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It was shown in a recent paper [J. Math. Phys. (N.Y.) 60, 102502 (2019)] that slowly lowering an electric
charge into a Schwarzschild-Tangherlini (ST) black hole endows the final state with electric multipole
fields, which implies that the final-state geometry is not Reissner-Nordström-Tangherlini in nature. This
conclusion departs from the four-dimensional case in which the no-hair theorem (NHT) requires the final
state to be a Reissner-Nordström black hole. To better understand this discrepancy clearly requires a deeper
understanding of the origin of the multipole hair in the higher-dimensional case. In this paper, we advance
the conjecture that charged, static, and asymptotically flat higher-dimensional black holes can acquire
electric multipole hair only after they form. This supposition derives from studying the asymptotic behavior
of the field of a multipole charge onto which a massive and hyperspherical shell with an exterior ST
geometry is collapsing. In the mathematical limit as the shell approaches its ST radius, we find that
the multipole fields (except the monopole) vanish. This implies that the only information of an arbitrary
(but finite) charge distribution inside the collapsing shell that is available to an asymptotic observer is the
total electric charge. Our results yield considerable insight into how higher-dimensional black holes acquire
electric multipole hair, and also imply that, in four dimensions, the fadeaway of multipole moments during
gravitational collapse is not strictly because of the NHT.
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I. INTRODUCTION

Extra spatial dimensions are now a precondition for
consistency in many approaches to quantum gravity (e.g.,
string theory). Furthermore, the AdS=CFT correspondence
relates the properties of an nþ 1–dimensional black hole to
those of an n-dimensional quantum field theory [1,2]. For
these (and other [3]) reasons, it is imperative in string
theory, and other approaches to quantum gravity, to have a
keen intuition for how higher-dimensional black holes
behave. In addition, as we illustrate below, studies into
higher-dimensional black holes can yield insights into the
character of well-known features of four-dimensional black
holes, which only bolsters our understanding of them.
Consider first four-dimensional spacetime. Here, black

holes are stringently constrained by Wheeler’s no-hair
theorem (NHT) [4], which states that all four-dimensional,
stationary, and asymptotically flat black hole solutions to
the Einstein-Maxwell equations are completely character-
ized by just three independent parameters: mass, angular
momentum, and electric charge [5–11]. This theorem
enables us to straightforwardly predict the final state of
a static black hole that is subjected to a slow1 physical
process.

Consider, for example, slowly lowering an electric
charge of strength q into a Schwarzschild black hole of
massM. Evidently, the final state will be a static black hole
with mass M and charge q. However, it is not immediately
clear if, in addition, the final state will possess unconserved
charges like electric multipole moments (excluding the
monopole). Rest assured, in order that it not have such
multipole hair, the NHT requires the final state geometry to
be the spherically symmetric Reissner-Nordström (RN)
solution. Indeed, this agrees with the result of the more
detailed analysis in Ref. [12]. Thus, even though the charge
distribution is highly asymmetrical, the electrostatic poten-
tial approaches that of the spherically symmetric RN black
hole as the charge nears the horizon.
The story is strikingly different in higher-dimensional

spacetimes. Here, black holes are considerably less con-
strained than four-dimensional ones, largely for two rea-
sons.2 First, there are more rotational degrees of freedom in
an nþ 1–dimensional spacetime, which means stationary
black holes become progressively more complex as n
increases [3,14]. Moreover, if n ≥ 5, then black holes with
fixed masses can have arbitrarily large angular momentum
[15]. Second, Hawking’s topology theorem [9] (a subtle
piece of the proof of the NHT) fails because it relies on the
Gauss-Bonnett theorem. This implies that the boundary

*msfox@g.hmc.edu
1By “slow,” we mean “slow enough that the static consid-

erations remain valid.” 2See Ref. [13] for a separate and less heuristic perspective.
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topology of an nþ 1–dimensional black hole need not be
homeomorphic to the n − 1–sphere. Of course, topological
restrictions do exist when n > 3 [16–18], but more than one
boundary topology is allowed [3,19,20].
These results imply that the uniqueness theorems for

