
 

Baryogenesis and dark matter from freeze-in

Brian Shuve 1,2 and David Tucker-Smith 3

1Harvey Mudd College, 301 Platt Blvd., Claremont, California 91711, USA
2University of California, 900 University Ave., Riverside, California 92521, USA

3Department of Physics, Williams College, Williamstown, Massachusetts 01267, USA

(Received 11 April 2020; accepted 1 June 2020; published 18 June 2020)

We propose a simple model in which the baryon asymmetry and dark matter are created via the decays
and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet
fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and
their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the
out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be
long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In
generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the
phenomenological possibilities for low-scale baryogenesis.
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I. INTRODUCTION

One of the most important questions in particle physics is
the origin of the baryon asymmetry. While the Standard
Model (SM) contains CP violation that distinguishes
between rates of particle and antiparticle interactions, it
is widely accepted that the degree of CP violation in the
SM is insufficient to explain the magnitude of the observed
asymmetry (see, for example, Ref. [1]). Furthermore, the
generation and preservation of an asymmetry requires a
departure from equilibrium that is not realized in the SM:
with the observed Higgs boson mass, the SM predicts a
second-order electroweak phase transition, which is insuf-
ficient to generate a baryon asymmetry [2–5].
Resolving the origin of the baryon asymmetry neces-

sitates the existence of new particles and interactions
beyond the SM. Various theoretical scenarios for baryo-
genesis exist, including but not limited to electroweak
baryogenesis [2,3,6,7], leptogenesis [8] (inspired by the
see-saw mechanism for neutrino mass generation [9–14]),
and realizations within grand-unified models [15,16]. Some
models of baryogenesis are challenging to test, whether
because the relevant mechanism operates at high scales that
are not kinematically accessible to current or future experi-
ments, or because satisfying the out-of-equilibrium con-
dition for baryogenesis predicts small couplings for the new
particles relative to other SM couplings. There are,

however, baryogenesis scenarios that are testable in their
minimal incarnations: electroweak baryogenesis, whose
dynamics are necessarily constrained to lie around the
weak scale and which accommodates large couplings of
beyond-SM states to the Higgs in order to give rise to a
first-order phase transition; and freeze-in leptogenesis, also
known as the Akhmedov-Rubakov-Smirnov (ARS) mecha-
nism or leptogenesis via neutrino oscillations [17,18].
In this paper, we study a new class of models inspired by

ARS leptogenesis. We consider a framework in which light,
gauge-singlet Majorana fermions χI interact feebly through
a Yukawa coupling

Fi
αIψ̄αχIΦi þ H:c:; ð1Þ

where ψα are SM fermions and Φi are new scalars with the
same gauge quantum numbers as ψα. Here we focus on
scenarios where the scalars carry quantum chromodynam-
ics (QCD) charge, with ψ ¼ QL; uR, or dR. Collider
searches then constrain the masses of the QCD-triplet
scalars Φi to be at or above the TeV scale. We impose a
Z2 symmetry under which only χI and Φi are odd, making
the χ particles dark matter (DM) candidates.
For appropriate parameter choices, these ingredients are

sufficient to generate a baryon asymmetry. The relevant
dynamics are somewhat involved, but that should not
obscure the simplicity of the model setup. Decays of Φ
particles produce coherent superpositions of χ mass eigen-
states, whose subsequent time evolution and scattering can
produce an overall Φ asymmetry. The net ðB − LÞΦ and
hypercharge YΦ stored in the Φ sector are balanced by
opposite charges ðB − LÞSM and YSM stored in SM par-
ticles. At temperatures above the electroweak scale, rapid
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sphaleron and SM-Yukawa-induced processes redistribute
the ðB − LÞSM asymmetry among baryons and leptons,
whereas BΦ, the baryon number in Φ, is left unchanged.
Because the resultant BSM differs in magnitude from BΦ, a
net baryon asymmetry survives after the Φ particles decay
and disappear, providedΦ particles survive until the time of
sphaleron decoupling.
Certain essential phenomenological considerations par-

allel the ARS case. To satisfy the out-of-equilibrium
Sakharov condition and generate an asymmetry [19], the
Yukawa couplings must satisfy jFαIj≲ 10−7. This is a
model of freeze-in baryogenesis because the χI do not come
into equilibrium while the asymmetry is being generated.
The baryon asymmetry is enhanced for χI mass splittings of
order 10 keV, so that χI oscillations have time to develop
before sphaleron decoupling, but are not so rapid that the
asymmetry generation saturates at early times and gives a
smaller asymmetry. However, we find that our model
predictions are qualitatively distinct from ARS, giving rise
to significant enhancements in the baryon asymmetry in
parts of parameter space as well as new phenomenological
probes.
In place of the right-handed neutrinos (RHNs) of ARS

are new cosmologically stable neutral states χI that we
identify as the DM; these singlet χI states have negligible
mixing with SM fermions. It is the oscillations of the DM
particles themselves that are responsible for baryogenesis,
and our model generally favors DM states with a non-
degenerate mass spectrum. This is unlike viable ARS
models, where the dynamics of DM is unrelated to the
generation of the baryon asymmetry via RHN oscillations,
and which typically require highly degenerate χ masses.
The beyond-SM (BSM) QCD-charged scalars Φi can

qualitatively alter the baryon asymmetry calculation. We
pay particular attention to the possibility of having more
than one scalar, which tends to dramatically enhance the
baryon asymmetry. In the two-scalar case, the different
channels for χ production and annihilation lead to an
asymmetry at OðF4Þ, rather than at OðF6Þ as in standard
ARS leptogenesis.
Successful baryogenesis requires a B − L asymmetry to

be stored in the Φ sector until sphaleron decoupling. When
combined with the DM abundance constraint, we find that
this favors the mass of the lightest Φ particle to be not far
above the TeV scale and its lifetime to be comparable to or
larger than the Hubble time at electroweak-scale temper-
atures, corresponding to values of cτ ≳ 1 cm. Consequently,
the model can be probed by the Large Hadron Collider
(LHC), and much of the parameter space predicts long-lived
particle signatures.
The properties of the heavier Φ scalar(s) are much less

constrained. In the two-scalar case, it is viable to have
MΦ2

≫ MΦ1
, and in this “decoupled-Φ2” regime the baryon

asymmetry and DM abundance depend on the properties
of Φ2 only through the characteristics of the coherent

background of χI particles left behind after the Φ2 particles
have entirely decayed/annihilated away. It is worth empha-
sizing that this coherent background can be CP-symmetric
“initially,” that is, just after theΦ2 particles have disappeared.
The CP violation arises from time-evolution phases, in
tandem with phases encoded in the coherent χ background
when expressed in the Φ1 interaction eigenbasis.
More generally, the asymmetry in the decoupled-Φ2

regime is independent of the origin of the coherent back-
ground of DM particles. It could be left behind by the
decays of a heavy particle with different quantum numbers
than Φ, for example the inflaton.
Our baryon asymmetry and DM results for the two-Φ

model in the decoupled-Φ2 regime are summarized in
Figures 4, 5, and 6, which show the preference for sub-
MeV χ masses, and for the lighter Φ particle to be in the
few-TeV range and long-lived for collider purposes.
Meanwhile, the analysis of the single-scalar scenario (in

which the same BSM particle is involved in χ production
and χ annihilation) is dramatically impacted by the fact that
the SM states participating directly in the asymmetry
generation are quarks rather than leptons. Unlike the
situation for the leptonic case, where different flavors of
leptons can have different chemical potentials, quark flavor
mixing drives the quark chemical potentials towards a
universal value, thereby suppressing one possible source of
asymmetry (here we work in the approximation of flavor-
universal quark chemical potentials and save a more careful
study for future work).
On the other hand, the large top Yukawa coupling opens

up the possibility that flavor dependence in the thermal
masses of the active fermions plays a role in generating the
baryon asymmetry at OðF4y2t Þ. In fact, we find that top-
Yukawa effects make the single-Φ, two-χ model viable for
obtaining the observed baryon asymmetry and DM abun-
dance, although it is more constrained than the two-scalar
scenario (see Fig. 7), and most of the parameter space will
be tested by searches for heavy scalars at the Large Hadron
Collider.
In the absence of SM-Yukawa effects, we need three or

more χ particles to get an OðF6Þ contribution to the
asymmetry. In this case, we find that the model’s ability
to simultaneously satisfy the baryon asymmetry and dark-
matter abundance constraints is marginal at best (see
Fig. 8). The observed baryon asymmetry can still be
realized if one imagines a different explanation for the
DM and a decay mechanism for massive χ particles, and in
this scenario the prospects for Φ discovery at colliders are
quite promising (see Figs. 10 and 11).
Our study is organized as follows: in Sec. II, we provide

a qualitative review of the mechanism of freeze-in baryo-
genesis, and we perform an analytic calculation of the
asymmetry in the weak-washout limit for a representative
model that illustrates the parametric dependence of
the asymmetry on the model parameters. In Sec. III,
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we investigate the model where the singlets responsible for
baryogenesis couple to SM quarks and two new QCD-
charged scalars, providing a comprehensive study of the
parameters giving rise to successful baryogenesis and DM.
In Sec. IV, we study themore constrainedmodel with only a
single new scalar. Finally, we discuss these models’
experimental signatures and prospects for discovery in
Sec. V.
We now discuss connections between our work and

earlier studies of ARS leptogenesis and freeze-in DM. In
minimal extensions of the SM, the only renormalizable
coupling of singlet fermions χ is via the neutrino portal,
giving rise to the ARS mechanism. In the context of ARS
leptogenesis, the χ particles are RHNs that lie in the GeV
mass range. Because the RHNs are low in mass relative to
the electroweak scale, they can potentially be produced in
intensity frontier and other collider experiments [20]. ARS
leptogenesis therefore provides a well-motivated, testable
mechanism for both the generation of neutrino masses as
well as baryogenesis. Consequently, this mechanism for
baryogenesis and its discovery prospects have been well
studied in the literature [21–48]. Indeed, the first dedicated
searches for GeV-scale RHNs have now been performed at
the ATLAS, CMS, and LHCb experiments at the Large
Hadron Collider [49–52]. Baryogenesis from freeze-in is
also possible in models without oscillations, in which the
relevant CP-violating phases for baryogenesis originate
from the interference of tree and loop diagrams in scattering
processes [53–55].
Models of freeze-in are inherently sensitive to other

couplings of the sterile states to the SM. This is well known
in the case of freeze-in models of DM, where the largest
coupling of the hidden particle tends to dominate its
cosmology and phenomenology [56–60] (for a recent
review, see Ref. [61]). While there have been a few studies
of freeze-in baryogenesis where there exist new fields
beyond the minimal ARS model [29,62–64], there has
not to our knowledge been a comprehensive attempt to
study of the parametric regimes and signatures associated
with nonminimal scenarios.

