisition.

au_zg135	Acquire DEPT135 type spectra.
au_zgcosy	Acquire COSY type spectra.
au_zgglp	Automatic data evaluation according to GLP standards. This AU program takes O1, SW and O2 as arguments and then works like au_zg.
au_zgnr	Acquisition with rotation switched off.
au_zgonly	General AU program for data acquisition.
au_zgsino	Acquisition with signal to noise break up.
au_zgte	Acquisition with temperature setting.
aunmp_tojdx	Used in LIMS automation to process data. First, AUNMP is executed, then, if specified, the command given on the command line.
autoflist	Automatic generation of a frequency list for the peaks in the plot region of the spectrum.
autot1	Automatic processing of a 2D T1/T2 experiment with subsequent T1/T2 calculation.
bintoasc	Converts experiments from /u/exp/stan/nmr/par containing old binary metafiles to an experiment which then contains the same plot parameters but in ASCII format.
bsms_exam	Example AU program which shows how to use low level functions to read or write BSMS parameters.
bsms_vtu_exam	Example AU program which shows how to use low level functions to read or write BSMS or VTU (BVT1000/BDTC) parameters.
butselau	Acquisition with butselnmr (buttonmr for selective experiments) from within XWIN-NMR.
buttonau	Acquisition with buttonnmr from within XWIN-NMR.
calcphinv	Calculate the phase correction for the F1 dimension in HMQC/HSQC type experiments.
calfun	Calculates an FID from an arbitrary function. This AU program is especially useful when you want to create a user defined window function for the 'uwm' command.

cmdpanaux	Controls the start and function of command panels (see cpan command for more details).
coiltemp	Read the Shim Coil Temperature.
convto1d	Converts a 2D spectrum to 1D format.
decon_t1	Automatic deconvolution of a 2D T1/T2 experiment.
deptcyc	Creates 3 DEPT experiments from 13C experiment with CPD and then performs multiple cycles of NS scans (times 2 for DEPT90).
depthalt	Halt "deptcyc" AU program.
diffe	Calculate the difference spectra between expnos.
diffp	Calculate the difference spectra between procnos.
dosy	setup for diffusion/DOSY experiments linear gradient amplitude ramp
dosyq	setup for diffusion/DOSY experiments "squared" gradient amplitude ramp
f1ref	Corrects the referencing in F1 for inverse type experiments.
fidadd	Add up FID's in incremented expno's.
fidtoser	Writes a number of fids that are stored under the same NAME and incremental EXPNOs to a ser file.
getphsum	Reads the total phase values from the status parameters and stores them back to the actual parameters.
goalternate	Acquire alternated X/Y measurements. N averages are acquired alternatingly in two experiments.
gpro	Does the same as if you enter 'eda' and then click on PROSOL.
gradpreemp	Preemphasis adjustment for gradient spectroscopy on AMX/ARX/ASX with gradient waveform memory.
gradprog	Set the relevant parameters and generate the necessary files for the execution of pulse programs containing up to ten shaped gradient pulses in three orthogonal directions. For AMX/ARX/ASX with gradient waveform memory.

gradratio	Calculate gradient ratios for common inverse gradient pulse programs.
gradshapes	Calculate various gradient shapes.
gradshimau	Start gradshim gradient shimming procedure.
guide	Perform a remote request server for the 'NMR Guide and Encyclopedia' client.
gv	Returns the currently running xwinnmr version and the directory it is stored in.
humpcal	Performs the 'hump test'. Measures the width of a peak at 0.55% and 0.11% of its signal height.
hwcal	Calculate the width of a peak at half height.
iexpno	Program to change to a new experiment number.
ilhalt	Stop an interleaved acquisition which was started with the AU program interleave.
interleave	Perform interleaved acquisitions.
jconv_aufx	Converts Jeol FX data in a loop. The data must be stored with increasing extensions like proton.1, proton.2, etc.
list_pp	Scans all experiment numbers of the current data set for the pulse program name and the first 30 characters of the title. All experiments that are found are listed on the screen. If an experiment is selected, then it is made the foreground dataset.
listall_au	Scans all AU programs and extracts the name and the short description. This information is then copied into the file listall in your home directory. This list corresponds to the list you are currently reading.
mkflist	Automatically generates a frequency list file.
mulabel	Processing AU program for determination of 13C multiplicity.
multanal	Interactive AU program for determination of 13C multiplicity.
multext	Processing AU program for determination of 13C multiplicity

	<u> </u>
multi_decon	Automatic deconvolution of a series of 1D spectra with AI calibration.
multi_integ	Automatic integration of a series of 1D spectra with AI calibration.
multi_integ2	Automatic integration of a series of 1D spectra with calibration of the integral values.
multicom	Executes an XWIN-NMR command in increasing expnos.
multicyc	Cycles through a series of acquisitions of increasing expnos.
multiefp	Performs multiple "efp" on increasing expnos.
multiexpt	Calculates experimental time for multizg.
multifp	Performs multiple "fp" on increasing expnos.
multiftapk	Performs multiple "ft;apk" on increasing expnos.
multihalt	Halt "multicyc" AU program.
multimas	Performs multiple MAS experiments on increasing expnos.
multipcom	Executes an XWIN-NMR command in increasing procnos.
multiwinpro	Performs multiple processing on increasing expnos. The program asks for the window function and its parameters.
multixfb	Performs multiple "xfb" on increasing expnos.
multizg	Performs multiple acquisitions on increasing expnos.
noediff	noe difference spectroscopy using different expnos.
noeflist	Automatic generation of a frequency list with the peaks from the current plot region for noe.
noemult	noe difference spectroscopy with multiple irradiation points for each multiplet using different expnos.
o1f1	Correct calibration of F1 axes in 2D MQ experiments of odd half integer nuclei.
paropt	Parameter optimization au program.
parray	Parameter optimization au program using parameter arrays. Derived from 'paropt', but several parameters may now be changed per experiment. In addition, parameters are not changed via constant increments. Instead, the values are taken from an array.