four-dimensional black holes do not readily generalize to
higher dimensions. Though uniqueness theorems of static,
higher-dimensional black holes exist, in proving them, one
must include the additional assumption of a nondegenerate
horizon (a property one gets for free when n ¼ 3 [21,22])
[14,23–29]. Nevertheless, once restricted to solutions with
regular horizons, the natural dimensional continuations of
the well-known n ¼ 3 solutions emerge. For example, the
Schwarzschild-Tangherlini (ST) black hole is the unique
static and asymptotically flat vacuum solution to the
higher-dimensional Einstein equations [14,23,26,27].3 It
is therefore the natural extension of the Schwarzschild
black hole to higher dimensions [30]. Similarly, the
Reissner-Nordström-Tangherlini (RNT) black hole is the
unique static and asymptotically flat electrovac solution to
the higher-dimensional Einstein-Maxwell equations [28,29],
making it the natural generalization of the Reissner-
Nordström solution to higher dimensions [30].
Given this parallel between the unique n ¼ 3 and n ≠ 3

static solutions, one may expect the behavior of the n ≠ 3
solutions to mimic that of the n ¼ 3 solutions when
subjected to an identical physics process (albeit in a higher
dimension). This, however, is not correct, as the previous
example with the electric charge will show.
Consider the same electric charge q from before, but this

time slowly lower it into an ST black hole with mass M.
Again, the final state is a static black hole with massM and
charge q. However, due to the weaker assumptions under-
lying the higher-dimensional uniqueness theorems, in order
to conclude that the final-state geometry is RNT in nature,
one needs to also show that this process does not affect
the regularity of the horizon. Surprisingly, as shown in
Ref. [31], this or the horizon topology is compromised
during the infall of the charge,4 which means that the final
state is not RNT in nature. Ultimately, these conclusions
follow from the fact that the infalling charge furnishes the
final-state black hole with electric multipole hair.
This simple example illustrates a profound difference in

the response of n ¼ 3 and n ≠ 3 black holes to a straight-
forward physical process. Whereas the multipole fields of
the charge vanish as the charge approaches the event
horizon of the four-dimensional Schwarzschild black hole,

they do not vanish as the charge approaches the horizon of
the higher-dimensional ST black hole. Clearly, to better
understand this discrepancy requires a deeper understand-
ing of the origin of multipole hair on higher-dimensional
black holes. To this end, we study in this paper the
plausibility of a static, hyperspherical, and asymptotically
flat higher-dimensional black hole forming with multipole
hair. Can a higher-dimensional black hole form with
multipole hair? Or must it be acquired by infalling electric
charges after the black hole forms?
In four dimensions, Wald explicitly showed that the

collapse of a spherical and massive shell onto a finite
distribution of electric multipole charges completely sup-
presses the multipole fields (except the monopole) [32].
This, of course, agrees with the NHT, and suggests that a
four-dimensional black hole cannot form with electric
multipole moments.
To simulate the formation of a static, higher-dimensional

black hole, we employ the obvious generalization of Wald’s
setup to higher dimensions inwhich, in the exterior spacetime
region, the collapsing shell has an ST geometry. By placing a
multipole charge at the center of the shell, we are able to
examine the response of the asymptotic multipole field to the
inward collapse of the shell. Like Wald, we model this
collapse as a sequence of static shell solutions converging
to their common ST radius (the higher-dimensional
Schwarzschild radius). In this limit,we find that themultipole
fields are completely suppressed (except themonopole). This
implies that the only information of an arbitrary (but finite)
charge distribution inside a collapsing, higher-dimensional
shell that can be measured by a distant observer is the total
electric charge. Based on our calculations, we conjecture that
charged, static, and asymptotically flat higher-dimensional
black holes can acquire electric multipole hair only after they
form. This affords considerable insight into how higher-
dimensional black holes acquire electric multipole moments:
charges must fall into them after formation.

II. MULTIPOLE FIELD SUPPRESSION VIA
HIGHER-DIMENSIONAL BLACK HOLE

FORMATION

The ST spacetime metric (and the shell metric below) is
most naturally expressed in ST coordinates ψ ¼ ðt; r;φÞ,
where φ ¼ ðφ1;…;φn−1Þ are the standard hyperspherical
coordinates on the unit n − 1–sphere. As in the
Schwarzschild case, t is interpreted physically as “time
to an asymptotic observer” and r as “circumferential radius
to an asymptotic observer.”
The spacetime metrics of various higher-dimensional

shells have been studied in models of higher-dimensional
gravitational collapse. See, e.g., Ref. [33] and references
therein for a rigorous overview on building such metrics,
and Ref. [34] for an insightful example into a charged shell.
Ultimately, these metrics are derived in the standard way
using Israel’s geometric theory of spacetime junctions [35].