II. MECHANISM OF FREEZE-IN BARYOGENESIS

A. Qualitative overview of freeze-in baryogenesis

The mechanism of baryogenesis via singlet oscillations,
which is most studied as a mechanism for low-scale
leptogenesis [17,18], generates an asymmetry through
the out-of-equilibrium production of singlets and their
subsequent annihilation; this differs from conventional
leptogenesis, which generates an asymmetry through the
singlets’ decay. We now review the mechanism of baryo-
genesis via singlet oscillations, highlighting certain aspects
of the parametric dependence of the asymmetry.
In this section we focus on the minimal case, with

exactly two massive Majorana singlets, χI . We couple χI to

a SM field, ψα, and a set of scalars, Φi, which have the
same SM gauge quantum numbers as ψα:

L ⊃ −
MI

2
χ̄cIχI − ðFi

αIψ̄αχIΦi þ H:c:Þ: ð2Þ

The standard Type-I see-saw mechanism is realized if the χI
fields are the RH neutrinos, ψα are the left-handed lepton
doublets, and there is a singleΦwhich is the SMHiggs field.
However, different SM fermions ψα and scalars Φi can
realize baryogenesis as well; in that case, theΦi must be new
scalars.We have expressed theYukawa couplings,FαI , in the
basis where the χI Majorana masses are diagonal.
As we will soon see, baryogenesis favors a low mass

scale for the χI , and in fact we are mainly interested in
scenarios with MI ≲MeV. The χ masses are essential for
inducing χ oscillations, but we can otherwise neglect them
throughout the baryon-asymmetry calculation, and we take
all χ interactions to respect the Uð1Þχ−Φ symmetry realized
in the massless-χ limit. Note that we label the singlet states
so thatΦ decays produce χ̄ particles andΦ� decays produce
χ particles.1

Consider first the case with a single scalar,Φ. In order for
the singlets not to come into equilibrium, their Yukawa
couplings must be very small, jFαIj ≪ 1. As in most freeze-
in scenarios, we assume that at initial times nχI ¼ 0. The
decay Φ → ψαχ̄ produces an interaction-basis state of χ
fields which is a coherent superposition of χI mass
eigenstates. Because the χ scattering is out of equilibrium,
each interaction-basis particle propagates coherently,2 with
the mass eigenstates χI acquiring phases e−iϕI , where
ϕI ¼

R
EIdt. At some later time, the χ fields annihilate

with a potentially different SM fermion flavor ψβ intoΦ via
the inverse-decay process ψβχ̄ → Φ. The net process is
ψβΦ → ψαΦ, with coherent contributions from the propa-
gation of both χI particles; see Fig. 1. The matrix element
for this process is proportional to

MðψβΦ → ψαΦÞ ∝ Fα1F�
β1e

−iϕ1 þ Fα2F�
β2e

−iϕ2 : ð3Þ

The matrix element for the CP-conjugate process has
F → F�, with propagation phases unchanged. The result
is a CP-violating asymmetry

ΔΓαβ ≡ jMðψβΦ → ψαΦÞj2 − jMðψ̄βΦ� → ψ̄αΦ�Þj2 ð4Þ

∝ ImðF�
α1F

�
β2Fβ1Fα2Þ sinðϕ2 − ϕ1Þ ð5Þ

1The corresponding helicity assignments depend on the
identity of the active fermions. For ψ ¼ QL, the χI have positive
helicity and the χ̄I have negative helicity; for ψ ¼ uR the opposite
is true; etc.

2The mass splittings among χI states that we consider are
sufficiently small that there is negligible decoherence in the
production process.
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¼ ImðF�
α1F

�
β2Fβ1Fα2Þ sin

�Z
tid

td

dtðE2 − E1Þ
�
: ð6Þ

This factor appears in the contribution to the rate of
asymmetry generation at inverse-decay time tid, due to χ
particles produced with a particular momentum at decay
time td.

1. Generation of nonzero asymmetry

Equation (6), which applies in the single-Φ case, implies
that OðF4Þ asymmetries can arise within individual ψα

flavors. At this order, however, we do not get an overall
asymmetry in SM particles relative to antiparticles.
Summing over active flavors givesX

α;β

ΔΓαβ ∝ Im½ðF†FÞ12ðF†FÞ21� ¼ 0; ð7Þ

confirming that the total ψ asymmetry vanishes at OðF4Þ.
An overall asymmetry is possible at higher order in F;

for example, if the ψ are leptons and the flavor asymmetries
in e, μ, and τ are destroyed at different rates, then a total
asymmetry results at OðF6Þ [18]. If the ψ are quarks, the
flavors are brought into equilibrium with one another
through their couplings to the SM Higgs, and there are
no asymmetries in individual flavors even at OðF4Þ;
nevertheless, a source for the total asymmetry still results
atOðF6Þ if the number of χI is greater than or equal to three
[65]. We discuss this further in Sec. IV B.
To show that the total ψ asymmetry vanishes atOðF4Þ in

the single-scalar case, we assumed that the relevant
interaction rates depend on the active fermion flavor only
though the couplings FαI . Thermal mass effects can
invalidate this assumption. These effects are of higher

order in some coupling, but they can be important for the
top quark in particular, as we show in Sec. IVA.
Now we turn to the case with two scalars, Φ1

and Φ2. Remarkably, in this situation a total ψ asymmetry
results at OðF4Þ! The reason is that we now have
two sets of Yukawa couplings, F1

αI and F2
αI , and since

Im½ðF1†F1Þ12ðF2†F2Þ21� ≠ 0, an asymmetry can be gener-
ated. In fact, the underlying mechanism works even if only a
single active flavor of ψ has couplings to χI and Φi.
We perform a direct calculation of the asymmetry in

Sec. II B and show that it is indeed nonzero, but here we
provide a qualitative understanding of how the mechanism
works. TakeMΦ2

≫ MΦ1
for concreteness, and consider two

possible net processes initiated by Φ2 decay: (1) the feebly
interacting χ̄ state produced in the decay may not participate
in any subsequent scattering, so that the net process is
Φ2 → ψχ̄, or (2) the χ̄ state may later scatter to produce aΦ1

particle, so that the net process may be summarized asΦ2 →
Φ1 (with one ψ emitted into the plasma and one ψ absorbed
from it). The first net process induces equal and opposite
changes to the total Φ and ψ abundances, while the second
has no effect on these total abundances.
The point is that CP violation can lead to a difference

between the fraction of decaying Φ2 particles that partici-
pate in Φ2 → ψχ̄ (as opposed to Φ2 → Φ1) and the fraction
of decaying Φ�

2 particles that participate in Φ�
2 → ψ̄χ (as

opposed toΦ�
2 → Φ�

1). Consequently, a ψ asymmetry arises
at OðF4Þ.
One may worry that this asymmetry is canceled when

one includes processes initiated by Φ1 decay, with the roles
ofΦ1 andΦ2 reversed. However, because the number ofΦ2

particles produced at lower temperatures is Boltzmann
suppressed, the net process Φ1 → Φ2 typically completes
at high temperatures T ∼MΦ2

. In effect, the processes
Φ1 → Φ2 and Φ2 → Φ1 are active during different cosmo-
logical time periods, and so the numbers of Φ particles
involved in them are unrelated.
Moreover, it is possible that the timescale for χ oscillations

tohave an effect is comparable to theHubble timeatT ∼MΦ1
,

butmuch longer than theHubble timeatT ∼MΦ2
. In this case,

CP violation is negligible in Φ1 → Φ2, which therefore
cannot cancel an asymmetry produced by Φ2 → Φ1.
Note that it is crucial that the decay and the inverse decay

happen at different times, and that Hubble expansion
changes the particle kinematics during the interval between
those times. This gives rise to the necessary differences in
the thermal suppressions that apply at the decay and inverse-
decay times. If the Universe were not expanding and instead
in a state of exact equilibrium, then any Boltzmann
suppressions would affect Φ1 → Φ2 and Φ2 → Φ1 proc-
esses equally, leading to a vanishing asymmetry. Indeed, we
have checked that in the limit of zero Hubble expansion, or
alternatively when MΦ1

¼ MΦ2
such that both fields have

the same thermal distribution, the net asymmetry is exactly
zero at OðF4Þ.

FIG. 1. Feynman diagram illustrating the process of χI pro-
duction, propagation, and annihilation. First, the scalar Φ decays
into the SM quark ψα and χ̄I ; the χ̄I field propagates and then
annihilates with another SM field ψβ to reconstitute Φ. The net
reaction is ψβΦ → ψαΦ. In general, since χI is out of equilibrium,
the full process is a coherent sum over intermediate χI states.
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2. χ oscillations and Hubble expansion

Having outlined the conditions for obtaining a nonvanish-
ing total asymmetry in SM states, we now discuss the
parametrics of the requisite χ oscillations. Taking the χ
production time to be much earlier than the inverse-decay
time t, we can approximate the oscillation factor in Eq. (6) as

sin

�Z
t

0

dt0ðE2 − E1Þ
�
≃ sin

�Z
t

0

dt0
ΔM2

21

2pðt0Þ
�

ð8Þ

≃ sin

�
ΔM2

21

6pðtÞHðtÞ
�
; ð9Þ

where HðtÞ is the Hubble expansion rate at time t,
ΔM2

21 ¼ M2
2 −M2

1, and we have assumed that the χ fields
are highly relativistic, Ei ≈ pþM2

i =2p.
Because both p and H decrease with Hubble expansion,

the phase factor oscillates at a frequency that increases with
time. Assuming that p ∼ T, we thus find that at times for
which ΔM2

21=T ≪ H, the argument of the sine function is
very small and so is the asymmetry production rate.
Conversely, for ΔM2

21=T ≫ H, the asymmetry production
rate undergoes rapid oscillations that time-average to zero.
The bulk of the asymmetry is thus created when
ΔM2

21=T ∼H, which corresponds to Tosc∼ ðΔM2
21MPlÞ1=3.

We are then led to expect the dependence

asymmetry ∝ ðΔM2
21Þ−2=3; ð10Þ

or something roughly similar, based on the assumption
that the final asymmetry should scale approximately as
1=HðToscÞ.
This estimate ignores the fact that asymmetry generation

is suppressed below some temperature Tcutoff . If ΔM2
21 is

too small, the oscillations develop too late to produce a
significant asymmetry. Regardless of the identity of ψα, a
nonzero final baryon asymmetry requires that the ψ asym-
metry is processed by sphaleron transitions that are only
active in the unbroken electroweak phase at T ≳ Tew. So
Tcutoff is in general at least as high asTew. If theψα are quarks,
then we need the oscillations to begin even earlier, because
collider constraints require themasses ofQCD-chargedΦi to
be ≳1 TeV. For Tosc ≪ MΦ1

, Φ1 inverse decays are highly
suppressed at what would otherwise have been the time of
maximal asymmetry generation. In amodelwith heavyBSM
scalars, then, we have Tcutoff ∼MΦ1

.
The general point is that to avoid suppression of the

asymmetry, we need Tosc ≳ Tcutoff , with the asymmetry
maximized when the two temperatures are comparable.
According to the very rough estimates given above (which
we will refine in our subsequent calculations), this corre-
sponds to a χ mass-squared splitting of ΔM2

21 ∼ keV2 for
Tcutoff ¼ Tew. Thus, freeze-in baryogenesis naturally favors
light χ fields, Mχ ∼ keV. However, an asymmetry can still
be obtained for heavier χ fields, provided they are highly

degenerate. In the ARS scenario, Mχ ∼ GeV whereas the
mass splitting M2 −M1 is often eV or smaller (although
there are exceptional cases with nondegenerate spectra
[27]). In any case, the preference for small singlet masses
makes the χ states kinematically accessible at laboratory
experiments.
For Tosc ≫ Tew, χ oscillations have time to become rapid

before sphaleron decoupling, and in this regime one finds
that the standard ARS model does indeed exhibit the
scaling of Eq. (10); see Eq. (99) below. More generally,
the exact dependence on ΔM2

21 in the rapid-oscillation
regime is slightly model-dependent. For example, in the
decoupled-Φ2 regime, the two-scalar scenarios of Sec. II B
lead to a final asymmetry that scales as ðΔM2

21Þ−1 for
Tosc ≫ MΦ1

; see Eqs. (48), (50), and (51).

