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Abstract: One of the most versatile sources for entangled photons are emitters that interact via
more than one tunable mechanism. Here, we demonstrate how hybridization and dipole-dipole
interactions—potentially simultaneously available in colloidal quantum dots and molecular
aggregates—leveraged in conjunction can couple simple, well understood emitters into composite
emitters with flexible control over the level structure. We show that cascade decay through
carefully designed level structures can result in emission of frequency-entangled photons with
Bell states and three-photon GHZ states as example cases. These results pave the way toward
rational design of quantum optical emitters of entangled photons.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Entanglement, especially among photonic qubits, is not only useful for testing the limits of
quantum theory [1–5], but also a valuable resource in photonic quantum technologies, such
as quantum computers and quantum networks [5–9]. For instance, Bell states, or maximally
entangled photon pairs, are necessary for quantum teleportation, the fundamental mechanism
by which quantum repeaters send quantum information over long distances [7]; three-qubit
maximally entangled GHZ states are useful for quantum cryptography and secret sharing [8]; and
cluster states, or highly entangled states of many qubits, underlie measurement-based quantum
computing that is formally equivalent to more traditional quantum circuit-based models but
requires only easy-to-implement single-qubit gates upon successful creation of a cluster state [9].

Despite the ubiquitous need for entangled photons in quantum technologies, producing them
with high fidelity, quickly, and deterministically—even just pairs of photons—remains a challenge.
Relatively successful approaches for producing pairs of entangled photons include spontaneous
parametric down-conversion [10–14] or four-wave mixing [15,16], but the number of photon pairs
generated follows a Poissonian distribution [17], rendering both the pair generation efficiency
and rate too slow for scalable quantum systems [5]. Another approach uses semiconductor
quantum dots to deterministically emit entangled photon pairs via biexciton decay cascade
[18–26]. Generalizing this approach to produce higher-order, multi-photon entangled states with
fine control over the entanglement basis remains difficult, however, driving long-standing and
active research into alternative approaches [27–32] that so far require complex, active control
over photon emitters.

In addition, many of these previous proposals only consider entanglement in the photon
polarization basis. Encoding in the frequency basis, however, offers several advantages for
certain quantum technological applications, such as in quantum networking, where, for instance,
optical photon frequencies are more suitable for on-chip computation while mid-infrared
frequencies transmit more efficiently through fibers for quantum communication [5,20,33–36].
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The continuous frequency degree also offers the opportunity for encoding higher-dimensional
quantum information, e.g. qudits instead of qubits [37].

In this study, we demonstrate how to design the level structures of composite quantum emitters
for deterministic emission of entangled photons via cascade decay. Rather than coupling single
emitters through just the longer-range dipole-dipole coupling interaction, we also consider the
shorter-range hybridization interaction. At intermediate distances between emitters, both types of
interaction can be simultaneously relevant, such as in moiré excitons [38], molecular aggregates
[39], and quantum dots [40]. We show that the two types of interactions lead to qualitatively
different types of state mixing and that this difference can be leveraged to generate a level structure
amenable to emission of two-photon Bell states from just two two-level emitters. We also show
that this approach can be generalized to higher-order entangled states by designing a system
consisting of three emitters that is capable of emitting three-photon GHZ states with fidelity F

as high as 90% and efficiency η = 0.55. We anticipate these results will motivate research into
designing composite emitters for emission of entangled photons from real emitters with multiple
interactions of different character, especially molecular aggregates and colloidal quantum dots.

2. Theoretical formalism

Here, we introduce the theoretical formalism for computing the level structure, or eigenenergies El
and dipole-allowed transitions between eigenstates l and m indicated by non-zero transition dipole
moment |dlm |, of NM-level emitters interacting via dipole-dipole and hybridization interactions.
For simplicity, we set M = 2 throughout, i.e. we study ensembles of two-level emitters.