3We use the term “asymptotically flat” in the sense used in the
higher-dimensional uniqueness theorems. See Ref. [14] for the
relevant rigorous definitions.

4This assumes that the spatial dimension n is odd. If n is even,
then the energy density of the electric field diverges as the charge
approaches the horizon, which imposes unbounded stresses on
the horizon and leads to an apparent violation of asymptotic
flatness [31]. In either case, an RNT black hole is not produced.
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Below, we briefly summarize how this theory applies to
our study.
Let ðM; gÞ be an nþ 1–dimensional spacetime and Σ ⊂

M a codimension-one timelike hypersurface that is to
represent the shell. The problem is to determine g subject to
Einstein’s equations and the constraints of the shell (in our
case, infinitesimally thin, massive, static, and hyperspher-
ical). Evidently, Σ separates ðM; gÞ into disjoint “exterior”
and “interior” spacetimes, denoted by ðMþ; gþÞ and
ðM−; g−Þ, respectively. Both of these spacetimes have a
boundary diffeomorphic to Σ, which allows one to relate
the local coordinates in the exterior region to the local

coordinates in the interior region via the coordinates on the
shell [33]. In this paper, we choose the exterior region
ðMþ; gþÞ to be ST spacetime and the interior region
ðM−; g−Þ to be Minkowski spacetime. These choices fix
the exterior and interior metrics gþ and g−, respectively,
which can then be expressed in terms of two sets of ST
coordinates ψþ and ψ−. The remaining task is to relate ψþ
and ψ− using the jump conditions across Σ [35]. In our
case, this amounts to integrating the field equation G0

0 ¼
8πT0

0 in local coordinates over a “pillbox” on Σ [36]. The
result is

gðdψ; dψÞ ¼

8><
>:

−
�
1 − rn−2s

Rn−2

�
dt2 þ dr2 þ r2γðdφ; dφÞ; r < R;

−
�
1 − rn−2s

rn−2

�
dt2 þ

�
1 − rn−2s

rn−2

�
−1
dr2 þ r2γðdφ; dφÞ; r > R;

ð1Þ

where R is the radius of the shell, rs is the ST radius,5 and γ
is the standard metric on the unit n − 1–sphere. Since
Eq. (1) with n ¼ 3 reduces to the spacetime metric used
by Wald in Ref. [32], our model is indeed a higher-
dimensional generalization of that study.
We now calculate the field of an electrostatic k-pole of

strength σk placed at the center (r ¼ 0) of the hyper-
spherical shell. We assume σk is small enough that its
influence on the background geometry is negligible. Under
this condition and that of electrostaticity, the Faraday two-
form F is simply F ¼ dðΨdtÞ, where, within the shell, the
scalar fieldΨ satisfies the source-free Maxwell equations in
an nþ 1–dimensional Minkowski spacetime,

Ψðr;φÞ ¼ ½akrk þ bkr−ðkþn−2Þ�YkðφÞ; r < R: ð2Þ

For a k-pole of strength σk at r ¼ 0,

bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
rs
R

�
n−2

s
σk; ð3Þ

where the square-root factor follows from the conversion of
coordinate time to proper time inside the shell when
calculating the orthonormal frame components of Fμν.
Incidentally, in Eq. (2) we are denoting by YkðφÞ the
sum over all orders of the degree-k hyperspherical har-
monic functions. However, the details of these functions
(see Ref. [37]) are immaterial for this analysis because the
(infinitesimally thin) shell is hyperspherically symmetric
around the multipole charge, so the angular fields YkðφÞ are
insensitive to the shell.