3. Survival of the asymmetry

In subsequent sections, we will focus on scenarios in
which the only nongauge interactions of Φi are those of
Eq. (2), and with hΦii ¼ 0. Then all Φi interactions
conserve both B and L, with Φi carrying the same charges
as ψα. Thus, it seems that when theΦi decay (as they must),
all asymmetries are destroyed! This, however, ignores two
important effects. The first is that SM spectator effects
(including B- and L-violating sphaleron processes) distrib-
ute the ψα asymmetry into all SM fermions, causing the B
and L stored in SM fermions to differ in magnitude from
those stored in the Φi. The second is that the connection
between quark and lepton asymmetries is broken after the
electroweak phase transition (when B and L become
separately conserved). If one of the Φi states does not
decay entirely until after the electroweak phase transition,
then although its eventual decays cancel the B − L asym-
metry that had been stored in SM fermions, equal and
opposite B and L asymmetries survive.
These arguments suggest that the lifetime of the lightest

scalar Φi should be at least comparable to the inverse
Hubble scale at Tew. By an interesting numerical coinci-
dence, HðTewÞ−1 ∼ 1 cm, and hence one of the Φi states is
typically long lived on collider scales. Since the Φi carry
SM gauge charges, they can be produced at colliders and
give rise to long-lived particle signatures (see Sec. V).

B. Calculation of the OðF4Þ asymmetry
in two-scalar scenarios

In this section we perform a detailed calculation of the
OðF4Þ baryon asymmetry for the two-χ, two-Φ case: I ¼ 1,
2 and i ¼ 1, 2 in Eq. (2). Our final expression for theOðF4Þ
asymmetry, as expressed in Eqs. (30) and (31), is applicable
for any choice of the SM fermions ψα, including couplings
to all three generations of active flavors. One can think of
these two-scalar models as a proxy for more general
scenarios in which a coherent background of oscillating
DM particles (of unspecified origin) participates in inverse
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decays of BSM particles carrying SM charges. The
“decoupled-Φ2” results presented in Sec. III are particularly
relevant from that perspective. Those results also apply for
arbitrary ψα, but we do assume MΦ1

≫ Tew to arrive at the
simplified final expressions of Eqs. (48) and (49).
Although the results of this section are broadly appli-

cable, we will refer to the ψα as quarks to align with our
focus in later sections, which present numerical results for
the particular case in which the ψα fields are right-handed
up-type quarks, with Φ1 and Φ2 carrying charges
ð3; 1; 2=3Þ under the SUð3Þc × SUð2Þw × Uð1ÞY SM gauge
group. We focus on QCD-charged scenarios because the
parameters for viable baryogenesis and the model phe-
nomenology are very different from the well-studied ARS
leptogenesis scenario where the ψα are leptons. One can
conceive of various scenarios in which a multiplet of SM-
singlet DM particles couples feebly to a SM field and BSM
fields. We leave study of some of these alternatives to
future work.
To streamline our discussion and derivation, we couple

only a single flavor of SM fermion, “Q,” to Φi and χI , so
that our Lagrangian becomes

L ⊃ −
MI

2
χ̄cIχI − ðF1

I Q̄Φ1χI − F2
I Q̄Φ2χI þ H:c:Þ: ð11Þ

However, we will express our final results so that they
apply equally well to the three-active-flavor case. We
impose a Z2 symmetry under which Φ1, Φ2, and χI have
charge −1 and the SM fields all have charge þ1. In this
case, the χI states are also stable DM candidates, and the
neutrino-portal coupling L̄αHχI is forbidden.
We adopt a perturbative approach to the calculation of

the baryon asymmetry, both for physical clarity and
because the requirement of χ as a viable DM candidate
mandates that we are in the weak-washout regime. Strong
washout effects do become important when we study
single-scalar models without the DM constraint in
Sec. IV B 2, and there we adopt a fully numerical treatment
of the relevant system of quantum kinetic equations.
Our perturbative calculation uses Maxwell-Boltzmann

statistics throughout. It also neglects thermal contributions
to the Φi and Q masses, along with the production and
scattering of χ from 2 ↔ 2 processes. These effects are
most important at T ≫ MΦi

, while decays and inverse
decays predominantly occur at T ∼MΦi

. Thus, neglecting
thermal masses is not expected to have a huge effect. The
principal exception is if χ oscillations occur at T ≫ MΦi

, in
which case the result presented here will underestimate the
production and scattering rates.
With these simplifications, our final expressions for the

baryon asymmetry appear below in Eqs. (30) and (31). We
show in Appendix A 1 that generalizing these expressions
to include thermal masses has only a modest quantitative
impact. We further find in Appendix A 3 that results based

on Eqs. (30) and (31) match rather well with what we get by
numerically solving the quantum kinetic equations for the χ
and χ̄ density matrices, taking into account thermal masses,
quantum statistics, and back-reaction/washout effects.
The calculation proceeds in four steps: first, a coherently

propagating population of χI states is produced from the
decay of the heavier scalar Φ2. Second, some part of this
population subsequently rescatters into Φ1. Third, we
account for the phases from the coherent propagation
and compute the difference in rates between χ̄Q → Φ1

and χQ̄ → Φ�
1, which leads to a baryon asymmetry.3

Fourth, we evolve the asymmetry down to the electroweak
phase transition temperature, Tew, to determine the size of
the ultimate baryon asymmetry.

1. Step 1: χ production

The important χ̄ (χ) production mode is from Φ2 → Qχ̄
(Φ�

2 → Q̄χ); the χ population from Φ1 decay can be found
by simply interchanging F2 ↔ F1 in this calculation. We
wish to calculate the spectrum of χ̄ particles present at a
dimensionless time z≡ Tew=T corresponding to temper-
ature T, since the χ momentum affects the oscillation phase
according to Eq. (8); we must consider contributions from
Φ2 decays that occur at any z2 ≡ Tew=TΦ2decay < z. The
energy of a χ̄ particle produced at time z2 is not preserved
by the Hubble expansion; however, since χ is relativistic
throughout the asymmetry generation process, Eχ̄ ≈ pχ̄ ,
and the comoving energy y≡ Eχ̄=T is constant with respect
to time.
The differential χ̄ production in time dt2 due to decays of

Φ2 particles having momenta in some window d3pΦ2
is

dY χ̄ ¼ 1

sðz2Þ
MΦ2

EΦ2

ΓΦ2

gΦ
ð2πÞ3 f

eq
Φ2
ðEΦ2

Þd3pΦ2
dt2; ð12Þ

where Y χ̄ ≡ nχ̄=s is the comoving number density of χ̄
particles, s is the entropy density, gΦ is the number of Φ2

degrees of freedom (gΦ ¼ 6 ifQ ¼ QL and gΦ ¼ 3 forQ ¼
uR or Q ¼ dR), and we have included a time dilation factor
to account for the fact that the plasma-frame decay rate of
Φ2 is slower than its rest-frame decay rate. We may express
d3pΦ2

as EΦ2
jpΦ2

jdEΦ2
dϕd cos θ, where cos θ is the angle

between the Φ2 momentum in the plasma frame and the χ̄
momentum in the Φ2 rest frame. Assuming Maxwell-
Boltzmann statistics for Φ2 and integrating over ϕ, we
then have

3In our full expression for the baryon asymmetry, we also track
the asymmetry resulting from the opposite process where χ
particles are initially produced from Φ1 decay and rescatter into
Φ2. However, we focus on only one of these processes for now, as
it is straightforward to obtain the other by interchanging
Φ1 ↔ Φ2.
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dY χ̄ ¼ MΦ2

sðz2Þ
ΓΦ2

gΦ
4π2

e−EΦ2
z2=Tew jpΦ2

jd cos θdEΦ2
dt2:

Neglecting the thermal mass for Q, we find y ¼
z2ðEΦ2

þ jpΦ2
j cos θÞ=ð2TewÞ, which restricts EΦ2

≥ Eχ̄þ
M2

Φ2
=4Eχ̄ . Finally, we change variables from ðcos θ; t2Þ to

ðy; z2Þ, and we integrate over EΦ2
to obtain

dY χ̄ ¼ 45gΦ
4π4g�

MΦ2
ΓΦ2

M0

T3
ew

e−ye−M
2
Φ2

z2
2
=ð4T2

ewyÞz22dydz2; ð13Þ

where M0 ≈MPl=ð1.66 ffiffiffiffiffi
g�

p Þ ≈ 7 × 1017 GeV is defined so
that the Hubble expansion rate is H ¼ T2=M0, and g� is the
effective number of relativistic degrees of freedom. We thus
have an expression for the (comoving) number density of χ̄
particles with a particular comoving energy y produced at
time z2.
In addition to being relevant for the baryon asymmetry,

this abundance of χ þ χ̄ particles can also account for the
observed abundance of DM. Assuming that the Yukawa
coupling is sufficiently small that χ is not brought into
equilibrium, Eq. (13) gives the leading result for the χ þ χ̄
abundance in perturbation theory. Integrating over all y and
z2 gives the summed abundance of all χ and χ̄ particles

produced by Φð�Þ
i decays (i ¼ 1, 2):

Yχþχ̄
i ¼ 135gΦ

4π3g�

�
Tew

MΦi

�
2
�
ΓΦi

Hew

�
; ð14Þ

where Hew is the Hubble expansion rate at sphaleron
decoupling.

2. Step 2: Inverse decay

In Eq. (13), we have calculated the abundance of χ̄ with
comoving energy y and production time z2. This abundance
then leads to the inverse decay process χ̄Q → Φ1, which
changes the abundance of the field Φ1. Note that there is
also a process χ̄Q → Φ2, but according to the arguments of
Sec. II A, this cannot lead to an asymmetry at OðF4Þ. We
also emphasize that any primordial process that populates a
coherent superposition of χ1 and χ2 states can lead to an
asymmetry from Steps 2–4 outlined here, independent of
their origin.
We calculate the number of χ̄Q → Φ1 inverse decays that

occur between times z1 and z1 þ dz1, where as usual,
z1 ≡ Tew=T1. The Boltzmann equations specify that the
inverse decay rate is the same as the decay rate, but
with the substitution of the distribution functions as
feqΦ1

ðEΦ1
Þ → fχ̄f

eq
Q ðEQÞ. The limits of the phase-space

integrals are otherwise unchanged. We already know the
decay rate as a function offΦ1

ðEΦ1
Þ:we simply takeEq. (12),

substituteΦ2 → Φ1, and make the substitution feqΦ1
ðEΦ1

Þ →
fχ̄f

eq
Q ðEQÞ. Furthermore, conservationof energydictates that

EQ ¼ EΦ1
− Eχ̄ ¼ EΦ1

− yT, and thus assumingBoltzmann
statistics,

feqQ ðEQÞ ¼ eyfeqΦ1
ðEΦ1

Þ: ð15Þ

Substituting and integrating overEΦ1
gives a similar result to

before:

dYΦ1 ¼ 45gΦ
4π4g�

MΦ1
ΓΦ1

M0

T3
ew

e−M
2
Φ1

z2
1
=ð4T2

ewyÞz21dydz1fχ̄ :

Finally, we have that

dY χ̄

dy
¼ 45

4π4g�
y2fχ̄ ; ð16Þ

and so

dYΦ1 ¼ gΦMΦ1
ΓΦ1

M0

T3
ew

ð17Þ

e−M
2
Φ1

z1=ð4T2
ewyÞ z

2
1

y2
dz1dY χ̄ : ð18Þ

We can readily substitute the result from Eq. (13), or the
distribution fχ̄ from any other out-of-equilibrium χ̄ produc-
tion process. To obtain the abundance of Φ�

1 from the CP-
conjugate process, we replace F → F�.