Each emitter i is comprised of a ground orbital |gi⟩ and an excited orbital |ei⟩ with energy ℏωi,
transition dipole moment di = ⟨gi |er̂|ei⟩, and position ri, where ℏ is the reduced Planck constant,
e is the electron charge and r̂ is the position operator. We assume each orbital can be occupied by
one electron. Therefore, in the number basis |Ng

i , Ne
i ⟩, there are four possible states: |0g

i , 0e
i ⟩,

|0g
i , 1e

i ⟩, |1
g
i , 0e

i ⟩, and |1g
i , 1e

i ⟩.
The total Hamiltonian Ĥ, including dipole-dipole and hybridization interactions, can be written

as:
Ĥ = Ĥ0 + Ĥdip + Ĥhyb. (1)

The bare-emitter Hamiltonian is Ĥ0 =
∑︁N

i Ĥi, where the isolated emitter Hamiltonian
Ĥi = ℏωiâ†e,iâe,i, and â†o,i (âo,i) is the creation (annihilation) operator for an electron in orbital
o ∈ {g, e} of emitter i. The bare-emitter Hamiltonian Ĥ0 can be augmented to incorporate
single-emitter binding as Ĥbind =

∑︁N
i Kia†e,ia

†

g,iae,iag,i; we explore this effect in Appendix A,
where we show that binding energies must be smaller than dipole-dipole and hybridization
energies for high-fidelity emission of Bell states.

The dipole-dipole interaction is a well explored method of coupling together single emitters
to create composite emitters capable of, for instance, emission of entangled photon pairs [41],
implementation of multi-photon quantum logic gates [42,43], and superradiance [44]. This
Hamiltonian is

Ĥdip =

N∑︂
i,j>i

Jijd̂id̂j, (2)

where d̂i = di(â†e,iâg,i + â†g,iâe,i) is the dipole operator. We retain all double (de-)excitations to
preclude limitations of the rotating wave approximation. Jij is the dipole interaction energy given
by

Jij =
|di | |dj | |

4πϵ0ϵr |ri − rj |3

[︁
ni · nj − 3(ni · nij)(nj · nij)

]︁
, (3)

where ϵr is the relative permittivity, ni is the unit vector of the dipole moment di, and nij is the
unit vector of ri − rj. This form of the dipole-dipole interaction is appropriate only when the



Research Article Vol. 30, No. 7 / 28 Mar 2022 / Optics Express 11319

dipole-dipole distance |ri − rj | is smaller than the transition wavelength λ in a medium with
relative permittivity ϵr [45]. States that are dark under this approximation can, in fact, emit
radiation with the full form of the dipole-dipole interaction. We quantitatively estimate the
impact of this approximation for the parameters studied here in Appendix B. In addition, Jij can
be re-scaled by Dexter exchange coupling [46] at short inter-emitter distances less than 20 atomic
units (Bohr), the lowest value considered in this study.

The hybridization interaction Hamiltonian is

Ĥhyb =

N∑︂
i,j>i

Ge
ij(â

†

e,iâe,j + â†e,jâe,i). (4)

where Ge
ij is the hybridization interaction energy between excited orbitals |ei⟩ and |ej⟩. This

interaction is akin to inter-emitter electron, or charge, transfer that has been well studied in the
molecular aggregates [39] and exciton communities [47]. While Ge

ij, like Jij, is dependent on
the inter-emitter distance |ri − rj |, in this study we fix the inter-emitter distances and directly
vary Ge

ij, physically corresponding to the strong dependence of the wavefunction overlap on the
shape or principal number of the orbitals. Note that we ignore hybridization interactions between
orbitals |ei⟩ and |gj⟩ because they are distant in energy, as well as interactions between ground
orbitals |gi⟩ and |gj⟩ because the ground orbitals of real emitters of interest are often tightly
localized. In principle, however, one can add, for instance, the ground orbital hybridization term∑︁N

i,j>i Gg
ij(â

†

g,iâg,j + â†g,jâg,i) to Ĥhyb; the impact of this term is further studied in Appendix C.
Finally, we determine the level diagram of N two-level emitters by diagonalizing H and

transforming the total dipole operator d̂ =
∑︁

i d̂i into the eigenbasis. With the level diagram, we
can evaluate the quality, specifically the efficiency η and fidelity F , of the emitted photons via
cascade decay from multiply excited states of cascade emitters, as described in Appendix D.