Outside the shell, Ψ satisfies the source-free Maxwell
equations in an nþ 1–dimensional ST spacetime [31],

Ψðr;φÞ ¼ ½ckQkðrÞ þ dkRkðrÞ�YkðφÞ; r > R; ð4Þ

where Qk and Rk are the hypergeometric series

QkðrÞ ¼ r−ðkþn−2Þ
s

X
m≥0

ð1þ k
n−2Þmð k

n−2Þm
m!ð2þ 2k

n−2Þm

�
rs
r

�
kþðmþ1Þðn−2Þ

;

ð5Þ

RkðrÞ ¼ rks
XΛk

m¼0

ð− k
n−2Þmð−1 − k

n−2Þm
m!ð−2 − 2k

n−2Þm

�
r
rs

�
k−mðn−2Þ

: ð6Þ

Here, ðxÞm ≡ xðxþ 1Þ � � � ðxþm − 1Þ is the Pochhammer
symbol, defined such that ðxÞ0 ¼ 1 for all real x. The
summation bound Λk in Eq. (6) derives from an elementary
number-theoretic relation between the moment k of the
multipole charge σk and the dimensionality n of the space.
However, the precise details (see Ref. [31]) are again
unimportant because the requirement of regularity of Ψ
as r → ∞ implies dk ¼ 0, so the Rk solution leaves the
analysis entirely.
We can now determine the remaining coefficients ak and

ck in Eqs. (2) and (4), respectively, via the jump continuity
constraints on F across the r ¼ R boundary—i.e., the
requirement that the orthonormal frame components of
Fμν be continuous across the shell. These are

lim
r→Rþ

Ψðr;φÞ ¼ lim
r→R−

Ψðr;φÞ ð7Þ

and, by the assumption that the boundary itself is electri-
cally neutral,

5To ensure the Minkowskian interior of the shell, we assume
the mass of the shell is such that rs < R.
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lim
r→Rþ

∂rΨðr;φÞ ¼ lim
r→R−

∂rΨðr;φÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rn−2s

Rn−2

q : ð8Þ

Together, Eqs. (7) and (8) imply

ak ¼
α½αRþQkðkþ n − 2Þ�σk
ðkQk −Q0

kαRÞR2kþn−2 ; ð9Þ

ck ¼
αð2kþ n − 2Þσk

ðkQk −Q0
kαRÞRkþn−2 ; ð10Þ

where αðRÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrs=RÞn−2

p
and a prime denotes a

derivative with respect to r. For the sake of clarity, we
have dropped the argument of the shell radius R when
writing ck;Qk;Q0

k, and α in Eqs. (9) and (10), and we shall
adopt this convention hereafter. Therefore, unless explicitly
stated, ck, Qk, Q0

k, and α are implicitly evaluated at the
radius of the shell for the remainder of this article.
Now, it is evident from Eq. (5) that, asymptotically,

QkðrÞ ∼ r−ðkþn−2Þ
�
1þO

�
rs
r

��
: ð11Þ

Hence, ck is the electrostatic k-pole moment measured by a
distant observer when the shell radius is R.
For the monopole case (k ¼ 0), a distant observer

measures c0 ¼ σ0 because Q0 ¼ 1=Rn−2 [see Eq. (5)]. In
words, a massive and hyperspherical shell does not disrupt
the field of an electrostatic monopole charge, as one would
expect. If k ≠ 0 (i.e., k > 0), then ck ≠ σk. However, if
R ≫ rs, then Qk ≈ R−ðkþn−2Þ by Eq. (11), so a distant
observer measures ck ≈ σk by Eq. (10). This implies that a
massive and hyperspherical shell that is considerably larger
than its own ST radius only weakly disrupts the moment of
an electrostatic multipole charge contained inside it.
Evaluating the opposite limit, where the shell radius R

approaches the ST radius rs, is less straightforward. Of
course, this limit makes physical sense if and only if R
approaches rs from above (R → rþs ), so the precise math-
ematical problem is to evaluate ck as R → rþs when k ≠ 0.
We shall prove that the limit vanishes, which means that the
field of the multipole charge does not escape the resulting
black hole. To do this, we introduce the coordinate
ρðRÞ≡ ðrs=RÞn−2, in terms of which ck maps to the
function

ckðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
IkðρÞ2F1ðλk þ 1; λk; 2λk þ 2; ρÞ þ JkðρÞ2F1ðλk þ 2; λk þ 1; 2λk þ 3; ρÞ ffiffiffiffiffiffiffiffiffiffiffi

1 − ρ
p ; ð12Þ

where 2F1 is Gauss’s hypergeometric function and λk, Ik,
and Jk are the following real-valued expressions:

λk ¼
k

n − 2
; ð13Þ

IkðρÞ ¼ kþ ðn − 2Þð1þ λkÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
; ð14Þ

JkðρÞ ¼
kρ
2
: ð15Þ

We seek the limit of ckðρÞ as ρ → 1− when k ≠ 0. Using
Euler’s integral representation of 2F1,