3. Step 3: Oscillations and asymmetry

The results of Steps 1 and 2 are valid for the single-χ
case. We now modify those results to apply when linear
combinations of χ mass eigenstates propagate coherently
between the points of χ production and χ annihilation.
Our single-χ result has

dYΦ1 ∝ ΓΦ1
ΓΦ2

∝ jF1j2jF2j2; ð19Þ

where F1 and F2 are the couplings to Φ1 and Φ2,
respectively. Consistent with the arguments of Sec. II A,
we replace

jF1j2jF2j2 → jF2
1F

1
1
�e−iϕ1 þ F2

2F
1
2
�e−iϕ2 j2 ð20Þ

for the two-χ case. That is, we sum coherently over the
production and inverse decay processes mediated by differ-
ent χI mass eigenstates. The phases are calculated from the
time of Φ2 decay to the time of Φ1 inverse decay, and the
physical phase is the difference4

4Our notation is slightly confusing because there are two types of
scalarΦ1;2, aswell as two types of fermion χ1;2. The phasesϕ1;2 and
energies E1;2 refer to the propagation of the χ1;2 mass eigenstates,
while the times t1;2 refer to decay/inverse-decay of Φ1;2.
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ϕ2 − ϕ1 ¼
Z

t1

t2

dtðE2 − E1Þ ð21Þ

≈
Z

t1

t2

dt
ΔM2

21

2yT
ð22Þ

¼ ΔM2
21M0

6T3
ew

z31 − z32
y

: ð23Þ

The coherent oscillation phase thus depends on the comov-
ing energy of the propagating singlet (y), as well as the
times of production (z2) and scattering (z1).
Combining this with the result of Eq. (17), we find

dYΦ1 − dYΦ�
1 ∝ 4ImðF1

1F
2
1
�F2

2F
1
2
�Þ

× sin

�
ΔM2

21M0

6T3
ew

z31 − z32
y

�
: ð24Þ

Finally, an analogous calculation gives an asymmetry inΦ2

from the process Φ1 → Qχ̄, χ̄Q → Φ2; the result is found
by simply interchanging the Φ index 1 ↔ 2 in all of our
results so far.
For an asymmetry to be generated, χ production,

propagation, and annihilation must all be coherent proc-
esses [66]. Given the relatively large Φ −Φ� annihilation
rate to gluons, ΓΦ;col ≳ 10 GeV, the overall energy uncer-
tainty in Φ decays and inverse decays is many orders of
magnitude larger than the energy splitting between χ mass
eigenstates, ΔE ∼ ΔM2

E . Therefore, we do not expect coher-
ence loss in χ production or annihilation to be an issue.
Propagation decoherence seems more likely to be impor-
tant. In the wave-packet picture, the group velocities of the
constituent χ mass eigenstates differ by Δv ∼ ΔM2=E2.
Approximating the spatial spread in the χ wave packet to be
σx ∼ Γ−1

Φ;col, the requirement that the spatial separation
between the two mass eigenstates remains less than σx
leads to a coherence time of tcoh ∼ E2=ðΓΦ;colΔM2Þ. This
coherence time is longer than the time for oscillations to
develop, tosc ∼ E=ΔM2, provided that ΓΦ;col ≲ E is satis-
fied. The scale of the χ energy E is set by the larger of MΦ
and the temperature T. We therefore expect ΓΦ;col to be
perturbatively smaller than E, which would imply that χ
coherence survives long enough for oscillations to have an
effect. While these rough, qualitative considerations are
reassuring, a more careful study of decoherence in this
framework is certainly merited.

4. Step 4: From Φ asymmetry to baryon asymmetry

The interactions of Eq. (11) conserve baryon number,
with B ¼ 1=3 assigned to Φi. Taking only those inter-
actions into account, we get equal and opposite baryon
asymmetries in Φ and Q, and no final asymmetry survives
once the Φ particles decay to Qχ̄.

Spectator processes among the other SM quarks and
leptons can, however, prevent this destruction from happen-
ing and directly connect the phenomenology of Φ1;2 to the
baryon asymmetry. The rate of asymmetry production inΦ is
equal and opposite to the that inQ; however, the asymmetry
inQ is quickly distributed amongst all SMquark, lepton, and
Higgs species via sphalerons and SM Yukawa interactions.
By contrast, theΦ asymmetry is not distributed amongst any
other particles. Thus, the baryon asymmetries stored in the
SM andΦ sectors have different magnitudes when spectator
processes are taken into account.
To make this quantitative, we solve a system of equations

relating SM chemical potentials and abundances in equi-
librium [67], with the hypercharge and B − L conservation
equations modified to include the Φi abundances. In this
way we can relate asymmetries to the B − L asymmetry in
the SM sector:

δYΦ1 þ δYΦ2 ¼ KΦYB−L;SM ð25Þ

YB ¼ KBYB−L;SM: ð26Þ

Here YB is the total baryon asymmetry, including that
stored in Φ1;2, but we exclude the Φ asymmetries in
calculating YB−L;SM. Conservation of B − L leads directly
to KΦ ¼ −3, while the value of KB depends on the gauge
charges of Q: we find KB ¼ −54=79 for Q ¼ QL, −63=79
for Q ¼ uR, and −45=79 for Q ¼ dR.

5

Taking the sphaleron-decoupling temperature to beTew ¼
131.7 GeV [68], we work in the approximation that electro-
weak-symmetric conditions apply for z ¼ Tew=T < 1, tran-
sitioning abruptly to B conservation for z > 1. The final
baryon asymmetry is then KB=KΦðδYΦ1 þ δYΦ2Þz¼1. We
estimate that this instantaneous-transition approximation
introduces an error of at most ∼15% in the final baryon
asymmetry, based on the broken-phase equilibrium value for
YB=YB−L;SM.We adopt amore careful treatment of sphaleron
decoupling only for Sec. IV B 2, in the context of a strong
washout scenario that features potentially rapid variations in
the Φ asymmetry at z ∼ 1.
The ultimate baryon asymmetry depends on the Φ1;2

asymmetries at sphaleron decoupling, which are in turn
proportional to the fraction of Φ1;2 particles that survive
until z ¼ 1. For each scalar, we therefore dress the con-
tribution to its asymmetry from inverse decays at z1 with
the survival factor

SΦi
ðz1Þ ¼ exp

�
−
Z

tew

t1

dthΓΦi
i
�
; ð27Þ

where hΓΦi
i is the thermally averaged decay width.

Neglecting thermal masses and adopting Maxwell-
Boltzmann statistics, we get

5For the leptonic cases, we have KΦ ¼ 1, along with KB ¼
25=79 for LL and KB ¼ 22=79 for eR.
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SΦi
ðz1Þ ¼ exp

�
−
ΓΦi

Hew

Z
1

z1

dzz
K1ðMΦi

Tew
zÞ

K2ðMΦi
Tew

zÞ

�
; ð28Þ

whereKi are modified Bessel functions of the second kind.
Washout from Φi decay can also be taken into account by
solving the quantum kinetic equations including both
source and washout terms, as done in Appendix A 3.
The survival of a substantial fraction of Φi scalars down

to the electroweak scale suggests that ΓΦi
≲Hew for at least

one of the scalars. This leads to the conclusion that the
decay length of one of the scalars satisfies cτΦ ≳ 1 cm.
This is interesting from a phenomenological perspective,
since this is precisely the set of decay lengths that lead to
long-lived particle signatures at colliders. The freeze-in
baryogenesis mechanism therefore provides a very explicit
link between the baryon asymmetry, the Hubble expansion
rate at the electroweak phase transition time, and collider
signatures. We explore collider signatures in more detail
in Sec. V.

5. Final result

Putting together the results from the four steps of our
calculation, we find the baryon asymmetry today equals the
asymmetry at the time of the electroweak phase transition:

YB ¼ 45g2Φ
256g�π6

KB

KΦ

M2
Φ1
M2

Φ2
M2

0

T6
ew

× ImðF1
1F

2
1
�F2

2F
1
2
�ÞðI12 − I21Þ; ð29Þ

Iij ¼
Z

∞

0

dy
e−y

y2

Z
1

0

dz1z21SΦi
ðz1Þe−αiz21=y

×
Z

z1

0

dz2z22e
−αjz22=y sin

�
βosc
y

ðz31 − z32Þ
�
; ð30Þ

where αi ¼ ðMΦi
=2TewÞ2 and βosc ¼ M0ΔM2

21=6T
3
ew.

Again, we have neglected thermal masses throughout.
To make more transparent the connections between the

baryon asymmetry and physical properties of the new states
such as masses and decay widths, we reparametrize the
asymmetry as follows:

YB ¼ 45g2Φ
4π4g�

KB

KΦ
J
�
MΦ1

Tew

��
MΦ2

Tew

�

×

�
ΓΦ1

Hew

��
ΓΦ2

Hew

�
ðI12 − I21Þ; ð31Þ

where we have used

ΓΦi
¼ Tr½Fi†Fi�

16π
MΦi

; ð32Þ

and defined the Jarlskog-like invariant J by

4ImðF1
1F

2
1
�F2

2F
1
2
�Þ ¼ JTr½F1†F1�Tr½F2†F2�:

This invariant can be parametrized in terms of six mixing
angles,

J ¼ sin 2θ1 sin 2θ2 cos ρ1 cos ρ2 sinðϕ2 − ϕ1Þ; ð33Þ
where

cos θi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFi†FiÞ11
TrðFi†FiÞ

s
; ð34Þ

cos ρi ¼
jðFi†FiÞ12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFi†FiÞ11ðFi†FiÞ22
p ; ð35Þ

ϕi ¼ argðFi†FiÞ12; ð36Þ

with 0 ≤ ðθi; ρiÞ ≤ π=2. Our derivation assumed couplings
to a single quark flavor, in which case we should regard F1

and F2 as χ-space row vectors in the above equations,
consistent with the index placement in Eq. (2). However,
Eqs. (31)–(36) apply equally well in the three-flavor case,
Fi
I → Fi

αI . The θi angles parametrize the relative strength of
the coupling to χ1 vs χ2, while the ρi angles parametrize the
degree to which the couplings to χ1 and χ2 are aligned in
quark-flavor space; for a single quark flavor, cos ρi ¼ 1.
Finally, the ϕi give the relative phases.
Our final result is consistent with our arguments from

Sec. II A. In particular, we can specialize to the case of a
single scalar by making MΦ1

¼ MΦ2
and F1 ¼ F2 (and

including only the I12 term); in this case, the asymmetry
vanishes at this order in perturbation theory, recovering
the standard ARS result. In Sec. IV, we return to the single-
scalar scenario, showing that asymmetries can arise at
OðF4y2t Þ and at OðF6Þ in the model where Φ couples to
quarks, although even the OðF6Þ asymmetry has a different
parametric dependence than in ARS leptogenesis, due to the
equilibration among quark flavors in the SM. We also note
that, if we takeMΦ1