	DE COORY 1, 1 C OD FOR
pecosy	Program to pre-process P.E.COSY raw data before 2D-FT.
phtran	Transfer phase correction parameters PHC0 and PHC1 into acquisition parameters PH_ref and DE.
plot_3d	Plot planes of a 3D dataset.
plot_sino	Plot spectrum, scaling depends on Signal/Noise.
popt	Parameter optimization au program using parameter arrays. Derived from 'paropt' but several parameters may be optimized. The parameters are changed according to the parameter arrays.Input parameter values are taken from an array.
popthalt	Halt "popt" AU program.
pp2d	Performs a 2D peak picking with the help of the XWIN-NMR command "pp" for 1D spectra.
pp2dmi	Sets the peak picking parameter MI according to the parameter S_DEV and performs a 2D peak picking with the AU program "pp2d".
proc_1H	Processing AU program for 1H spectra without baseline correction after processing.
proc_1d	Basic processing AU program for 1D spectra.
proc_1dapks	Like proc_1d but using APKS instead of APK.
proc_1dconlf	Processing AU program for 1D-spectra with conditional lowfield plot.
proc_1dexp	Processing AU program for 1D spectra with automatic expansions.
proc_1dglp	Processing AU program with automatic data evaluation according to GLP standards. This AU program takes CY as an argument and then works like proc_1d.
proc_1dinfo	Processing AU program for 1D spectra with contents of the info file put into the plot title.
proc_1dlf	Processing AU program for 1D spectra with additional low field.
proc_1dlfexp	Processing AU program for 1D spectra with additional low field plot and automatic expansions.

proc_1dppti	Processing AU program for 1D spectra where the peak picking result appears as part of the plot title.
proc_2d	Processing AU program for 2D spectra without plotting.
proc_2dcosy	Processing AU program for phase sensitive 2D COSY type spectra.
proc_2ddqf	Processing AU program for phase sensitive 2D DQF type spectra.
proc_2dinv	Processing AU program for 2D inverse type spectra.
proc_2dnoesy	Processing AU program for 2D NOESY type spectra.
proc_2dpl	Processing AU program for 2D type spectra which don't need a symmetrization.

proc_2dsym	Processing AU program for 2D COSY type spectra.
proc_2dt1	Automatic processing of a 2D T1/T2 experiment with subsequent T1/T2 calculation.
proc_cosy	Processing AU program for 2D COSY type spectra.
proc_cpd135	Processing AU program for 13C CPD and DEPT135 spectra which were acquired with the AU program au_zg135.
proc_glp	Automatic GLP data evaluation.
proc_gsml	Processing AU program for inverse 2D-spectra which were acquired with the pulse program invigsmltp.
proc_intrng	Processing AU program which uses a predefined integral range file rather than the one created by abs.
proc_no	AU program which does no processing.
proc_noe	Automatic processing of noediff spectra.
proc_t1	Automatic processing of a 2D T1/T2 experiment with subsequent T1/T2 calculation.
proc_xhcorr	Processing AU program for 2D HETCOR type spectra.
psys180f1t1	Processing AU program for the 180 degree pulse calibration tests.
psysamp1s39	Processing AU program for the amplitude stability tests - with shaped pulse - with 30 degree pulse - with 90 degree pulse - after gradient echo (5msec, 30 G/cm) - after gradient echo (5msec, 10 G/cm) - after gradient pulse (1msec, 10G/cm).
psysb1hom	Processing AU program for the B1 homogeneity test.
psyscancel	Processing AU program for the - phase cycling cancellation test - phase cycling cancellation test after gradient pulse.
psysdante1	Processing AU program for the dante type turn on test.
psysexpro1	Processing AU program for the - excitation profile (16 usec gauss shape) test - excitation profile (6 msec gauss shape) test.
psysglitch	Processing AU program for the glitch test.
psysgrreco1	Processing AU program for the gradient recovery test.

psysgrzpro	Processing AU program for the z-gradient profile.
psysmodl1	Processing AU program for the - modulator linearity test - shaped pulse modulator linearity test.
psysmultl1	Processing AU program for the amplitude linearity test (1dB power level steps).
psysphas1st	Processing AU program for the - phase stability test ("13 degree test") - shaped pulse phase stability test (16 usec gaussian shape, "13 degree test").
psysphasf1	Processing AU program for the - phase propagation test - phase shifting test.
psyspullin1	Processing AU program for the - amplitude linearity test - shaped pulse amplitude linearity test (pulse length *2, power level +6).
psysquadim	Processing AU program for the quad image suppression test.
psysrgtest	Processing AU program for the receiver gain test (analog and digital).
psyssoftp1	Processing AU program for the shaped pulse comparison (rectangular, gaussian, eburp1).
psysturnon	Processing AU program for the turn on test.
pulse	Program to calculate attenuation value for given pulse length or nutation frequency, or vice versa.
qnpset	Define the QNP parameter according to the currently defined probehead.
quadplot	First plots a 2D overview spectrum and then the 4 quadrants of the 2D spectrum.
queue	Queue data acquisition.
queue_init	Initialise data acquisition with the AU program queue.
queuerga	Queue data acquisition.
r23mplot	Read 2D slices from a 3D data set and plot them.
r23mult	Repeatedly reads slices from a 3D data set (3rrr) into successive experiment numbers.
rampXY	3D gradient shimming with the BSMS RCB board.

	T
remproc	Automatic conversion and processing of data sets transferred via BRUKNET, LIGHTNET, NMR-LINK or TCP-LINK.
repeat	Repeat an acquisition with exactly the same parameters, pulse program and other lists.
runproc	Re-process data, measured by ICON-NMR.
secplot	Generate a section plot. The overview spectrum is plotted together with a vertical expansion of a smaller part of the spectrum on top of it.
selget	Import a shaped pulse into the current dataset.
selput	Export the current FID into a wave form file.
set_sreglist	Set SREGLST parameter from NUC1 and SOLVENT.
shear	Program for 2D MQ experiments on nuclei with odd half integer spin for shearing the 2D spectrum after 2D FT.
showpp	Start NMR-SIM pulse program display. This program is used by the NMR guide&encyclopedia.
simplex	AU program for autoshimming. It is suitable for adjustment of strongly coupled shim groups which may be far from the optimum position.
simtoseq	Converts data which have been recorded in digital and qsim mode to data which appear to be acquired in qseq mode.
sinocal	Calculates the signal to noise ratio.
split2D	Splits a processed 2D file into single 1D spectra.
splitinvnoe	Separate NOE and NONOE data obtained with a pulse program like invinoef3gpsi.
splitser	Splits a ser file into single fids, starting with the expno which follows the ser file.
splitxf	Separate and combine double half filtered data (G. Otting & K. Wuethrich, J. Magn. Reson. 85, 586 - 594 (1989)) obtained with a pulse program like noesyf3gpstxf19
stack1d	Generates a stacked plot of 1D spectra from increasing or decreasing EXPNOs or PROCNOs.
stack2d	Generate a 2D stack plot.