3. Entanglement

3.1. Asymmetric mixing for Bell states

We explain why the combination of both dipole-dipole and hybridization interactions enable fuller
control over the level diagram of N two-level emitters, including those that are amenable to the
emission of entangled photons. As an example, we study in detail the simple scenario illustrated
in Fig. 1(a), where r1 − r2 = rx î and ℏω = ℏω1 = ℏω2. We also assume the angle θ between the
x-axis and the transition dipole moment of the second emitter is 0, so that d1 = d2 = dx î. Finally,
with two electrons in the system, there are 6 possible states in the number basis |Ng

1 , Ne
1, Ng

2 , Ne
2⟩.

For notational convenience, we label these number states as, e.g., |0g
1, 0e

1, 1g
2, 1e

2⟩ ≡ |g2e2⟩, where
only the occupied orbitals are included.

First, to understand the role of dipole-dipole coupling, we plot the level diagram without
hybridization (Ĥ = Ĥ0 + Ĥdip) on the left of Fig. 1(b). In this well known result, the eigenstates
|l⟩ and eigenenergies El, in order of increasing El, are as follows: ground state |g⟩ ≈ |g1g2⟩ with
Eg ≈ 0; symmetric bright state |S⟩ ≈ 1/

√
2(|e1g2⟩ + |g1e2⟩) with ES ≈ ℏω − |J12 |; two states

|g2e2⟩ and |g1e1⟩ corresponding to double occupation of emitter 1 and 2, respectively, both with
energy of ℏω; anti-symmetric dark state |A⟩ ≈ 1/

√
2(|e1g2⟩ − |g1e2⟩) with EA ≈ ℏω + |J12 |; and

doubly excited state |ee⟩ ≈ |e1e2⟩ with Eee ≈ 2ℏω. Note that the energies El are generally listed
here with their approximate values as opposed to exact ones due to the inclusion of the double
excitation and de-excitation terms. The dipole coupling mixes only two of the singly excited
states |e1g2⟩ and |g1e2⟩ with each other. Assuming that the doubly excited state |ee⟩ is initially
populated via, for instance, two-photon absorption [41], the only dipole-allowed cascade decay
path is |ee⟩ → |S⟩ → |g⟩, emitting two unentangled photons.

Now we seek understanding of the role of the hybridization interaction in the level diagram
by plotting the level diagram without dipole-dipole coupling (Ĥ = Ĥ0 + Ĥhyb) on the right
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Fig. 1. a) Schematic of N = 2 two-level emitters on the x-axis with transition dipole
moments d1 = dx î and d2 = dx[cos(θ)î + sin(θ)ĵ]. We assume the wave functions of the
ground state are tightly localized, while the excited state are delocalized enough to interact
through the hybridization interaction. The smaller blue circle and larger blue ellipse are
pictorial representations of the ground and excited state wave functions, respectively. b)
Level diagrams for N = 2 two-level emitters for Ĥ = Ĥ0 + Ĥdip (left), Ĥ = Ĥ0 + Ĥdip + Ĥhyb
(middle), and Ĥ = Ĥ0 + Ĥhyb (right). Allowed transitions, or those with non-zero transition
dipole moments, via cascade decay from the doubly excited state |ee⟩ are in red. Emission
of frequency-entangled Bell states is only possible for two two-level emitters with both
dipole-dipole and hybridization interactions.

of Fig. 1(b). The level diagram is as follows when G12>0: ground state |g⟩ = |g1g2⟩ with
Eg = 0; | + +⟩ = 1/2(|g1⟩ + |g2⟩)(|e1⟩ + |e2⟩) and | − +⟩ = 1/2(|g1⟩ − |g2⟩)(|e1⟩ + |e2⟩) with
E++ = E−+ = ℏω − |G12 |; two singly excited states | + −⟩ = 1/2(|g1⟩ + |g2⟩)(|e1⟩ − |e2⟩) and
| − −⟩ = 1/2(|g1⟩ − |g2⟩)(|e1⟩ − |e2⟩) with E−− = E+− = ℏω + |G12 |; and doubly excited state
|ee⟩ = |e1e2⟩ with Eee = 2ℏω. The hybridization interaction mixes all four of the singly excited
states by allowing electrons to hop between emitters 1 and 2. In this case, there are two possible
decay paths. At first blush this cascade decay may seem appropriate for emission of entangled
photons. However, due to the equally weighted mixing between all four singly excited states,
ℏω1 = ℏω4 and ℏω2 = ℏω3, the two photons emitted by the pathway on the left are the same as
the photons emitted on the right, resulting in zero entanglement.