¼ MΦ2
and neglect washout effects, we

get I12 − I21 ¼ 0, in accordance with our arguments in
Sec. II A that the asymmetry should vanish in this limit.
In the absence of washout, our result is independent of a

possible cross-quartic coupling, λ12ðΦ†
1Φ2Þ2 þ H:c: In that

limit, Φ1Φ�
2 ↔ Φ�

1Φ2 scattering does not affect the final
baryon asymmetry, which is determined by the total Φ
asymmetry at sphaleron decoupling. However, those scat-
terings can impact decay-washout effects (which our
perturbative result encodes in the SΦi

functions). To arrive

at Eq. (31), we assumed that the Φ1=Φ
ð�Þ
1 and Φ2=Φ

ð�Þ
2

asymmetries evolve independently. In many cases of
interest, for example if the χ oscillations necessary for
asymmetry generation begin at temperatures well below
MΦ2

, this assumption is valid. Moreover, when Φ1Φ�
2 ↔

Φ�
1Φ2 scattering does affect the final asymmetry it does not
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generally reduce it dramatically in viable parameter
regions. For simplicity, we therefore neglect Φ1Φ�

2 ↔
Φ�

1Φ2 scattering.
We conclude by noting that a nonzero baryon asymmetry

can still be obtained in the limit MΦ2
≫ MΦ1

. In this case,
from the perspective of the low-energy effective theory,
there exists a primordial coherent χ background that
interacts once to generate a baryon asymmetry. We there-
fore see that our two-scalar model readily generalizes to
any scenario where a nonthermal coherent χ ensemble is
produced in the early Universe. This could include, for
example, production from inflaton decays, or from the
decays of some other particle with different quantum
numbers than Φ1. Thus, freeze-in baryogenesis can occur
through any one of a large number of mechanisms of χ
production in the Universe, provided there is a weak-scale
state to allow late time χ scattering.6

Starting with an assumed primordial χ background, one
can use the interaction

L ⊃ −FαIL̄αHχI þ H:c: ð37Þ

to generate the baryon asymmetry via χL̄ → H. That is,
rather than introduceΦi at all, one can exploit the neutrino-
portal coupling, forbidden in our Z2-symmetric models.
This takes us to a version of the ARS scenario in which we
allow an unspecified source of χ production, presumably
broadening the viable parameter space. In this scenario,
however, X-ray constraints on χ → νγ rule out the DM
being composed of those χ mass eigenstates that participate
directly in the asymmetry generation. In the models with
Φi, a sufficiently small neutrino-portal coupling can leave
our DM abundance and baryon asymmetry calculations
unaltered while still having potentially observable conse-
quences, as discussed in Sec. V B.

III. BARYOGENESIS AND DARK MATTER WITH
TWO SCALARS

In this section, we explore the parameters for which the
freeze-in baryogenesis model of Sec. II B can simultane-
ously account for the baryon asymmetry and DM, finding a
generic preference for masses ≲5 TeV and lifetimes cτ ≳
0.1 cm for the lightest scalar Φ1.
Given fixed values of the other parameters, we can use

Eqs. (14) and (31) to calculate the DM abundance and YB
as functions of ðΓΦ1

;ΓΦ2
Þ, or equivalently, ðcτΦ1

; cτΦ2
Þ.

Figure 2(a) shows results for benchmark parameters
MΦ1

¼ 2 TeV, MΦ2
¼ 4 TeV, M1 ≪ M2 ¼ 20 keV, and

θ1 ¼ θ2 ¼ π=4. The maximum possible baryon asymmetry

consistent with these inputs, ðYBÞmax, is realized by
choosing the other angles to give J ¼ 1 (as discussed
below, the DM abundance depends on θ1 and θ2, but not on
the other parameters determining J ).
Figure 2(a) shows that, for these inputs, a YB of around

twenty times the observed value is possible, without
overproducing DM. Furthermore, to avoid overproduction
of DM, both Φ particles must be long-lived on collider
scales, and the χ, χ̄ abundances must remain well below
equilibrium values, ensuring the validity of our perturbative
calculation.
As already emphasized, MΦ2

can be much larger than
MΦ1

without suppressing the magnitude of the baryon
asymmetry, provided the abundance of χ produced in Φ2

decays, Yχþχ̄
2 , is held fixed by increasing the couplings to

Φ2. This is evident in Fig. 2(b), which shows contours of
baryon asymmetry and χ=χ̄ energy density in the
ðcτΦ1

; Yχþχ̄
2 Þ plane for various MΦ2

.
For the case with approximately degenerate scalars

(MΦ2
¼ 2.1 TeV), the results are sensitive to our

assumption of no Φ1Φ�
2 ↔ Φ�

1Φ2 scattering. We see two
ðYBÞmax contours for that scenario, corresponding to
whether the Φ=Φ� asymmetry at sphaleron decoupling is
stored dominantly in Φ1 (with J ¼ 1) or Φ2 (with
J ¼ −1). The asymmetry is almost entirely in Φ1 in the
viable parameter space consistent with the DM constraint.
We now provide additional details underlying all of the

results of this section, including Fig. 2. First, in calculating
the baryon asymmetry, we replace the survival function in
Eq. (31) with its z1 ¼ 0 value, SΦi

ð0Þ, which can then be
taken outside the integrals in Eq. (30). That is, we
approximate Φ production to be at the time of reheating
for the purpose of estimating washout via Φ decay, while
still taking into account time dilation. Given that asym-
metry production by χ scattering dominantly occurs at
temperatures well above Tew, this is a reasonable approach.
We show in Appendix A that more careful treatments give
similar results (see Fig. 14).
Regarding the DM constraint, we adopt a Z2-symmetric

model, so that both χ mass eigenstates are stable on
cosmological time scales. We therefore require7

ρχþχ̄

s
≤
ρcdm
s

¼ 4.32 × 10−10 GeV: ð39Þ

We are particularly interested in the case where this bound
is saturated and the χ particles make up all of the DM.

6In the context of electroweak baryogenesis models, asym-
metry generation by Majorana fermion DM scattering has been
considered for example in [69], where (unlike here) a chemical
potential is first generated in a dark sector and subsequently
transferred to the SM sector.

7Following Ref. [70], we take Ωcdmh2 ¼ 0.1186 and
ΩBh2 ¼ 0.02226. This gives

ρcdm
s

¼
�
Ωcdmh2

ΩBh2

�
mNYB ¼ 4.32 × 10−10 GeV ð38Þ

for YB ¼ 8.65 × 10−11 and a nucleon mass mN ¼ 0.938 GeV.
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The total χ þ χ̄ abundance from the decay of the scalar
Φi, Y

χþχ̄
i , is given by Eq. (14). Since the mixing angles θi

defined in Eq. (34) parametrize the relative couplings of Φi
to the two χ mass eigenstates, we find

ρχþχ̄

s
¼ M̄ðΦ1Þ

χ Yχþχ̄
1 þ M̄ðΦ2Þ

χ Yχþχ̄
2 ; ð40Þ

where

M̄ðΦiÞ
χ ¼ cos2 θiM1 þ sin2 θiM2 ð41Þ

is the average mass of χ and χ̄ particles produced in Φð�Þ
i

decays, weighted by abundance.
To simplify our analysis we focus first on the case in

which the χ masses are hierarchical,

M2 ≫ M1; ð42Þ

to an extent that we can neglect M1 entirely. We consider
the implications of having larger M1 toward the end of this
Section. For the remaining parameters, taking χ1 to be
effectively massless maximizes the space that gives the
correct baryon asymmetry consistent with the DM con-
straint of Eq. (39). In this hierarchical regime we take

ΔM2
21 ≃M2

2 ð43Þ

and

M̄ðΦiÞ
χ ≃ sin2 θiM2; ð44Þ

giving

M2ðsin2 θ1Yχþχ̄
1 þ sin2 θ2Y

χþχ̄
2 Þ ≤ ρcdm

s
ð45Þ

as our DM constraint. For the parameters adopted in
Fig. 2(a), this translates roughly to Yχþχ̄ ≤ 4 × 10−5,
consistent with our earlier claim that the DM constraint
requires the χ particles to remain well out of equilibrium.

A. The decoupled-Φ2 regime

Figure 2(b) shows that, while the baryon asymmetry is
reduced as MΦ2

approaches MΦ1
, the masses need to be

close to get a strong suppression. Because we get quali-
tatively similar results for MΦ2

≫ MΦ1
as for modest

hierarchies, MΦ2
≳ 2MΦ1

, we work in the “decoupled-
Φ2” regime for the remainder of this section. In this regime,
the generation of the asymmetry can be factorized into the
production of a χ abundance, which oscillates and then
scatters into Φ1 at a much later time.
More precisely, we adopt an approximate expression for

YB that applies when

MΦ2
≫ MΦ1

≫ Tew ð46Þ

(a) (b)

FIG. 2. For the inputs indicated, contours of ðYBÞmax (blue) and ρχþχ̄ (red), expressed in the left plot as ratios relative to the observed
values. In (a),MΦ2

is held fixed, and the region in which a large enough baryon asymmetry can be achieved without overproducing DM
is shaded; (b) compares contours for various MΦ2

as a function of the lifetime of Φ1 and the total χ þ χ̄ abundance produced in the
decays ofΦ2, Y

χþχ̄
2 . For both plots, the baryon asymmetry is maximized for jJ j ¼ 1, and we take theΦ quantum numbers to be those of

uR. For the DM contours we assume M2
2 ≃ ΔM2

21 and neglect the energy density stored in the lighter χ mass eigenstate.
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and

ΔM2
21M0

M3
Φ2

≪ 1 ð47Þ

are both satisfied. When Eq. (47) is satisfied, χ oscillations
develop at temperatures T ≪ MΦ2

. We can then ignore the
term with I21 in Eq. (31), because inverse decays of Φ2 are
highly Boltzmann-suppressed by the time oscillations

begin. Given that the Φð�Þ
2 population annihilates away at

high temperatures, we can furthermore take t ¼ 0 at the
moment of χ production, when calculating the oscillation
effect. In the I12 integral of Eq. (30), this amounts to
neglecting the term with z2 in the sine function. Finally,
Eq. (46) allows us to extend the z1 and z2 integrations in
Eq. (30) to infinity, because Boltzmann suppressions of the
Φ2 decay and Φ1 inverse decay rates effectively cut off the
integrals at lower values of z1 and z2 in any case. Using
Eq. (14), we can then approximate Eq. (31) by

YB≃
8gΦKBJ
3π1=2KΦ

Yχþχ̄
2

�
Tew

MΦ1

�
2
�
ΓΦ1

Hew

�
SΦ1

ð0ÞĨ12ðβ̃oscÞ; ð48Þ

with

Ĩ12ðβ̃oscÞ ¼
Z

∞

0

dyye−y
Z

∞

0

dxx1=2e−x

× sin ½β̃oscx3=2y1=2� ð49Þ

and

β̃osc ¼
4ΔM2

21M0

3M3
Φ1

: ð50Þ

Figure 3 shows a plot of Ĩ12ðβ̃oscÞ. The asymptotic
behavior is

Ĩ12ðβ̃oscÞ ≃
� ð3 ffiffiffi

π
p

=2Þβ̃osc β̃osc ≪ 1;ffiffiffi
π

p
=ð3β̃oscÞ β̃osc ≫ 1;

ð51Þ

and the maximum value ðĨ12Þmax ≃ 0.364 is attained for
β̃osc ≃ 0.385, corresponding to

� ffiffiffiffiffiffiffiffiffiffiffiffi
ΔM2

21

q 	
max Ĩ12

≃ 20 keV ×

�
MΦ1

TeV

�
3=2

: ð52Þ

Increasing or decreasing
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔM2

21

p
by an order of magnitude

from this value shifts β̃osc by two orders of magnitude and
suppresses Ĩ12 by a factor of roughly ∼3 × 10−2.