sti	Displays the title of the current dataset in a window without opening an editor (FAST!)
suppcal	Calculates the width of the Water peak at 100% and 50% of the DSS signal height. The result is referred to as the 'water suppression test'.
sys180f1t1	Acquisition AU program for the 180 degree pulse calibration test with different phases.
sys180f1t2	Acquisition AU program for the 180 degree pulse calibration test with different flip angles.
sysamp1sp9	Acquisition AU program for the shaped pulse amplitude stability test.
sysamp1st	Acquisition AU program for the amplitude stability tests - with 30 degree pulse - with 90 degree pulse.
sysb1hom	Acquisition AU program for the B1 homogeneity test.
syscancel	Acquisition AU program for the phase cycling cancellation test.
sysdante1	Acquisition AU program for the dante type turn on test.
sysexpro1	Acquisition AU program for the - excitation profile (16 usec gauss shape) test - excitation profile (6 msec gauss shape) test.
sysgenpar	Preparation AU program for all HWT test programs.
sysglitch	Acquisition AU program for the glitch test.
sysgrcan	Acquisition AU program for the phase cycling cancellation test after gradient pulse.
sysgrecho	Acquisition AU program for the amplitude stability test after gradient echo (5msec, 30 G/cm and 5msec, 10 G/cm).
sysgrreco1	Acquisition AU program for the gradient recovery test.
sysgrstab	Acquisition AU program for the amplitude stability test after gradient pulse (1msec, 10G/cm).
psysgrzpro	Acquisition AU program for the z-gradient profile.
sysmodl1	Acquisition AU program for the modulator linearity test

sysmodls1	Acquisition AU program for the shaped pulse modulator linearity test.
sysmultl1	Acquisition AU program for the amplitude linearity test (1dB power level steps).
sysphas1sp	Acquisition AU program for the shaped pulse phase stability test (16 usec gaussian shape, "13 degree test").
sysphas1st	Acquisition AU program for the phase stability test ("13 degree test").
sysphasf1	Acquisition AU program for the - phase propagation test - phase shifting test.
syspullin1	Acquisition AU program for the amplitude linearity test (pulse length *2, power level +6).
sysquadim	Acquisition AU program for the quad image suppression test.
sysrgtest	Acquisition AU program for the receiver gain test (analog and digital).
syssoftp1	Acquisition AU program for the shaped pulse comparison (rectangular, gaussian, eburp1).
syssplin1	Acquisition AU program for the shaped pulse amplitude linearity test (pulse length *2, power level +6).
systurnon	Acquisition AU program for the turn on test.
testsuite	Test the general functionality of an XWIN-NMR release version. Basic functionality is given if this program is completed without error messages.
tmscal	Performs a peak picking around the TMS signal. If the two satellites from the 29Si - 1H coupling can be detected, the resolution is OK.
tune	Tune a probehead.
vtu_exam	Example AU program which shows how to use low level functions to read or write VTU (BVT1000/BDTC) parameters.

xfshear	Program for shearing of 2D MQMAS spectra of odd half integer quadrupolar nuclei. Data need to be acquired in States Mode
xwp_p1dlf	Processing AU program for 1D spectra with additional low field plot.AUTOPLOT (the automatic version of XWIN-PLOT) is used instead of XWIN-NMR's plot.
xwp_p2dpl	Processing AU program for 2D type spectra which don't need a symmetrization. AUTOPLOT (the automatic version *of XWIN-PLOT) is used instead of XWIN-NMR's plot.
xwp_pcpd135	Processing AU program for 13C CPD and DEPT135 spectra which were acquired with the AU program au_zg135. AUTOPLOT (the automatic version of XWIN-PLOT) is used instead of XWIN-NMR's plot.
zg_2Hoffon	General AU program for data acquisition. The lock is switched off before the acquisition is started.
2df1shift	Shift a 2D spectrum along the F1 axis.
2dgetref	Gets parameters for a 2D spectrum from the 1D reference spectra: Nucleus, Frequencies, Spectral Width, and reference plot data set names. The F2 reference is taken from the second dataset. The F1 reference is taken from the third dataset.
2dshift	Shift 2D time domain data left or right over NSP points.
2nde	Set 2nd data set to new expno and 3rd data set equal to foreground data set.
2ndn	Set 2nd data set to new name and 3rd data set equal to foreground data set.

Chapter 11

XWIN-NMR parameter types

This chapter contains a list of all XWIN-NMR parameters grouped by their type. The type of a parameter can be integer, float, double or character-string. Several AU macros read XWIN-NMR parameters into AU variables or store the value of AU variables into XWIN-NMR parameters. In both cases it is important that the type of the AU variable is the same as the parameter type.

11.1 Integer parameters

The following XWIN-NMR parameters are of the type integer:

ABSG	AQORDER	AQSEQ	AQ_mod
BC_mod	BYTORDA	BYTORDP	DATMOD
DIGMOD	DIGTYP	DS	EXPNO2
EXPNO3	FL1	FL2	FL3
FL4	FS[8]	FT_mod	HL1
HL2	HL3	HL4	HGAIN[4]
HOLDER	HPMOD[8]	HPPRGN	INTBC
L[32]	LOCSHFT	LPBIN	MC2
ME_mod	NBL	NC	NCOEF
NC_proc	NLEV	NS	NSP
NTH_PI	NZP	OVERFLW	PAPS
PARMODE	PHP	PH_mod	PKNL
POWMOD	PPARMOD	PR	PRGAIN
PSCAL	PSIGN	PROCNO2	PROCNO3
QNP	REVERSE	RO	RSEL[10]
S[8]	SEOUT	SI	STSI
STSR	SURQMSG	SYMM	TD
TDeff	TDoff	TILT	TUNHIN
TUNHOUT	TUNXOUT	WBST	WDW
XDIM	XGAIN[4]	XL	YL
YMAX_a	YMAX_p	YMIN_a	YMIN_p

11.2 Float parameters

The following XWIN-NMR parameters are of the type float:

ABSF1	ABSF2	ABSL	ALPHA
ASSFAC	ASSFACI	ASSFACX	ASSWID
AZFE	AZFW	BCFW	CNST[32]
DBL[8]	DBPOAL[8]	DBPOFFS[8]	DBP[8]
DC	DE	DL[8]	DPOAL[8]
DPOFFS[8]	DP[8]	D[32]	FCOR
FOV	FW	GAMMA	GB
GPX[32]	GPY[32]	GPZ[32]	INTSCL
ISEN	LB	LEV0	LOCPHAS
MASR	MAXI	MI	NOISF1
NOISF2	OFFSET	PC	PCPD[10]
PHC0	PHC1	PHCOR[32]	PH_ref
PL[32]	P[32]	RECPH	RG
SIGF1	SIGF2	SINO	SPOAL[16]
SPOFFS[16]	SP[16]	SSB	S_DEV
TE	TL[8]	TM1	TM2
TOPLEV	TPOAL[8]	TPOFFS[8]	TP[8]
V9	VD	ZL1	ZL2
ZL3	ZL4		

11.3 Double parameters

The following	XWIN-NMR	parameters are	of the tv	ne double:
1110 10110 11115		Petronia corp cor		

BF1	BF2	BF3	BF4
BF5	BF6	BF7	BF8
COROFFS	INP[32]	IN[32]	LFILTER
LGAIN	LOCKPOW	LTIME	O1
O2	O3	O4	O5
O6	O7	O8	SF
SFO1	SFO2	SFO3	SFO4
SFO5	SFO6	SFO7	SFO8
SW	WBSW		

11.4 Character-string parameters

The following XWIN-NMR are of the type character-string:

AUNM[16]	AUNMP[16]	CPDPRG[16]	CPDPRGB[16]
CPDPRGT[16]	CUREXP[16]	CURPLOT[80]	CURPRIN[80]
DBPNAM0[16]	DECBNUC[8]	DECNUC[8]	DFILT[16]
DFORMAT[16]	DPNAME0[16]	DSLIST[16]	DU[256]
DU2[256]	DU3[256]	EXP[16]	F1LIST[16]
F2LIST[16]	F3LIST[16]	FQ1LIST[16]	GPNAM0[16]
GRDPROG[16]	INSTRUM[16]	LAYOUT[256]	LFORMAT[16]
LOCNUC[8]	MASRLST[16]	NAME[16]	NUC1[8]
NUCLEUS[8]	PFORMAT[16]	PROBHD[64]	PULPROG[16]
SOLVENT[16]	SPNAM0[16]	SREGLST[16]	TI[72]
TPNAME0[16]	TYPE[16]	USER[16]	USERA1[80]
USERP1[80]	VCLIST[16]	VDLIST[16]	VPLIST[16]
VTLIST[16]			

Index

	BAYED 33
\mathbf{A}	BAYEDX 33
	Bayesian calculation 33
ABORT 41	BAYX 33
ABS 30	BC 30
ABS1 34	BCM1 34
ABS2 34	BCM2 34
ABSD 30	brukdef.h 19
ABSD1 34	Bruker library functions 10
ABSD2 34	BSMS 29
ABSF 30	
ABSF1 30	\mathbf{C}
ABSF2 30	C functions 93
ABSOT1 34	CalcExpTime 40, 51
ABSOT2 34	cc 17
ABST1 34	C-code 16
ABST2 34	character string 136
ADD 32, 54	check_pwd 40
ADD2D 34	CMPL 32
ADDC 32	compileall 8, 9
addfid 82	compiling AU programs 8
AND 32	constants 17
APK 30, 61	control statements 15
APKS 30	CONV 39, 71
argc 18	CONVCP 39, 71
arglist 18	CONVDTA 31
argv 18	cplbruk 8
Aspect 2000/3000 71	cpluser 8
Aspect3000 67	CPR_exec 15, 39, 44, 45, 46, 47, 51
AT 32	curdat 18
AU macro 7	
AU_program 18	D
aucmd.h 17, 19	DAT1 33
Automatic baseline correction 37	DAT2 33
AUTOPLOT 38	DATASET 25, 50, 51, 53, 62
autoshimming 29	DATASET 25, 50, 51, 53, 62
D.	DATASET3 25, 54
В	DDATASETLIST 25
base_info 32	define statements 14, 17
baslpnts 32	define statements 17, 17

DEG90 28	F1PROJP 36
DELPAR 27	F1SUM 36
DEXPNO 25, 52, 57	F2DISCO 36
dircp 40, 103, 105, 109, 110, 111, 112, 114, 115, 116,	F2PROJN 36
117	F2PROJP 36
dircp_err 40, 106, 107, 108, 110	F2SUM 36
disk2 19	fcntl.h 19
disk3 20	FETCHPAR 26, 76
DIV 32	FETCHPAR1 26, 76
double 133	FETCHPAR1S 26
dpa 78	FETCHPAR3 26, 76
DPARSETLIST 27	FETCHPAR3S 26
DPROCNO 25, 60	FETCHPARM 26, 76
DPULPROGLIST 28	FETCHPARS 26, 78
DT 32	FETCHPARS1 78
DU 25	FETCHPARS3 78
dulist 20	FETCHPLPAR 27, 76
DVTLIST 29	FETCHPLWPAR 27, 76
T.	FETCHPLXPAR 27, 76
E	fetchstorpl 40
eda 29, 39, 46, 76, 78, 84, 85	FETCHT1PAR 27, 76
edau 8, 9, 11	FILT 32
edc2 25	float 133, 135
edg 38, 84, 85	FLPLOT 38
edit mode 10	FMC 31
edlock 29	FP 31
edmac 10	freedir 40, 94, 95, 98, 104, 110
edmisc 33	FROMJDX 39, 70
edo 38, 76, 84, 85	FT 31, 61
edp 40, 76	ft 10
EF 31	G
EFP 31, 55	_
EJ 28	Gaussian deconvolution 33
EM 31	Gaussian window multiplication 31
erropt.h 19	gcc 17
ERRORABORT 41	GDATASETLIST 25
Executing AU programs 9	GDCON 33
expinstall 8	GENFID 31
expno2 20	GENSER 36
expno3 20	GETCURDATA 19, 24, 50
expnolist 20	GETCURDATA2 25
F	GETCURDATA3 25
	GETDATASET 24, 53, 54, 55
F1DISCO 36	getdir 40, 96, 103
F1PROJN 36	GETDOUBLE 26, 89

GETFLOAT 26, 79, 89	Inverse Fourier transformation 31
gethighest 40	INVSF 34
GETHPCU 30	IPARSETLIST 20, 27
GETINT 26, 88	IPROCNO 25, 50, 59
GETLCOSY 38	IPULPROGLIST 20, 28
GETLIM 38	IVTLIST 20, 30
GETLINV 39	
GETLJRES 39	J
GETLXHCO 39	jaz 66
GetNmrSuperUser 40	jaz drive 66
getstan 40	JCAMP-DX 67, 68, 70
GETSTRING 26, 91	JCAMP-DX file 39
getxwinvers 41	JCONV 39
GF 31	Jeol data 67
GFP 31	Jeol dataset 39, 73
GLIST 25	,
GM 31	${f L}$
GO 28	lastparflag 12, 19
GPARSETLIST 27	LDCON 33
GPULPROGLIST 28	LEVCALC 34
GVTLIST 29	LFILTER 29
	LG 29
Н	LGAIN 29
header files 19	LI 91
Hilbert Transform 35	LIBAY 33
Hilbert transformation 31	libcb.h 19
HPCU 30	limits.h 19
HT 31	LIPPF 32
_	listall_au 8, 10
I	listcount1 20
IDATASETLIST 20, 25	LO 29
IEXPNO 25, 45, 50, 52, 56, 62	LOCK 29
IFEODATASETLIST 25	lock power 29
IFEOPARSETLIST 27	LOCKPLOTS 38
IFEOPULPROGLIST 28	LOCNUC 29
IFT 31	loop gain 29
II 28	loop statements 15
IJ 28	loop structures 14
ILOOPCOUNTLIST 20	loop time 29
inc directory 17	loopcount1 12, 19
include statements 14, 15, 17	loopcount2 12, 19
integer 133, 134	loopcount3 19
INTRN 91	loopcountinf 19
intrng 32	loopcountlist 20
intrng file 91	LOPO 28