For emission of frequency-entangled photon pairs, another interaction, such as dipole-dipole
coupling, is required to asymmetrically shift the bright eigenstates of Ĥ = Ĥ0 + Ĥhyb. We
plot this scenario in the center of Fig. 1(b), where the eigenstates are |g⟩, bright states |B1⟩
and |B2⟩, dark states |D1⟩ and |D2⟩, and |ee⟩. The allowed transitions |ee⟩ → |B1⟩ → |g⟩ and
|ee⟩ → |B2⟩ → |g⟩ all emit photons with unique frequencies from each other, enabling emission
of a Bell state.
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3.2. Entanglement optimization

We optimize the entanglement by tuning the system parameters in Fig. 2(a)-(c), respectively.
Efficient evaluation of the level diagrams for cascade emission of entangled photons involves
explicit time propagation of the excited electronic system with the Lindblad master equation,
followed by generation of the off-diagonal elements of the photon density matrix through
the quantum regression theorem and of the diagonal elements with a classical rate equation
approach. This method is discussed in further detail in Appendix D. In particular, we determine
the impact of these parameters on fidelity F with and efficiency η of emitting an ideal Bell
state |ϕB⟩ = 1/

√
2(|0L

1 0L
2 ⟩ + |1L

1 1L
2 ⟩), where the logical basis states |0L

1 ⟩ (|0L
2 ⟩) and |1L

1 ⟩ (|1L
2 ⟩)

correspond to single-photon states with frequencies ωA (ωC) and ωB (ωD), respectively. We also
plot the minimum energy difference ∆Emin between all emitted photons that are mapped onto the
logical basis states. By doing so, we determine the maximum line broadening permissible to
resolve photons from each other via their frequencies.

Fig. 2. We sweep (a) the magnitude of the transition dipole moment dx, (b) the excited state
hybridization interaction energy Ge

hyb, and (c) the dephasing rate γd relative to the fastest
radiative decay rate max(γlm

r ). In each subplot, we show the fidelity F (solid blue) with an
ideal Bell state, efficiency η (dotted blue), and ∆Emin (solid orange), or the minimum energy
difference between emitted photons mapped onto logical basis states to determine the maximal
photon peak broadening permissible for frequency resolution. All system parameters not
being sweep in each respective plot are as follows: ℏω = 1 eV, dx = |d1 | = |d2 | = 6
e·Bohr, r1 − r2 = 40î in Bohr, Ge

hyb = 80 meV, and ϵr = 1. Increasing the magnitude of the
hybridization interaction increases F and ∆Emin. Meanwhile, increasing the dipole-dipole
interaction via increasing dx decreases F but eases the challenge of resolving the photon
frequencies due to increasing ∆Emin. Decoherence rates on the order of and higher than the
emission rate reduces entanglement fidelity.

We first sweep the magnitude of the transition dipole moment dx in Fig. 2(a). Throughout this
range, η remains 1, suggesting that all of the population follows the two decay paths resulting in
the two superpositioned states in the Bell state. As dx increases, ∆Emin increases to ∼36 meV at
dx = 6 e·Bohr, while F decreases from 1 to 0.97; the former can be understood as a result of the
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increasing dipole-dipole interaction energy, while the latter is a result of the two decay paths
having increasingly different magnitudes of weights.

In Fig. 2(b), we then analyze the effect of changing the hybridization energy Ge
hyb. Throughout

this range, η remains 1. With increasing hybridization magnitude, the fidelity F increases, while
the ∆Emin increases until ∼36 meV. F increases with increasing magnitude of Ge

hyb for a fixed
dipole-dipole interaction because the weights of the two decay paths equalize, highlighting the
importance of the additional presence of the hybridization interaction. ∆Emin saturates at ∼36
meV with increasing magnitude of Ge

hyb because at that point, it is limited by the dipole-dipole
interaction—recall that at dx = 6 e·Bohr in Fig. 2(a), the same value of dx in Fig. 2(b), ∆Emin ∼ 36
meV.