B. Numerical results in the decoupled-Φ2 regime

To get a sense of where the model’s most promising
parameter space lies, we perform two random scans over
the couplings and masses that determine ρχþχ̄ and YB in the
decoupled-Φ2 regime, using Eqs. (14), (40), (44), and (48).
The shaded regions in Fig. 4 show the preferred Φ1

parameter space that emerges.
We now explain how these scans were performed. First,

we impose an upper bound on Yχþχ̄
2 . Because the Sakharov

conditions require a departure from equilibrium [19], at
least some linear combination of χ states must be out of
equilibrium at the time of inverse decay into Φ1.
Baryogenesis can still occur if a linear combination of χ
states does come into equilibrium. For example, it is

possible that Φð�Þ
2 decays thermalize some linear combi-

nation of χ1 and χ2 (and the associated CP-conjugate state),
in which case the total abundance of χ and χ̄ particles left
over afterΦ2 annihilation approaches the equilibrium value
for a single mass eigenstate,

Yχþχ̄
eq ¼ 135ζð3Þ

4π4g�
≃ 4 × 10−3: ð53Þ

We impose this value as our upper bound on Yχþχ̄
2 ,

Yχþχ̄
2 < 4 × 10−3; ð54Þ

even though one can imagine viable scenarios in which
a larger-than-equilibrium abundance is produced at high
temperatures.8

We also require

M2 > 10 keV; ð55Þ

FIG. 3. The function Ĩ12ðβ̃oscÞ appearing in Eq. (48), which
gives the baryon asymmetry in the decoupled-Φ2 regime.

8For example, if the background of χ=χ̄ particles is produced
nonthermally by a source that couples to a single linear
combination of χ1 and χ2, the orthogonal linear combination
of χ1 and χ2 could remain out of equilibrium given a sufficiently
long oscillation timescale.
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to approximately satisfy structure-formation constraints
(for example, the authors of Ref. [71] argue that Lyman-
α constrains Mχ ≳ 12 keV provided χ þ χ̄ production
occurs at electroweak temperatures).
Taking three active flavors, we start with randomly

generated F1 and F2 coupling matrices and a randomly
generated MΦ1

> 1 TeV (with a flat prior in the logarithm
of MΦ1

). In all cases, we take MΦ2
≫ MΦ1

. We include
points in Fig. 4 if we can find a rescaling of the F2 matrix
and a value for M2

2 ¼ ΔM2
21 that give the observed DM

density and baryon asymmetry, subject to the constraints
Yχ
2 < 4 × 10−3 and M2 > 10 keV. Figures 4(a) and 4(b)

differ only in how the initial Fi couplings are generated.
Figure 4(a) is based on the “overall-scale” scan: overall

scales of the coupling matrices F1 and F2 are randomized
with flat priors in the logarithms of those scales, the
magnitude of each individual coupling Fi

αI is obtained
by multiplying the appropriate overall scale by a random
number in the range [0, 1], and each coupling is finally
assigned a random complex phase.
Figure 4(b) is based on the “uncorrelated-couplings”

scan: absolute values of couplings Fi
αI are independently

randomized with flat priors in the logarithms of those
absolute values, and each coupling is then assigned a
random complex phase.
To different degrees, both scans prefer MΦ1

to be in the
∼1 − few TeV range, making this a promising scenario with
respect to collider searches. The uncorrelated-couplings scan
tends to produce larger hierarchies among coupling matrix
elements, making small Φ branching ratios to χ2 less rare

and avoiding overproduction of DM. This produces a
broader distribution in ðMΦ1

; cτΦ1
Þ space.

To interpret the numerical scan results, we also analyti-
cally identify viable regions in the ðMΦ1

; cτÞ plane under

(a) (b)

FIG. 4. The shading shows relative frequencies for points that give the correct baryon asymmetry and DM abundance in two different
random scans over couplings and masses, as described in the text. In the “overall-scale” scan of (a), the magnitude of each F1

αI is
generated by multiplying a log-distributed overall scale by a random number in the range [0, 1], and similarly for each F2

αI . In the
“uncorrelated-couplings” scan of (b) the magnitudes of each Fi

αI are taken to be log-distributed and fully uncorrelated. The contours
(identical for the two plots) enclose regions in the ðMΦ1

; cτÞ plane that can give a large enough baryon asymmetry while satisfying the
DM constraint of Eq. (45), under three different coupling assumptions. We take the Φ quantum numbers to be those of uR.

FIG. 5. The maximum baryon asymmetry consistent with the
DM constraint of Eq. (45), as a function of MΦ1

and M2, in two
different coupling scenarios. We assumeM2

2 ≃ ΔM2
21 and neglect

the energy density stored in the lighter χ mass eigenstate. For this
particular plot, we have not imposed structure formation con-
straints relevant for M2 ≲ 10 keV. We take the Φ quantum
numbers to be those of uR.

BARYOGENESIS AND DARK MATTER FROM FREEZE-IN PHYS. REV. D 101, 115023 (2020)

115023-13



FIG. 6. Results of repeating the two scans of Fig. 4 with M1=M2 ¼ 1=2 (top), M1=M2 ¼ 1=10 (middle), and M1=M2 ¼ 1=100
(bottom). For points with 0 < M1 < 10 keV, we restrict the χ1 energy density to be no larger than 1=3 of the total DM energy density to
evade structure-formation constraints [72,73].
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specific coupling assumptions. We marginalize over the
other, unspecified parameters to find the maximum baryon
asymmetry subject to the DM constraint; for further details
see Appendix B.
If we set Yχþχ̄

2 at what we take to be its maximum
allowed value, thereby saturating Eq. (54), the observed
baryon asymmetry can be attained for points within the
blue contour of Fig. 4. For this maximum value of Yχþχ̄

2 , we
avoid overproduction of DM only for θ2 ≲ 0.1, correspond-
ing to a Φ2 that decays preferentially to the massless χ1, as
opposed to χ2.
We can alternatively adopt fixed values for the mixing

angles θ1 and θ2. Allowed regions lie within the red contour
of Fig. 4 for θ1 ¼ θ2 ¼ π=4 (in which case Φ1 and Φ2 both
decay to χ1 and χ2 with equal probabilities) and within the
green contour for θ1 ¼ θ2 ¼ 1=10 (in which caseΦ1 andΦ2

both decay predominantly to χ1). The M2 > 10 keV con-
straint has a significant impact on the θ1 ¼ θ2 ¼ π=4 para-
meter space, cutting out a region with smallerMΦ1

and cτΦ1

where the model would predict an overabundance of DM.
In Fig. 4(a), the bulk of the scan points are enclosedwithin

the red, equal-mixing contour, consistent with the fact that
the overall-scale scan leads to more anarchic coupling
structures and consequently large mixing angles among all
states.
We also see in Fig. 4 that the viable parameter space is

restricted to MΦ1
≲ 6 TeV and cτΦ1

≳ 4 mm if Φ decays
produce χ1 and χ2 in equal abundance (red contour), but
that the allowed values expand to MΦ1

≲ 35 TeV and into
the sub-mm decay regime if Φ decays mainly produce very
light χ1 particles (blue contour). In Fig. 5 we find that the
corresponding ranges for the χ2 mass are M2 ≲ 150 keV
and M2 ≲ 4 MeV, respectively.
In Figs. 4 and 5 we take χ1 to be effectively massless by

equating M2
2 ¼ ΔM2

21 and neglecting the energy density
stored in the lighter χ mass eigenstate. As shown in Fig. 6,
the viable ðMΦ1

; cτΦ1
Þ space shrinks further if we adopt

different assumptions for M1. As a result, the prospects for
testing the model become even more promising.
The bound MΦ1

≲ 35 TeV applies when Φ1;2 have the
same quantum numbers as uR, but the results are roughly
the same in the QL and dR cases. While the upper end of
this mass range is likely to be inaccessible even at a
100 TeV collider [74], it is at the very least a firm upper
bound in the two-scalar model. As the scan results suggest,
saturating this upper bound requires a special alignment of
parameters, while more generic parameters typically prefer
values of MΦ1

that are more accessible at colliders.
Finally, if we consider the baryon asymmetry alone and

abandon the DM constraint of Eq. (45), Eq. (48) places a
very weak upper bound on the mass of the lighter scalar,

MΦ1
≲ 570 TeV

�
gΦKB

KΦ

�
1=2
�

Yχþχ̄
2

4 × 10−3

�1=2

: ð56Þ

If we impose the bound of Eq. (54), the two trailing factors
are order-one or smaller.

IV. BARYOGENESIS AND DARK MATTER WITH
A SINGLE SCALAR

Having thoroughly explored the parameter space giving
rise to baryogenesis and DM in a model with two scalars,
we now return to the more ARS-like scenario with a single
scalar. We consider the same model as Sec. II B, but now
including only a single scalar, Φ, with couplings to all
quark generations:

L ⊃ −
MI

2
χ̄cIχI − ðFαIQ̄αΦχI þ H:c:Þ: ð57Þ

As argued in Sec. II A, the baryon asymmetry is expected to
be smaller with only a single scalar, and indeed we show in
this section that the viable parameter space for baryogenesis
and DM is much more constrained than in Sec. III. This is
due to the fact that the baryon asymmetry arises at higher
order in perturbation theory, either OðF4y2t Þ or OðF6Þ,
where yt is the SM top quark Yukawa coupling.
We start by discussing why the OðF4Þ asymmetry

vanishes if we neglect SM Yukawa couplings. Generating
an asymmetry relies on processes such asΦ → Qαχ̄; Qβχ̄ →
Φ differing in rate9 from the equivalent processes for Φ̄. To
determine the total asymmetry, we must sum over all quark
flavors α, β, which we can organize into a sum over pairs of
processes with the two quark flavors switched, such as the
pair consisting of the “(1,2)” process Φ → Q1χ̄; χ̄Q2 → Φ
and the “(2,1)” processΦ → Q2χ̄; χ̄Q1 → Φ. In the absence
of SM Yukawa couplings, flavor dependence enters only
through the FαI Yukawas themselves. The (1,2) and (2,1)
rates are then related by F ↔ F�, and their sum is thus
symmetric under F ↔ F�, guaranteeing a vanishing asym-
metry once we include the CP-conjugate processes.
SM Yukawa couplings spoil this cancellation. Most

significantly, the large top Yukawa coupling produces
flavor nonuniversality in the quark thermal masses, leaving,
for example, less available phase space for (inverse) decays
involving tR than for those involving uR. Thermal mass
effects are more important at high temperatures, and so
flavor dependence of the kinematics tends to be more of an
issue in the decays than in the inverse decays (thermal-mass
effects are unimportant for inverse decays that occur at
T ≪ MΦ, for example). Within the pairΦ → tRχ̄; uRχ̄ → Φ
and Φ → uRχ̄; tRχ̄ → Φ, the ðtR; uRÞ process is therefore
kinematically suppressed relative to ðuR; tRÞ, and the two
rates are no longer related by F ↔ F�. This source of
asymmetry is consistent with CPT which, due to the
expansion of the Universe, only relates equal-time rates