LS 33	PLOTS 38
LTIME 29	PLOTX 38
M	pow_next 41
M	Power spectrum 35
Magnitude calculation 31	POWMOD 30
main 18	PP 32
MAKE_ZERO_FID 28	ppp 33
makeau 16	predefined dedicated variables 11
MAS unit 30	predefined general variables 11
MASE 30	PrintExpTime 40, 51
MASG 30	Proc_err 14, 41
MASH 30	processed data 64, 65, 66
MASI 30	procno2 20
MASR 30	procno3 20
MASRGET 30	procnolist 20
math.h 19	PROJ 36
MC 31	PS 31
MDCON 33	PTILT 34
mkudir 41	PTILT1 34
MUL 33, 54	pulproglist 20
MULC 33	
multizg 51	Q
	QSIN 31
N	quick reference 7
name2 20	QUIT 41
name3 20	QUITMSG 41
namelist 20	<u>_</u>
NM 33	R
NMRQUANT 32	R12 38
NZP 33	R13 38
	R23 38
P	RACKPOW 30
parameter type 133	raw data 64
parsetlist 20	RDATASETLIST 25
PARSETTYP 20, 27	reg 32
parsettype 20	remproc 71
PathXWinNMR 41	REV1 34
PD 33	REV2 34
peaklist 32	REXPNO 25, 58
PF 34	RGA 28
PFT2 34	RHNP 36
PHC0 31	RHPP 36
PHC1 31	RLUT 32
PK 31	RMISC 32, 91
PLOT 38	RMPLOT 38

ROT 28 rotation 28 ROTOFF 28 RPAR 27, 84 RPARSETLIST 27 RPROCNO 25, 61 RPULPROGLIST 28 RS 33 RSC 36	STOREPAR3 26, 80 STOREPAR3S 26, 82 STOREPARM 27, 80 STOREPARS 26, 82 STOREPLPAR 27, 80 STOREPLWPAR 27, 80 STOREPLXPAR 27, 80 STORET1PAR 27, 80 strcpy 14, 53
RSER 37	string.h 19
RSH 29 RSR 37	SUB1 34 SUB1D1 35
RV 33	SUB1D1 33 SUB1D2 35
RVNP 37	SUB2 35
RVPP 37	submacro 17
RVTLIST 20, 29	subroutines 11, 12
S	Suspend plot 38
-	SYM 35
SAB 31	SYMA 35 SYMJ 35
sample.h 19 second AU dataset 54	S 1 WB 33
SETCURDATA 15, 24, 45, 50, 51, 52, 56, 57, 58, 59,	T
61	T1 value 33
SETDATASET 25	T2 value 33
SETHPCU 30	TABS1 37
SETPARSET 20, 27	TABS2 37
SETPULPROG 28	TABS3 37
SETSH 29	Tcl/Tk 7
SETUSER 25	temperature 29
Show_status 41	TEPAR 29
showfile 41 Sine window multiplication 31	TEREADY 29 TESET 29
SINM 31	TF1 37
SINO 31	TF1P 37
SOLVENT 29	TF2 37
Spline baseline correction 31	TF2P 37
sprintf 14	TF3 37
SREF 31	TF3P 37
ssleep 41	third AU dataset 54
stdio.h 18, 19	TILT 35
stdlib.h 18, 19	TIMES2 19
STOP 41	TIMES 19
STOREPAR 26, 80 STOREPAR1 26, 80	TIMESLIST 20 TM 31
STOREPART 20, 80 STOREPARTS 26, 82	TOJDX 39, 68
2.01.11110.20,02	10001107,00

Trapezoidal baseline correction 34	WRPA 26, 66
Trapezoidal window multiplication 31	wrpa 16
TRF 31	WSC 37
TUNE 29	WSER 37
TUNESX 29	WSERP 37
type2 19	WSH 29
type3 20	v
U	X
U	XAU 40
uni.h 19	xau 9
unistd.h 19	XAUA 39
unlinkpr 41	XAUP 40
UNLOCKPLOTS 38	XAUPW 40, 71
USECURPARS 19	XCMD 40, 45, 46
USELASTPARS 19	xcmd 47, 116
User defined variables 12	xdataset 20
user defined variables 11	XF1 35
user2 19	XF1M 35
user3 20	XF1P 35
userlist 20	XF1PS 35
util.h 19	XF2 35
UWM 31	XF2M 35
uxselect 40, 99	XF2P 35
T 7	XF2PS 35
V	XFB 35
variable assignments 14	XFBM 35
variable declarations 14	XFBP 35
Varian data 67	XFBPS 35
Varian dataset 39, 72	XHT1 35
VCONV 39, 72	XHT2 35
VIBAY 33	xloopcount 20
view mode 9	XMAC 40
VIEWDATA 26, 57, 60, 62	xmac 10
viewing AU programs 9	xparset 20
vorspann 17	xpulprog 20
VT 30	XTRF 35
VTLIST 29	XTRF2 35
vtlist 20	XTRFP 35
XX 7	XTRFP1 35
W	XTRFP2 36
WAIT_UNTIL 39	xvt 20
WMISC 32	Xwin-plot 38
WPAR 27, 85	XWP_LP 38
WRA 25, 64	XWP_PP 38
WRP 25, 65	

${f z}$	aucmd.h 15, 17
ZF 33	Automatic baseline correction 35
ZG 28	AUTOPLOT 36
zg 10	autoshimming 27
ZP 33 ZSPOIL 29	В
A	base_info 30
ABORT 39	baslpnts 30
ABS 28	BAYED 31
ABS1 32	BAYEDX 31
ABS2 32	Bayesian calculation 31
ABSD 28	BAYX 31
ABSD1 32	BC 28
ABSD2 32	BCM1 32
ABSF 28	BCM2 32
ABSF1 28	brukdef.h 17
ABSF2 28	Bruker library functions 8
ABSOT1 32	BSMS 27
ABSOT2 32	C
ABST1 32	C functions 91
ABST2 32	CalcExpTime 38, 49
ADD 30, 52	cc 15
ADD2D 32	C-code 14
ADDC 30	character string 134
addfid 80	check_pwd 38
AND 30	CMPL 30
APK 28, 59	compileall 6, 7
APKS 28	compiling AU programs 6
argc 16	constants 15
arglist 16	control statements 13
argv 16	CONV 37, 69
Aspect 2000/3000 69	CONVCP 37, 69
Aspect3000 65	CONVDTA 29
AT 30	cplbruk 6
AU macro 5	cpluser 6
AU_program 16	CPR_exec 13, 37, 42, 43, 44, 45, 49

curdat 16	edmisc 31
D	edo 36, 74, 82, 83
DAT1 31	edp 38, 74
DAT2 31	EF 29
DATASET 23, 48, 49, 51, 60	EFP 29, 53
DATASET2 23, 52	EJ 26
DATASET3 23, 52	EM 29
DDATASETLIST 23	erropt.h 17
define statements 12, 15	ERRORABORT 39
DEG90 26	Executing AU programs 7
DELPAR 25	expinstall 6
DEXPNO 23, 50, 55	expno2 18
dircp 38, 101, 103, 107, 108, 109, 110, 112, 113,	expno3 18
114, 115	expnolist 18
dircp_err 38, 104, 105, 106, 108	F
disk2 17	F1DISCO 34
disk3 18	F1PROJN 34
DIV 30	F1PROJP 34
double 131	F1SUM 34
dpa 76	F2DISCO 34
DPARSETLIST 25	F2PROJN 34
DPROCNO 23, 58	F2PROJP 34
DPULPROGLIST 26	F2SUM 34
DT 30	fcntl.h 17
DU 23	FETCHPAR 24, 74
dulist 18	FETCHPAR1 24, 74
DVTLIST 27	FETCHPAR1S 24
E	FETCHPAR3 24, 74
eda 27, 37, 44, 74, 76, 82, 83	FETCHPAR3S 24
edau 6, 7, 9	FETCHPARM 24, 74
edc2 23	FETCHPARS 24, 76
edg 36, 82, 83	FETCHPARS1 76
edit mode 8	FETCHPARS3 76
edlock 27	FETCHPLPAR 25, 74
edmac 8	FETCHPLWPAR 25, 74
	- , , .