Finally, in Fig. 2(c), we plot the effect of dephasing γd as a proportion of the bare emitter decay
rate γ0 = Cd2

x where dx = 6 e·Bohr. Both η and ∆Emin remain constant, as expected because
pure decoherence should not change the central emission frequency nor result in population loss.
The fidelity F , meanwhile, is sensitive to γd, validating the physical intuition that high-quality
quantum emission requires fast radiative decay rates relative to environment loss and decoherence.

3.3. Arbitrarily entangled photons: GHZ states

The present method can be generalized to construct level structures for emission of arbitrary
entangled photon states. As an example, we optimize the configuration in Fig. 3(a) for emission of
a three-photon GHZ state 1/

√
2(|000⟩ + |111⟩). All three two-level emitters lie on the x-axis with

equal magnitude dipole moments that we assume to be in the x-direction for all three emitters,
resulting in >105 possible decay paths.

We tune the system parameters in Fig. 3(a)-(d), respectively. In Fig. 3(b) and (c), we see that
the maximum η is only around 0.9 with a significantly lower F = 0.55. While the quality of
entanglement is low, interestingly, all entanglement measures are much more stable with respect
to changes in both dx and Ge

hyb compared to the Bell state structures studied in Fig. 2. For instance,
in (c), F and η change by less than 1% and ∆Emin is stable within 0.1 meV. While we expect
further improvements to be possible with multi-dimensional optimization techniques, these
results already demonstrate the tantalizing promise of high-efficiency, high-fidelity, deterministic
emission of arbitrary entangled photon states.

Finally, we briefly discuss typical values of system parameters explored in the present study. In
molecular aggregates, dipole-dipole interactions interactions can be on the order of 1 meV [48,49].
In colloidal quantum dots, a recent experimental study showed a red-shift of approximately
15 meV [44] attributed to dipole-dipole coupling, and colloidal quantum dot molecules have
exhibited hybridization interactions in the tens of meV [40]. Colloidal quantum dots in the
nanoplatelet morphology can exhibit radiation-limited linewidths [50], where γd/γ0 ≪ 1. More
typically, however, colloidal quantum dots have radiative rates on the order of 1 ns with dephasing
rates of 100 ps [51]. As we show in the Appendix, however, binding energies must be much
smaller than dipole-dipole and hybridization energies for realization of our theoretical proposal.
In colloidal quantum dots, computational studies predict binding energies as low as tens of meV
[52], suggesting low entanglement quality without further careful engineering of the quantum
dots.
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Fig. 3. (a) Configuration for N = 3 two-level emitters positioned on a line parallel to their
dipole moments di and capable of emitting frequency-entangled GHZ states via cascade
decay from the triply excited state |20⟩. We sweep (b) dx, (c) Ge

hyb, and (d) γd. All system
parameters not being sweep in each respective plot are assumed to be as follows: ℏω = 1 eV,
dx = |d1 | = |d2 | = |d3 | = 6 e·Bohr, r3 − r2 = r1 − r2 = 20î in Bohr , Ge

hyb = 80 meV, and
ϵr = 1. By optimizing the system parameters, F and η can be as high as 90% and 55% with
∆Emin ∼ 10 meV.

4. Conclusions and outlook

In summary, we leverage hybridization and dipole-dipole interactions between simple emitters to
construct composite emitters. These composite emitters have particularly valuable applications
as deterministic sources of frequency-entangled photon states via cascade decay from multiply
excited states. As two simple examples, we study two and three two-level emitters for emission
of Bell and GHZ states, respectively. We explain why varying system parameters, including
the strength of the hybridization interaction Ge

hyb and direction and magnitude of the transition
dipole moment dlm, affects three relevant metrics of the emitted entangled photons: fidelity F ,
efficiency η, and minimum energy difference ∆Emin between emitted photons. For the GHZ
state, we achieve a fidelity F and efficiency η as high as 90% and 55% with ∆Emin on the order
of meV using reasonable parameters. Importantly, system-specific dephasing rates leading to
inhomogenous broadening, such as vibrational and charge noise, must be much slower than
the emission rate for high-fidelity emission. Future studies should consider system-dependent
challenges, such as efficient pumping of highly excited states, as has been explored extensively in
epitaxial quantum dots [53–58], and interaction-dependent loss and decoherence channels, as has
been extensively studied for atoms [59].
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Associated content

Code to reproduce the calculations in this paper are available at [60].