9We take the “rate” for Φ → Qαχ̄; Qβχ̄ → Φ to mean the
contribution to the Qβχ̄ → Φ rate at some fixed inverse-decay
time, due to χ̄ particles that were produced in association withQα.
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for processes that can be approximated as instantaneous.
Since the resulting asymmetry vanishes in the flavor-
universal limit yt → 0, we find the resulting asymmetry
is OðF4y2t Þ.
Note that an asymmetry at this order requires more than

just flavor-non-universal quark or lepton masses. It requires
flavor-non-universal temperature dependence of the Φ-
decay reaction densities, which arises in our scenario due to
the large tree-level Φ mass.
Indeed, the asymmetry vanishes if we can express the

Φ → Qαχ̄ reaction densities as γαðTÞ ¼ γ̃αfðTÞ, where γ̃α
are flavor-dependent constants and fðTÞ is the same for
every flavor. In that case the rates for Φ → Qαχ̄I; Qβχ̄I →
Φ and Φ → Qβχ̄I; Qαχ̄I → Φ share the common factor
fðT1ÞfðT2Þ, where T2 and T1 are the decay and inverse-
decay temperatures, respectively. As for the case with
flavor-universal quark masses, the two rates differ only
by F ↔ F�, and the asymmetry vanishes at this order.
This is of particular relevance to ARS leptogenesis,

where Φ is the SM Higgs. In this case, no fields have
significant tree-level masses in the unbroken phase, all
reaction densities must scale like γαðTÞ ¼ γ̃αT4 from
dimensional analysis, and consequently the OðF4Þ asym-
metry vanishes even in the presence of a τ thermal mass.
This is not quite true at T ∼ Tew, since at this point the
Higgs tree-level mass is relevant, and so a small effect may
be observed there. The OðF4y2t Þ asymmetry we find in our
model therefore crucially depends on the tree-levelΦmass,
and the asymmetry generation at this order is highly
suppressed for T ≫ MΦ.
In the rest of this section, we consider two separate,

equally motivated cases: in the first, the top quark couples

appreciably to χ and Φ, and an asymmetry is generated
according to the flavor-non-universal mechanism described
above. In the second, the top quark does not couple
appreciably to χ and Φ, in which case the smallness of
the light-quark Yukawa couplings leads to the dominant
asymmetry production occurring instead at OðF6Þ.

A. Top-mass-induced asymmetry

Here we consider in detail the single-scalar scenario in
which the asymmetry arises atOðF4y2t Þ, adopting couplings
to uR-type quarks for concreteness. We treat thermal masses
as described for the two-scalar case in Appendix A 1, with
further details given below. That is, we use Eqs. (A2) and
(A4), except that for the top quark we include a Yukawa
contribution [75]:

M̄2
uR;3 ¼

�
1

3
g23 þ

1

9
g21 þ

1

4
y2t

�
T2: ð58Þ

This expression is based on the finite-temperature quark
dispersion relation in the high-momentum regime. Here and
below, bars over masses indicate that thermal contributions
are included.
Our results for this scenario, with the ρχþχ̄ ¼ ρcdm con-

straint in place, are summarized in Fig. 7. As described
below, the angle θ parametrizes the relative overall strength
ofΦ’s couplings to χ1 (taken to bemassless) versus χ2 (taken
to have M2 > 10 keV). In Fig. 7(a) we take θ ¼ π=4,
corresponding to equal-strength couplings to χ1 and χ2.
We see that there exists parameter space in which a realistic
baryon asymmetry and DM abundance can simultaneously
be realized, with MΦ ≲ 2.5 TeV and M2 ≲ 60 keV.

(a)

(b)

0.0001

0.0010

0.0100

0.1000

1.0000

FIG. 7. Results for the single-scalar scenario with top-mass-induced asymmetry. For both plots, we take M1 ¼ 0 and impose
ρχþχ̄ ¼ ρcdm. In (a), we take θ ¼ π=4 and show the maximum possible baryon asymmetry for various values of MΦ and M2. In (b),
ðMΦ; cτÞ points for which the maximum possible baryon asymmetry is equal to ðYBÞobs lie on the contours shown. We include θ among
the adjustable parameters for the black contours, whereas we fix θ at the indicated values for the others. As described in the text, the
shading shows relative frequencies for points that give YB ≥ ðYBÞobs in a random scan over couplings and masses. For the solid (dashed)
contours of both plots we take Aself ¼ 0 (1=3) in calculating the scalar thermal mass; see Eq. (A1).
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Figure 7(b) shows the viable ðMΦ; cτÞ parameter space.
For the black contours we maximize YB with respect to all
other parameters including θ, while for the other contours
we consider fixed values of θ.
As we did for the two-scalar scenario, we also perform a

random scan for a rough, qualitative determination of the
preferred parameter space, also shown in Fig. 7(b). We start
with randomly generatedMΦ1

> 1 TeV andM2 > 10 keV
(with flat priors in the logarithms of these masses). Taking
three active flavors, we generate a random coupling texture
by assigning each Fi

αI a random number in the range [0, 1]
multiplied by a random complex phase. This texture for F
determines sin θ (along with all other relevant mixing
angles and phases), allowing the overall scale of F, and
therefore ΓΦ, to be determined by the ρχþχ̄ ¼ ρcdm require-
ment. We keep points with YB ≥ ðYBÞobs.
Taken together, the results of Fig. 7 show that the viable

parameter space is significantly more limited than for the
two-scalar case, making the prospects for conclusively
testing this scenario at colliders particularly favorable.
While the contours of Fig. 7(a) show that it is in principle
possible for the Φ mass to be as large as ∼4 TeV, the scan
suggest that generic patterns of couplings prefer smaller
masses, MΦ ≲ 2 TeV. For this scenario, Φ must couple
both to the top quark and at least one flavor of light quark.
Production of ΦΦ� at colliders would lead to various final
states involving isolated jets from Φ → qχ̄ and/or top
quarks from Φ → tχ̄.
A caveat regarding Fig. 7 is that, unlike for the two-

scalar scenario, the baryon asymmetry arises here as an
intrinsically thermal-mass-related effect. We have adopted
a rather crude quasiparticle approximation to obtain our
results; for example, our use of the high-momentum limit
of the quark dispersion relation might be called into
question given the relatively large coefficients appearing
in Eq. (58). However, even when we adopt the low-
momentum dispersion relation (thereby reducing quark
thermal masses-squared by a factor of two), the model can
still satisfy the DM and baryon asymmetry constraints. A
more refined finite-temperature field theory calculation
might give a more robust determination of the viable
parameter space.
We now provide additional details on our calculation

of the OðF4y2t Þ asymmetry. Following our treatment of the
two-scalar case in Appendix A 1, we define the flavor-
dependent functions

ραðzÞ ¼ 1 −
M̄2

Qα
ðzÞ

M̄2
ΦðzÞ

ð59Þ

along with

τðzÞ≡ M̄ΦðzÞ
MΦðzÞ

: ð60Þ

By retracing the steps of the perturbative calculation of
Sec. II B, but with a single scalar, and with temperature-
dependent masses included, we find that the baryon asym-
metry can be expressed as

YB ¼ 45g2Φ
4π4g�

KB

KΦ

M4
Φ

T2
ewH2

ew

X
γ;δ

4Im½Fγ1Fγ2
�Fδ2Fδ1

��
ð16πÞ2

×
Z

∞

0

dy
e−y

y2

Z
1

0

dzSΦðzÞz2τ2ðzÞργðzÞe−
1−ργ ðzÞ
ργ ðzÞ y

× e−α
z2
y τ

2ðzÞργðzÞ
Z

z

0

dz0z02τ2ðz0Þρδðz0Þe−
1−ρδðz0Þ
ρδðz0Þ

y

× e−α
z02
y τ

2ðz0Þρδðz0Þ sin
�
βosc

�
z3 − z03

y

��
; ð61Þ

where the survival function SΦðzÞ can be obtained from
Eq. (A10), with the substitutions MΦi

→ MΦ, τi → τ, and

ΓΦi
ρ2i →

X
γ

ðFF†ÞγγMΦρ
2
γ

16π
: ð62Þ

Applying the same substitutions in Eq. (A11) gives the DM
abundance.
As a consistency check on our calculations, we can

compare Eq. (61) with the contribution to YB coming from

Φð�Þ
2 decay followed by Φð�Þ

1 production, in the two-scalar
case with flavor-universal thermal masses. The two-scalar
result is given by Eqs. (31) and (A9), with only the I12 term
included. We reproduce those expressions by starting with
the single-scalar YB of Eq. (61) and making the appropriate
substitutions:M4

Φ→M2
Φ1
M2

Φ2
,SΦðzÞ→SΦ1

ðzÞ, τðzÞ→τ1ðzÞ,
τðz0Þ → τ2ðz0Þ, ργðzÞ → ρ1ðzÞ, and ρδðz0Þ → ρ2ðz0Þ.
If we neglect the z-dependence in the survival function

by taking SΦðzÞ → SΦð0Þ, Eq. (61) can be simplified
somewhat by exploiting the z ↔ z0 symmetry of the
integrand. We find

YB ≃
45g2Φ
4π4g�

KB

KΦ

M4
Φ

T2
ewH2

ew
SΦð0Þ

X
γ<δ

4Im½Fγ1Fγ2
�Fδ2Fδ1

��
ð16πÞ2

×
Z

∞

0

dy
e−y

y2
Im½HγðyÞH�

δðyÞ�; ð63Þ

where

HγðyÞ ¼
Z

1

0

dzz2τ2ðzÞργðzÞe−
1−ργ ðzÞ
ργ ðzÞ y

× e−α
z2
y τ

2ðzÞργðzÞeiβosc
z3
y : ð64Þ

Because we take into account only third-generation
Yukawa couplings, the symmetry between the first two
quark generations allows us to rewrite the baryon asym-
metry as

BARYOGENESIS AND DARK MATTER FROM FREEZE-IN PHYS. REV. D 101, 115023 (2020)

115023-17



YB ≃
45g2Φ
16π4g�

KB

KΦ
J̃
�
MΦ

Tew

�
2
�
ΓΦ

Hew

�
2

SΦð0Þ

×
Z

∞

0

dy
e−y

y2
Im½H12ðyÞH�

3ðyÞ�; ð65Þ

where we neglect Yukawa coupling contributions to ther-
mal masses in H12, and where

J̃ ¼ sin2 2θ sin 2ρ1 sin 2ρ2 cos2 γ sinðϕ3 − ϕ12Þ; ð66Þ

with

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF†FÞ11
TrðF†FÞ

s
; ð67Þ

cos ρI ¼
jF3Ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF†FÞII

p ; ð68Þ

cos γ ¼ jPα¼1;2F
�
α1Fα2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

α¼1;2jFα1j2
P

β¼1;2jFβ2j2
q ; ð69Þ

ϕ12 ¼ arg

�X
α¼1;2

F�
α1Fα2

�
; ð70Þ

ϕ3 ¼ argðF�
31F32Þ: ð71Þ

The angles θ, ρI , and γ all lie in the first quadrant.
Analogously to the two-scalar case, θ parametrizes the
relative overall strength of the χ1 couplings compared to
those of χ2. Each ρI angle reflects the coupling strength of
χI to the third-generation quark, relative to overall χI
coupling strength. The angle γ parametrizes the degree
of alignment between the couplings of χ1 and χ2 within the
first two generations. Finally, ϕ12 and ϕ3 are relative phases
between the couplings of χ1 and χ2 to the first two
generations and to the third generation, respectively.
Figure 7 is based on the YB expression of Eq. (65) and

the DM abundance of Eq. (A11), modified for the single-
scalar scenario as described above. For θ ≪ 1 and
M1 ≪ M2, both ρχþχ̄ and YB are approximately propor-
tional to θ2. This differs from the two-scalar model, where
YB ∼ θ1 for small θ1. In Fig. 7(b), the viable ðMΦ; cτÞ
parameter space is consequently not enhanced much by
suppressing the χ1 couplings relative to those of χ2, in
contrast with the two-scalar scenario.