GetNmrSuperUser 38 FETCHPLXPAR 25, 74 fetchstorpl 38 getstan 38 GETSTRING 24, 89 FETCHT1PAR 25, 74 FILT 30 getxwinvers 39 float 131, 133 GF 29 FLPLOT 36 GFP 29 FMC 29 GLIST 23 FP 29 GM 29 freedir 38, 92, 93, 96, 102, 108 GO 26 **GPARSETLIST 25** FROMJDX 37, 68 FT 29, 59 **GPULPROGLIST 26 GVTLIST 27** ft 8 \mathbf{G} Н Gaussian deconvolution 31 header files 17 Gaussian window multiplication 29 Hilbert Transform 33 Hilbert transformation 29 gcc 15 **GDATASETLIST 23** HPCU 28 HT 29 GDCON 31 **GENFID** 29 I **IDATASETLIST 18, 23 GENSER** 34 GETCURDATA 17, 22, 48 IEXPNO 23, 43, 48, 50, 54, 60 GETCURDATA2 23 **IFEODATASETLIST 23** GETCURDATA3 23 **IFEOPARSETLIST 25** GETDATASET 22, 51, 52, 53 **IFEOPULPROGLIST 26** getdir 38, 94, 101 IFT 29 GETDOUBLE 24, 87 II 26 **GETFLOAT 24, 77, 87** IJ 26 gethighest 38 **ILOOPCOUNTLIST 18 GETHPCU 28** inc directory 15 include statements 12, 13, 15 **GETINT 24, 86 GETLCOSY** 36 integer 131, 132 INTRN 89 **GETLIM 36 GETLINV 37** intrng 30 **GETLJRES** 37 intrng file 89 **GETLXHCO 37** Inverse Fourier transformation 29

INVSF 32 loop time 27 **IPARSETLIST 18, 25** loopcount1 10, 17 IPROCNO 23, 48, 57 loopcount2 10, 17 **IPULPROGLIST 18, 26** loopcount3 17 IVTLIST 18, 28 loopcountinf 17 loopcountlist 18 J LOPO 26 jaz 64 LS 31 iaz drive 64 JCAMP-DX 65, 66, 68 LTIME 27 JCAMP-DX file 37 M **ICONV 37** Magnitude calculation 29 Jeol data 65 main 16 MAKE ZERO FID 26 Jeol dataset 37, 71 L makeau 14 lastparflag 10, 17 MAS unit 28 LDCON 31 MASE 28 LEVCALC 32 MASG 28 LFILTER 27 MASH 28 LG 27 MASI 28 LGAIN 27 MASR 28 MASRGET 28 LI 89 LIBAY 31 math.h 17 libcb.h 17 MC 29 limits.h 17 MDCON 31 LIPPF 30 mkudir 39 listall au 6, 8 MUL 31, 52 MULC 31 listcount 1 18 LO 27 multizg 49 LOCK 27 N lock power 27 name2 18 name3 18 LOCKPLOTS 36 LOCNUC 27 namelist 18 loop gain 27 NM 31 **NMRQUANT** 30 loop statements 13 loop structures 12 **NZP** 31

P	Q
parameter type 131	QSIN 29
parsetlist 18	quick reference 5
PARSETTYP 18, 25	QUIT 39
parsettype 18	QUITMSG 39
PathXWinNMR 39	R
PD 31	R12 36
peaklist 30	R13 36
PF 32	R23 36
PFT2 32	RACKPOW 28
PHC0 29	raw data 62
PHC1 29	RDATASETLIST 23
PK 29	reg 30
PLOT 36	remproc 69
PLOTS 36	REV1 32
PLOTX 36	REV2 32
pow_next 39	REXPNO 23, 56
Power spectrum 33	RGA 26
POWMOD 28	RHNP 34
PP 30	RHPP 34
ppp 31	RLUT 30
predefined dedicated variables 9	RMISC 30, 89
predefined general variables 9	RMPLOT 36
PrintExpTime 38, 49	ROT 26
Proc_err 12, 39	rotation 26
processed data 62, 63, 64	ROTOFF 26
procno2 18	RPAR 25, 82
procno3 18	RPARSETLIST 25
procnolist 18	RPROCNO 23, 59
PROJ 34	RPULPROGLIST 26
PS 29	RS 31
PTILT 32	RSC 34
PTILT1 32	RSER 35
pulproglist 18	RSH 27
	RSR 35

RV 31	STOREPARS 24, 80
RVNP 35	STOREPLPAR 25, 78
RVPP 35	STOREPLWPAR 25, 78
RVTLIST 18, 27	STOREPLXPAR 25, 78
S	STORET1PAR 25, 78
SAB 29	strcpy 12, 51
sample.h 17	string.h 17
second AU dataset 52	SUB1 32
SETCURDATA 13, 22, 43, 48, 49, 50, 54,	SUB1D1 33
55, 56, 57, 59	SUB1D2 33
SETDATASET 23	SUB2 33
SETHPCU 28	submacro 15
SETPARSET 18, 25	subroutines 9, 10
SETPULPROG 26	Suspend plot 36
SETSH 27	SYM 33
SETUSER 23	SYMA 33
Show_status 39	SYMJ 33
showfile 39	T
Sine window multiplication 29	T1 value 31
SINM 29	T2 value 31
SINO 29	TABS1 35
SOLVENT 27	TABS2 35
Spline baseline correction 29	TABS3 35
sprintf 12	Tcl/Tk 5
SREF 29	temperature 27
ssleep 39	TEPAR 27
stdio.h 16, 17	TEREADY 27
stdlib.h 16, 17	TESET 27
STOP 39	TF1 35
STOREPAR 24, 78	TF1P 35
STOREPAR1 24, 78	TF2 35
STOREPAR1S 24, 80	TF2P 35
STOREPAR3 24, 78	TF3 35
STOREPAR3S 24, 76	TF3P 35
STOREPARM 25, 78	third AU dataset 52
DI CILLI I IIII 23, 10	mind rio dataset 32