Appendix A. Binding interaction

Especially in molecular aggregates, the binding interaction term Ĥbind =
∑︁N

i Kia†e,ia
†

g,iae,iag,i that
accounts for interactions between electrons of a fully occupied two-level system can be much
larger than the dipole-dipole and hybridization interaction energies [39]. Explicitly, in the case
of two identical two-level systems for emission of Bell states, we find that the energies of the
bare states |g1e1⟩ and |g2e2⟩ that otherwise interact only via the hybridization interaction are
greater than the energies of the states |g1e2⟩ and |e1g2⟩ that interact via both the hybridization
and dipole-dipole interactions. Because these states are no longer degenerate, the hybridization
interaction is less effective at asymmetrically mixing the singly excited states, resulting in poor
overall entanglement emission, as we demonstrate in Fig. 4.

Fig. 4. Binding energy vs. fidelity F (solid blue) with an ideal Bell state, efficiency η (dotted
blue), and ∆Emin (solid orange). ℏω = 1 eV, dx = |d1 | = |d2 | = 6 e·Bohr, r1 − r2 = 40î
in Bohr, Ge

hyb = 80 meV, and ϵr = 1. Increasing binding energy results in less effective
asymmetric mixing of the hybridization interaction, lowering the entanglement quality.

Appendix B. Dipole-dipole interaction

The form of the dipole-dipole interaction in Eq. (3) is valid only when the inter-emitter distance
|ri − rj | = rij is much smaller than the bare-atom transition wavelength λ0, or rij/λ0 = ξ ≪ 1
[45]. For concreteness, we quantitatively estimate the impact of this approximation on the results
for the case of two two-level emitters, as in Fig. 1 and 2, noting that similar arguments can be
made for more complex systems, such as the case of three two-level emitters in Fig. 3. We adapt
the notation of Ref. [61].

Under the full expression for the dipole-dipole interaction, the anti-symmetric dark state can, in
fact, emit photons with rate γA = Γ[1−F(ξ)], while the symmetric bright state with emission rate
γS = Γ[1 + F(ξ)] is less bright than under the approximated form, where Γ = C|d1 |

2 = C|d2 |
2 is

the bare-emitter radiative decay rate, and F(ξ) is the correction factor defined as

F(ξ) =
3
2
[︁
(1 − cos2θ)

sinξ
ξ

(5a)

+(1 − 3cos2θ)(
cosξ
ξ2

−
sinξ
ξ3

)
]︁
. (5b)

In the case of two two-level emitters, rij ∼ 2 nm with bare-emitter transition wavelengths
λ0 ∼ 1200 nm, giving F(ξ) ∼ 0.99999 and implying that the entanglement measures F and η
are substantially more sensitive to the studied system parameters dx, Ge

hyb, θ, and γd than the
neglected emission from dark states.
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Appendix C. Ground-state hybridization

In Fig. 5, we include the ground-state hybridization term
∑︁N

i,j>i Gg
ij(â

†

g,iâg,j + â†g,jâg,i) to Ĥhyb in
addition to the excited-state hybridization term included in the remainder of the text and note
qualitatively similar results, except that the fidelity reaches its plateau at a smaller −Ge

hyb = −Gg
hyb.

Fig. 5. Ground-state hybridization vs. fidelity F (solid blue) with an ideal Bell state,
efficiency η (dotted blue), and ∆Emin (solid orange). ℏω = 1 eV, dx = |d1 | = |d2 | = 6
e·Bohr, r1 − r2 = 40î in Bohr, and ϵr = 1. Non-zero ground state hybridization enables
asymmetric mixing of singly excited states for increased entanglement fidelity at a smaller
Gg

hyb = Ge
hyb than for non-zero Ge

hyb and Gg
hyb = 0.