2F1ða; b; c; ρÞ ¼
ΓðcÞ

ΓðbÞΓðc − bÞ
Z

1

0

tb−1ð1 − tÞc−b−1
ð1 − ρtÞa dt;

ð16Þ

which is valid for jρj < 1 provided b and c are real and such
that c > b > 0 [38], it is straightforward to show that
IkðρÞ2F1ðλk þ 1; λk; 2λk þ 2; ρÞ is finite and nonzero as
ρ → 1−. Additionally, one can show that 2F1ðλk þ 2; λk þ
1; 2λk þ 3; ρÞ has a logarithmic singularity as ρ → 1−,
which implies

JkðρÞ2F1ðλkþ2;λkþ1;2λkþ3;ρÞ∼ρlog
�

1

1−ρ

�
ð17Þ

for ρ ≈ 1. Thus, as ρ → 1−, the vanishing square-root factorffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
completely overwhelms the logarithmic divergence

in Eq. (17), and ckðρÞ → 0 as ρ → 1−. Accordingly,

lim
R→rþs

ckðRÞ ¼ 0; k ≠ 0; ð18Þ

as claimed. In words, to a distant observer, all multipole
moments inside the shell (except the monopole) fade away
as the shell collapses to its own ST radius.
Now, suppose the shell is filled with an arbitrary (but

finite) distribution of static multipole charges. In this case,
the electric field outside the charge distribution (but still
inside the shell) can be represented as a superposition of the
various multipole fields at the center of the shell. Our
analysis shows that as R → rþs , each of these multipole
fields goes to zero, with the exception of the monopole
(k ¼ 0). Consequently, in the limit as the shell approaches
its own ST radius, the only property of an arbitrary charge
distribution inside the shell that can be measured by an
asymptotic observer is the total electric charge. This
conclusion is identical to that obtained by Wald in the
Schwarzschild (n ¼ 3) case [32], and is what one would
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naturally intuit from the NHT of four-dimensional
black holes.
We acknowledge that the collapse of an infinitesimally

thin shell to its ST radius is a highly idealized and
unphysical model of collapsing matter. A more realistic
description is the gravitational collapse of a hyperspherical
ball of fluid obeying a particular equation of state. Still,
even in this more complex case, there will be a net electric
field (now affected, of course, by the dielectric effects of the
fluid) that we could in principle approximate as an arbitrary
and finite distribution of electric charges contained inside
the shell-like boundary of the hyperspherical ball. Of
course, in general the fluid inside (and thus the charges)
will not be static, but in any approximation where they are,
our results suggest that the net multipole moments of the
interior charges will vanish as the boundary of the hyper-
sphere collapses inward. Consequently, it is plausible that
even in this more general setting, the resulting higher-
dimensional black hole will not possess multipole fields
following its formation. We therefore advance the con-
jecture that charged, static, and asymptotically flat higher-
dimensional black holes can acquire electric multipole hair
only after they form.
Ultimately, the significance of this conjecture lies in its

application to the ideas that motivated it in the first place:
four-dimensional black holes and the AdS=CFT correspon-
dence. In four dimensions, it is sometimes said (even by the
author [31]) that the fadeaway of multipole moments
(electric or otherwise) during gravitational collapse occurs

because of the NHT. While technically correct, our results
demonstrate that there exists a dimensionally independent
explanation for the fadeaway. This follows because we have
shown that the fadeaway Wald studied in four dimensions
[32] also occurs in higher dimensions—a regime in which
the NHT does not apply. Hence, there must exist a deeper,
dimensionally independent property (or set of properties) of
black holes that causes the fadeaway. Of course, we may
speculate as to what dimensionally independent property
(or set of properties) is responsible; however, justifying
such speculation invariably requires us to prove our
conjecture true, which remains an open problem.
In the context of AdS=CFT, a separate problem arises,

concerning the holographic interpretation of our conjecture.
While holographic interpretations of the gravitational
collapse of, for example, degenerate stars exist [39,40],
the author is unaware of any studies into the response of
multipole moments during gravitational collapse in the
context of AdS=CFT. Developing a holographic interpre-
tation of this and our conjecture (and asymptotically de
Sitter or anti–de Sitter generalizations thereof) is thus an
interesting avenue for future research on which we hope to
report soon.
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