TILT 33 TIMES2 17 TIMES2 17 TIMES2 17 TIMESA 17 TIMESLIST 18 TOJDX 37, 66 Trapezoidal baseline correction 32 Trapezoidal window multiplication 29 TRF 29 TUNE 27 TUNE 27 TUNESX 27 Type2 17 type3 18 U uni.h 17 unistd.h 17 unistd.h 17 unistd.h 17 UNCCKPLOTS 36 UNLOCKPLOTS 36 UNLOCKPLOTS 36 USECURPARS 17 USELASTPARS 17 USELASTPARS 17 USer defined variables 9 user defined variables 9 user 17 user3 18 userlist 18 userlist 18 userlist 18 userlist 18 uxerlist 18 uxe		
TIMES3 17 TIMESLIST 18 TOJDX 37, 66 Trapezoidal baseline correction 32 TRF 29 TUNEST 27 TUNE 27 TUNE 27 TUNE 27 TUNESX 27 Type2 17 WARA 23, 62 Type3 18 U URPA 24, 64 uni.h 17 unistd.h 17 unistd.h 17 UNECKPLOTS 36 UNLOCKPLOTS 36 USECURPARS 17 USELASTPARS 17 USer defined variables 10 user defined variables 9 user1 18 user1 39 VY VXAUA 37 user3 18 user1 35 VAUW 38, 69 util.h 17 uxer3 18 uxer4 4, 44 uxer4 4, 44 uxer5 18 uxer6 4, 41 uxer5 18 uxer6 4, 41 uxer7 18 uxer7 19 uxer		
TIMESLIST 18 TM 29 TOJDX 37, 66 Trapezoidal baseline correction 32 Trapezoidal window multiplication 29 TRF 29 TUNE 27 TUNE 27 TUNE 27 TUNESX 27 WPAR 25, 83 WPAR 25, 83 WPAR 23, 62 type3 18 WRP 23, 63 U WRPA 24, 64 uni.h 17 unistd.h 17 unistd.h 17 unistd.h 17 USECURPARS 17 USELASTPARS 17 USELASTPARS 17 User defined variables 9 user defined variables 9 user 2 17 user3 18 userlist 18 userlist 18 userlist 18 uselist 18 util.h 17 uxSed 38, 97 V XF1 33 Variable assignments 12 Varian data 65 Varian dataset 37, 70 VF2 33 VCONV 37, 70 VISEL STP 33 VTCONV 37, 70 VT 28 VT USEL ST 27 VT 28 VT USEL ST 27 VT 28 VT USEL ST 27 VT 25 VT 28 VT 28 VT 27 VAIIST 27 VAIIST 27 VAIIST 29 VAIIST 29 VAIIST 29 VAIIST 29 VAIIST 33 VAIIST 34 VAIIST 35 VAIIST 36 VAIIST		
TM 29		
TOJDX 37, 66 Trapezoidal baseline correction 32 Trapezoidal window multiplication 29 TRF 29 TUNE 27 TUNE 27 TUNE 27 WMISC 30 TUNESX 27 WPAR 25, 83 WPAR 25, 83 WPAP 23, 63 U WRPA 24, 64 Uni.h 17 Unistd.h 17 UNECCKPLOTS 36 UNLOCKPLOTS 36 USECURPARS 17 USELASTPARS 17 USELASTPARS 17 User defined variables 9 User 2 17 User 3 18 User defined variables 9 User 3 18 User defined variables 9 USECURPARS 18 USECURPARS 18 USECURPARS 19 USELASTPARS 19 USELASTPARS 19 USELASTPARS 10 USER 35 USECURPARS 10 USER 35 USECURPARS 17 USELASTPARS 17 USELASTPARS 17 USELASTPARS 10 USER 36 USER 37 USER 38 USER 36 USER		
Trapezoidal baseline correction 32 Trapezoidal window multiplication 29 TRF 29 TUNE 27 TUNE 27 WMISC 30 TUNESX 27 WPAR 25, 83 type2 17 WRPA 24, 62 type3 18 WRPA 24, 64 uni.h 17 unistd.h 17 unistd.h 17 WSC 35 UNLOCKPLOTS 36 USECURPARS 17 USELASTPARS 17 USer defined variables 10 user defined variables 9 user defined variables 9 user 18 userlist 18 userlist 18 userlist 18 userlist 18 userlist 18 userlist 18 uxerlist 18 uxerlist 18 uxerlist 18 uxerlist 18 uxerlist 18 uxerlist 38, 97 V V XF1 33 Variable assignments 12 Varian data 65 Varian dataset 37, 70 VCONV 37, 70 VMISC 30 WMISC 30 WMISC 30 WMISC 30 WPAR 25, 83 WAR 25, 83 WAR 25, 83 WAR 23, 62 WRPA 24, 64 WRPA 25, 83 WASC 35 WASC 36 WSER 35 WASC 25		
Trapezoidal window multiplication 29 TRF 29 WAIT_UNTIL 37 TUNE 27 WMISC 30 WPAR 25, 83 type2 17 WRA 23, 62 type3 18 WRP 23, 63 U WRPA 24, 64 uni.h 17 unistd.h 17 unistd.h 17 WSC 35 unlinkpr 39 WSER 35 UNLOCKPLOTS 36 WSERP 35 USECURPARS 17 USELASTPARS 17 User defined variables 10 user defined variables 9 user defined variables 9 user 17 user3 18 userlist 18 userlist 18 userlist 18 uWWM 29 uxend 45, 114 uxselect 38, 97 V XF1 33 Variable assignments 12 Varian data 65 VAF2 33 VCONV 37, 70 WSIZ 30 WRPA 24, 64 WRPA 24, 64 WRPA 25, 83 WRP 23, 63 WRPA 24, 64 WRPA 25, 83 WSER 35 VASER 35 VASER 35 WAIT_UNTIL 37 WALA 37 WALA 37 XAU 38 VASU	•	
TRF 29		
TUNE 27 TUNESX 27 WPAR 25, 83 type2 17 WRA 23, 62 type3 18 WRP 23, 63 U WRPA 24, 64 uni.h 17 unistd.h 17 WSC 35 unlinkpr 39 WSER 35 UNLOCKPLOTS 36 WSERP 35 USECURPARS 17 WSH 27 USELASTPARS 17 Wser defined variables 10 User defined variables 9 User2 17 User3 18 User 4 XAUA 37 User3 18 User 17 User3 18 User3 1	<u>. </u>	
TUNESX 27 type2 17 type3 18 WRA 23, 62 type3 18 WRP 23, 63 WRP 24, 64 uni.h 17 wrpa 14 unistd.h 17 WSC 35 unlinkpr 39 WSER 35 UNLOCKPLOTS 36 WSERP 35 USECURPARS 17 WSH 27 USELASTPARS 17 Wser defined variables 10 user defined variables 9 vau 7 user2 17 XAUA 37 user3 18 XAUP 38 userlist 18 XAUP 38 userlist 18 XAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 XAdasset 18 V XF1 33 Variable assignments 12 XF1M 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33		_
type2 17 type3 18 WRA 23, 62 WRP 23, 63 U WRPA 24, 64 uni.h 17 unistd.h 17 WSC 35 unlinkpr 39 WSER 35 UNLOCKPLOTS 36 WSERP 35 USECURPARS 17 WSH 27 USELASTPARS 17 Wser defined variables 10 user 2 17 user3 18 user defined variables 9 user3 18 userlist 18 xAUP 38 userlist 18 xAUP 38 userlist 18 xAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 V XF1 33 Variable assignments 12 XF1 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2 33 VCONV 37, 70	TUNE 27	WMISC 30