Appendix D. Level diagram evaluation

We seek to calculate the quality, specifically the efficiency η and fidelity F , of the emitted photons
via cascade decay from multiply excited states of cascade emitters. Assuming the desired photon
state is |ϕ⟩ =

∑︁P
p |p⟩ with density matrix σ = |ϕ⟩⟨ϕ|, where, e.g., P = 2 for the Bell and GHZ

states we study in further detail in this manuscript, then both measures can be computed from the
emitted photon density matrix ρ as [62]

η = (

P∑︂
p
ρpp)/Tr[ρ], (6)

F (ρ′,σ) =
(︂
Tr
√︂√︁
ρ′σ

√︁
ρ′
)︂2

, (7)

where ρ′ = ρ/
∑︁

p ρpp. (Note that because the computed ρ is manually normalized in practice, we
explicitly include Tr[ρ] in Eq. (6).) Therefore, the efficiency η is the proportion of emitted photon
states in one of the states |p⟩ in the desired photon state |ϕ⟩, and the fidelity F is the overlap
between the desired photon density matrix σ among the emitted photon states in the states |p⟩.

We first show how to compute the full density matrix ρ of the emitted photons. Closely
following a generalized version of the derivations shown in Refs. [63,64], a matrix element ρa,b
of the P-photon density matrix ρ can be written as

ρa,b = avg[⟨σ̂−
ωa

1
(t1). . .σ̂−

ωa
P
(tP)σ̂+ωb

P
(tP). . .σ̂+ωb

1
(t1)⟩]

= avg(Ga,b),
(8)

where the average is over all times t1<. . .<tP; q ∈ {a, b} refers to an P-photon state created by
cascade emission of photons with frequencies ωq

1,. . . , ωq
P; σ̂+ω(t) [σ̂−

ω(t)] is the transition operator
of the electronic transition |l⟩ → |m⟩ with frequency ω in the Heisenberg picture; and σ̂+ω = â†mâl
[σ̂−

ω = â†l âm].
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Ga,b can be computed from the dynamics of the electronic system undergoing cascade decay.
The diagonalized Hamiltonian of the electronic system, in the absence of interaction with the
environment and determined via the procedure described in Section 2, is

Ĥ =
∑︂

l
El |l⟩⟨l|, (9)

where the lth eigenstate |l⟩ has energy El. The evolution of the density operator ρel of the
electronic system can be described with a master equation of the Lindblad form [65]:

iρ̇el =
1
ℏ
[H, ρel] −

i
2

∑︂
µ

(L̂†
µL̂µρel + ρelL̂†

µL̂µ − 2L̂µρelL̂†
µ)

= L[ρel],
(10)

where the Lindblad operators L̂µ describe the interactions µ of the electronic system with the
environment and L is the Liouville superoperator. As in Ref. [64], we consider two main
forms of interaction with the environment in quantum dots, the physical emitters we suggest for
further study: radiative decay, which leads to emission of frequency-entangled photons, and pure
dephasing from electron-phonon coupling and spectral diffusion. We write the former Lindblad
operators as L̂r,lm =

√︁
γlm

r |m⟩⟨l|. In agreement with Fermi’s Golden Rule and Wigner-Weisskopf
theory, we assume the radiative decay rate γlm

r for transitions from higher-energy state |l⟩ to
lower-energy state |m⟩ is proportional to |dlm |

2 and scaled by a constant C. This constant C
includes the photon density of states that, for simplicity, we assume to be constant for all photon
frequencies, although this term could easily be generalized for any given cavity, waveguide,
or free space configuration. For the dephasing process, we write the Lindblad operators as
L̂d,l =

√
γd |l⟩⟨l|. For simplicity, we assume the dephasing rate γd is a constant, although this

model could be straightforwardly generalized to describe the phenomenology of particular emitter
systems. For instance, excitons in quantum dots or defects in solid-state materials both exhibit a
zero-phonon line and a phonon tail that requires γd to be described more microscopically and
potentially in a non-Markovian manner [66–68].

Using the quantum jump approach [69], we can solve the master equation to find

ρel(t) = e−iLtρ0el, (11)

where ρ0el is the initial density matrix at time t = 0 and asssumed to be decoupled from the
environment. Finally, with ρel(t), we can solve for G and, thus, the N-photon density matrix ρ
using the quantum regression theorem [70,71] and noting that the operator Aj(tj) is evolved in the
Heisenberg picture as Aj(tj) = e+iLtj Aje−iLtj :

Ga,b = Tr
[︃
σ̂+
ωb

P
(tP)

[︂
e−iL(tP−tP−1). . .