type3 18 U WRP 23, 63 U WRPA 24, 64 Uni.h 17 Wrpa 14 Unistd.h 17 WSC 35 UNLOCKPLOTS 36 USECURPARS 17 USELASTPARS 17 User defined variables 10 User defined variables 9 User 2 17 User 3 18 User 18 User 19 User 3 18 Userlist 18 Userlist 18 Userlist 19 USELASTPARS 17 USELASTPARS 17 User 3 18 USER 35 USECURPARS 17 USELASTPARS 17 USELASTPARS 17 USER 38 USER 35 UNLOCKPLOTS 36 WSER 35 WSER 35 VAUS 38 USER 35 VAI 38 VAI 38 VAI 38 VAI 38 VAI 38 VAI 39 VAI 39 VAI 39 VAI 30 VAI	TUNESX 27	WPAR 25, 83
U WRPA 24, 64 uni.h 17 unistd.h 17 unistd.h 17 WSC 35 unlinkpr 39 WSER 35 UNLOCKPLOTS 36 WSERP 35 USECURPARS 17 USELASTPARS 17 User defined variables 10 user defined variables 9 user 2 17 user3 18 userlist 18 XAUP 38 userlist 18 XAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 uxelect 38, 97 V XF1 33 variable assignments 12 Varian data 65 Varian dataset 37, 70 VCONV 37, 70 WSER 35 WSERP 35 WSERP 35 WSERP 35 WSERP 35 WSERP 35 WSERP 35 VAGU 38 VAGU 38 VAGU 38 VAGU 38 VAGU 38, 43, 44 VAGU 38 VAGU 38, 43, 44 VAGU 38 VAGU 39 VAGU 38 VAGU 39 VAG	type2 17	WRA 23, 62
uni.h 17	type3 18	WRP 23, 63
unistd.h 17 WSC 35 unlinkpr 39 WSER 35 UNLOCKPLOTS 36 WSERP 35 USECURPARS 17 WSH 27 USELASTPARS 17 X User defined variables 10 XAU 38 user defined variables 9 xau 7 user3 18 XAUA 37 user3 18 XAUP 38 userlist 18 XAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	U	WRPA 24, 64
unlinkpr 39 UNLOCKPLOTS 36 USECURPARS 17 USELASTPARS 17 User defined variables 10 User defined variables 9 User2 17 User3 18 Userlist 18 Userlist 18 UWM 29 UWM 29 UXMU 38, 69 UIL.h 17 VXMD 38, 43, 44 UWM 29 VXCDD 38, 43, 44 VXF1 33 VARIABLE ASSIGNMENTS 12 VARIABLE ASSIGNMENTS 13 VARIABLE ASSIGNMENTS 14 VARIABLE ASSIGNMENTS 15 VARIABLE ASSIG	uni.h 17	wrpa 14
UNLOCKPLOTS 36 USECURPARS 17 USELASTPARS 17 User defined variables 10 user defined variables 9 user2 17 user3 18 userlist 18 userlist 18 UWM 29 uxselect 38, 97 V Varian data 65 Varian dataset 37, 70 VSH 27	unistd.h 17	WSC 35
USECURPARS 17 USELASTPARS 17 X User defined variables 10 USELASTPARS 17 XAU 38 User defined variables 9 USECURPARS 17 XAU 38 USER defined variables 9 USECURPARS 17 XAU 38 USER 17 XAUA 37 USER 3 18 XAUP 38 USER 18 XAUPW 38, 69 USER 18 USER 18 XAUPW 38, 69 USER 18 USER 18 XAUPW 38, 69 USER 18 VER	unlinkpr 39	WSER 35
USELASTPARS 17 User defined variables 10 user defined variables 9 user2 17 user3 18 userlist 18 userlist 18 UWM 29 uxselect 38, 97 V V XF1 33 Variable declarations 12 Varian data 65 Varian dataset 37, 70 V XAU 38 XAUP 38 XAUPW 38, 69 XAUPW 38, 69 XCMD 38, 43, 44 VXCMD 38, 49 VXCMD 38, 43, 44 VXCMD 38, 49 VXCMD 38, 43, 44 VXCMD 38, 49 VXCMD 38, 43 VXCMD 38, 49 VXCMD 38, 49 VXCMD 38, 43 VXCMD 38, 43 VXCMD 38, 43 VXCMD 38, 49 VXCMD 38, 43 VXCMD 38, 49 VXCMD 38, 43 VXCMD 38, 49 VXCMD 38, 40	-	WSERP 35
User defined variables 10 user defined variables 9 xau 7 user2 17 xAUA 37 user3 18 xAUP 38 userlist 18 xAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 xF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	USECURPARS 17	WSH 27
user defined variables 9 xau 7 user2 17 XAUA 37 user3 18 XAUP 38 userlist 18 XAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1PS 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	USELASTPARS 17	X
user2 17 XAUA 37 user3 18 XAUP 38 userlist 18 XAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1PS 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	User defined variables 10	XAU 38
user3 18 XAUP 38 userlist 18 XAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	user defined variables 9	xau 7
userlist 18 XAUPW 38, 69 util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	user2 17	XAUA 37
util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	user3 18	XAUP 38
util.h 17 XCMD 38, 43, 44 UWM 29 xcmd 45, 114 uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	userlist 18	XAUPW 38, 69
UWM 29 xcmd 45, 114 xdataset 18 V XF1 33 xraiable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	util.h 17	•
uxselect 38, 97 xdataset 18 V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	UWM 29	· ·
V XF1 33 variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	uxselect 38, 97	,
variable assignments 12 XF1M 33 variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33		XF1 33
variable declarations 12 XF1P 33 Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33	variable assignments 12	
Varian data 65 XF1PS 33 Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33		
Varian dataset 37, 70 XF2 33 VCONV 37, 70 XF2M 33		
VCONV 37, 70 XF2M 33		
	•	
VIRAY 31 XF2P 33	VIBAY 31	XF2P 33

XF2PS 33

XFB 33

XFBM 33

XFBP 33

XFBPS 33

XHT1 33

XHT2 33

xloopcount 18

XMAC 38

xmac 8

xparset 18

xpulprog 18

XTRF 33

XTRF2 33

XTRFP 33

XTRFP1 33

XTRFP2 34

xvt 18

Xwin-plot 36

XWP_LP 36

XWP_PP 36

Z

ZF 31

ZG 26

zg 8

ZP 31

ZSPOIL 27