[︁
σ̂+
ωb

1
(t1)

×[e−iL(t1)ρ0el]σ̂
−
ωa

1
(t1)

]︁
. . .

]︂
σ̂−
ωa

P
(tP)

]︃
.

(12)

It is possible to further adapt this calculation to experimental conditions by including, for
instance, the efficiency of detection. It is also possible to improve the entanglement by spectrally
filtering the output or delaying the detection time, as described further in Ref. [64]. However,
these approaches are outside the scope of this study, which aims to focus on the level structures
of the composite emitters themselves. In addition, note that while the electronic density matrix
only contains on-diagonal terms, the photonic density matrix can have off-diagonal terms that
are affected by dephasing in the electronic system.
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As computing the full photonic density matrix ρ can be resource-intensive, we seek a more
efficient method of evaluating level diagrams. To this end, we observe that to compute η, we
require only the on-diagonal elements of ρ, while F requires only the elements of ρ of the |i⟩
bases. Consider the computational cost-savings when analyzing level diagrams for cascade
emission of, for instance, GHZ states from N = 3 hybridized and dipole-coupled emitters. This
system can have up to ∼ 105 decay paths or unique photon states and, therefore, a density matrix
with ∼ 105 × 105 matrix elements, while we require just ∼ 105 matrix elements of ρ for η and
only 4 elements are necessary for F .

Computing all of the on-diagonal elements can still be an expensive process, however, as each
requires a multidimensional integral over the product of several, potentially large matrices σ̂±

ω

and linear maps exp(−iLt). To more efficiently compute the on-diagonal elements of ρ, we turn
to a classical rate equation approach. Given the diagonalized Hamiltonian and dipole operator
in the eigenbasis, we determine all possible cascade decay pathways given some initial state,
such as the N-excited state. With a general Runge-Kutta ordinary differential equation integrator,
we propagate the rate equations dpl/dt =

∑︁
j(kin

lmpm − kout
lm pl), where rate constants kin

lm (kout
lm )

= C|dlm |
2 for El< (>) Em, such that population transfer only from higher-energy to lower-energy

states is allowed. As for the Lindbladian terms in the quantum master equation approach, both
the scaling of klm with |dlm | and the transfer of energy from higher-energy to lower-energy states
is generally expected from spontaneous emission into free space calculated via, for instance, the
Wigner-Weisskopf method or Fermi’s Golden Rule, while C includes scaling due to the photon
density of states that for simplicity we assume to be constant for all emitted photons.

A comparison of the time-dependent population curves computed with the classical vs.
quantum approaches for two two-level emitters capable of emitting Bell states is shown as an
example in Fig. 6 for initial population of pee(t = 0) = 1. For both approaches, the population
briefly transfers to the intermediate states |B1⟩ and |B2⟩ before eventually populating the ground
state |g⟩. Note that the dark states are never populated. The results agree closely, suggesting
that the classical rate equation approach is appropriate for computing populations and, therefore,
on-diagonal terms of the photon density matrix ρ.

Fig. 6. Time-dependent population for cascade decay from the doubly excited state of two
two-level systems using the quantum master equation (solid) and classical rate equation
(circles) approaches. A schematic of such a level diagram is shown in the center of Fig. 1(b).
The system is initialized with pee(t = 0) = 1. We set ℏω = 1 eV, dx = |d1 | = |d2 | = 6 e·Bohr,
r1 − r2 = 40î in Bohr, Ge

hyb = 80 meV, and ϵr = 1. The x-axis is unitless time, where the
time t is scaled by the radiative rate γ0 = C|dx |2 of the bare emitter. There is virtually zero
difference in the time-dependent populations between the classical and quantum approaches
in this case, enabling us to compute the on-diagonal terms of the photon density matrix ρ
more efficiently with the classical approach.
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From every state l, we then compute the relative outward flux wlm =
∫

kout
lm pldt/

∑︁
m
∫

kout
lm pldt,

where
∑︁

m wlm = 1, of population from l into states m, allowing us to compute the relative
population transfer through the path comprising of transitions through states l → . . . → n
as wl. . .wn. This product then corresponds to the on-diagonal photon density matrix element
ρl,...,n;l,...,n, or the population in the photon state created by decay pathway l → . . .→ n.
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