B. Asymmetry with flavor-universal masses

We now turn to the scenario where the top quark has a
vanishing coupling to χI, F3I ¼ 0. In this case, the
asymmetry can arise only at OðF6Þ, which is the same
order as ARS leptogenesis. There are crucial differences
between the model in Eq. (57) and the conventional ARS

model. In the absence of neutrino masses, B=3 − Lα is
conserved for all three lepton flavors in the SM, while
different quark flavors come into chemical equilibrium at
temperatures T ≫ Tew. The dominant source for the
asymmetry in ARS leptogenesis relies on the accumulation
of asymmetries in individual lepton flavors, even though
the total asymmetry sums to zero; these flavor asymmetries
are then converted to a total lepton asymmetry by washout
processes. For quarks, however, all flavors have equal
chemical potentials, and the flavor asymmetries are there-
fore driven to zero by SM scattering processes. The
standard ARS results therefore do not hold in the case
where the χ fields couple predominantly to quarks.
As recently pointed out in Ref. [65], however, there

exists an additional source term for the baryon asymmetry
at OðF6Þ, and it is nonzero even for vanishing initial quark
flavor chemical potentials. When SM-Yukawa effects in the
reaction densities are negligible, this is the dominant source
for the baryon asymmetry in the case of QCD-charged Φ.
Here we perform a systematic study of its effects.
The source in question requires three or more χ fields.

We find that the asymmetry it produces is sufficient to
account for the observed baryon asymmetry over a rela-
tively restricted part of parameter space. In particular, we
find that MΦ ≲ 2.5 TeV to obtain the observed baryon
asymmetry. The model therefore faces strong constraints
from collider probes of Φ, and the bulk of the parameter
space can be tested with current experiments.
To study the OðF6Þ asymmetry, we turn to kinetic

equations that give the evolution of density matrices for
the various particle abundances; see Refs. [65,76] and
references therein. We continue to focus on rates for
processes that conserve Uð1Þχ−Φ, since violations of this
symmetry include Majorana mass insertions that are
subdominant at high temperature given the small masses
for χ in our model [18]. We are thus led to the single-scalar
versions of Eqs. (A42), (A43), and (A46), the kinetic
equations presented in Appendix A 3 for the two-scalar
case. As we explain there, these are momentum-integrated
equations that assume a thermal ansatz for the χ momentum
distribution. This treatment of the momentum dependence
simplifies the analytic calculation of theOðF6Þ asymmetry,
and the two-scalar results of Appendix A 2 suggest it
should give correct YB values to within a factor of two. We
refer the reader to Appendix A 3 for notational background
and other details regarding the kinetic equations.
We assume there are no preexisting asymmetries and

solve the equations iteratively assuming small coupling F.
Given our assumption of flavor-universal quark chemical
potentials, there is no asymmetry at OðF4Þ, and conse-
quently the asymmetry at OðF6Þ does not depend on
washout terms. Eq. (A42) then becomes

dYχ
IJ

d ln z
¼ −

1

2
fγ̃0; Yχ − Yχ

eqg; ð72Þ
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where, as described in Appendix A 3 and specifically
Eq. (A31), γ̃0 is a dimensionless reaction-density matrix
for χ production, defined in the interaction picture. Yχ

IJ is
proportional to the density matrix for χ, containing infor-
mation on both the abundance and phases for the coherent χ
states. It is convenient to define the dimensionless function
γ̄ðzÞ, obtained from the γ̃0 reaction density of Eq. (A31) by
stripping off the ðF†FÞIJ and oscillation factors:

½γ̃0ðzÞ�IJ ¼ ðF†FÞIJeiΔM2
IJz

3=3μ2osc γ̄ðzÞ; ð73Þ

where

μ2osc ¼
2T3

ew

M0



T
Eχ

�
−1

¼ 36ζð3ÞT3
ew

π2M0

≃ ð3.75 keVÞ2: ð74Þ

The total χ − χ̄ asymmetry, δYχ , is found by taking the
trace of the difference in χ and χ̄ density matrices:
δYχ ¼ Tr½Yχ − Y χ̄ �. The Uð1Þχ−Φ symmetry guarantees
that δYχ is the same as δYΦ ≡ YΦ − YΦ�

. Following the
discussion for the two-scalar case leading to Eqs. (25) and
(26), the final baryon asymmetry can therefore be calcu-
lated as

YB ¼ KB

KΦ
δYχðz ¼ 1Þ: ð75Þ

Starting with the initial condition Yχ ¼ Y χ̄ ¼ 0, we can
obtain at OðF2Þ the χ abundances

Yχ
IJðzÞ ¼ ðF†FÞIJYχ

eq

Z
z

0

dz1
z1

γ̄ðz1ÞeiΔM2
IJz

3
1
=3μ2osc : ð76Þ

Because Y χ̄ is obtained by switching F ↔ F�, it is clear
that no asymmetry arises at OðF2Þ, and straightforward to
show that none arises at OðF4Þ either.
We determine the OðF6Þ contribution to the baryon

asymmetry by computing the χ asymmetry iteratively using
Eq. (72) three times. In this way we calculate the asym-
metry to be

δYχðzÞ ¼ Yχ
eq

4

Z
z

0

dz3
z3

Z
z3

0

dz2
z2

Z
z2

0

dz1
z1

× Tr½fγ̃ðz3Þ; fγ̃ðz2Þ; γ̃ðz1Þgg − ðF → F�Þ�: ð77Þ

Because of the cyclic property of trace, the integrand is
fully symmetric under any permutation of the variables of
integration. We can thus use the following identity for
symmetric integrands, S:Z

z

0

dz3

Z
z3

0

dz2

Z
z2

0

dz1Sðz1; z2; z3Þ

¼ 1

3!

Z
z

0

Z
z

0

Z
z

0

dz3dz2dz1Sðz1; z2; z3Þ; ð78Þ

which permits us to factorize our integral into a product of
three integrals. With appropriate use of the symmetry of the
integrand and relabelling of variables of integration, we get

δYχðzÞ ¼ iYχ
eq

3

Z
z

0

Z
z

0

Z
z

0

dz3
z3

dz2
z2

dz1
z1

γ̄ðz1Þγ̄ðz2Þγ̄ðz3Þ

×
X
I;J;K

eiðΔM2
IJz

3
1
þΔM2

JKz
3
2
þΔM2

KIz
3
3
Þ=3μ2osc

× Im½ðF†FÞIJðF†FÞJKðF†FÞKI�: ð79Þ

The summed quantity is nonzero for I ≠ J ≠ K; thus, we
need three χ particles to get a nonzero asymmetry (in
agreement with the finding of Ref. [65]). We assume for
simplicity that there are precisely three χ fields. We must
then sum separately over even and odd cyclic permutations
of f1; 2; 3g. The permutations within each equivalence
class are identical due to the symmetry of the integrand
under permutations of fz1; z2; z3g, while interchanging
even and odd permutations is equivalent to complex
conjugating both the oscillation factor and F. We thus
obtain our final expression for the χ asymmetry:

δYχðzÞ ¼ −2Yχ
eqIm½ðF†FÞ12ðF†FÞ23ðF†FÞ31�

× Im½f̃12ðzÞf̃23ðzÞf̃31ðzÞ�; ð80Þ

where

f̃IJðzÞ ¼
Z

z

0

dz0

z0
γ̄ðz0ÞeiΔM2

IJz
03=3μ2osc : ð81Þ

Because MΦ ≫ Tew in our QCD-triplet Φ model, the
production of the baryon asymmetry is dominated by
interactions that occur when the Φ mass is dominated
by its tree-level value, rather than by the thermal correc-
tions typical in the conventional ARS scenario. Thus, for
our subsequent numerical work we neglect all thermal
masses, which leads to the following expression for the
dimensionless reaction density γ̄ðzÞ:

γ̄ðzÞ ¼ gΦM2
ΦT

2
ew

32π3Yχ
eqsewHew

z3
Z

∞

0

du
eu þ 1

×
Z

∞

M2
Φz

2=ð4uT2
ewÞ

dw

�
1

ew þ 1
þ 1

euþw − 1

�
: ð82Þ

In our final expression for the baryon asymmetry, we
include the effects of Φ decays prior to the electroweak
phase transition on the asymmetry through the inclusion of
a survival factor analogous to Eq. (28). Note that the
survival factor actually modifies the integrand so that it is
no longer symmetric with respect to interchange of z3 with
z1 or z2. This makes the calculation considerably more
complicated. However, because the asymmetry is predomi-
nantly produced at T ≳ 1 TeV and the greatest sensitivity
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of the survival factor is to decays at Tew ≪ 1 TeV, we can
to a good approximation assume the asymmetry is pro-
duced very early on and take SΦð0Þ as our survival factor,
calculated using Eq. (28). This reestablishes the symmetry
of the integrand, and the baryon asymmetry is consequently

YBðzÞ ≃ −
2KB

KΦ
Yχ
eqIm½ðF†FÞ12ðF†FÞ23ðF†FÞ31�

× SΦð0ÞIm½f̃12ðzÞf̃23ðzÞf̃31ðzÞ�: ð83Þ

Below, we compare this perturbative result to a fully
numerical solution to the kinetic equations and find good
agreement in the weak-washout regime; see Fig. (9).

1. Baryon asymmetry and dark matter

We now proceed to study the parameter space over which
the baryon asymmetry can be obtained. We also investigate
whether this parameter space is consistent with obtaining
the correct abundance of DM, finding that it is unlikely that
χ can have the correct DM abundance if we impose the
observed baryon asymmetry.
Aswewill show in Sec.V, themost constraining aspects of

the model with a QCD-charged scalar are the direct limits
from colliders, MΦ ≳ 1 TeV. As a result, the dominant
epoch of χ production and inverse decay is T ∼ 1 TeV, with
a corresponding optimal mass splitting ofΔM2 ∼ ð10 keVÞ2
corresponding to oscillations at T ∼MΦ. This leads to an
upper bound on the asymmetry for fixed F.
Since the baryon asymmetry arises at OðF6Þ in the case

of a single scalar, the baryon asymmetry is much smaller
than in Sec. II B for the same Yukawa couplings.
Alternatively, the Yukawa couplings must be larger to
accommodate the observed baryon asymmetry, leading to
the overproduction of χ in this scenario relative to the DM
abundance. This overproduction can satisfy cosmological
constraints on Neff if χ decays to lighter species, but this is
incompatible with χ being the DM.
To set up our numerical studies, we parametrize the

coupling factor of Eq. (83) in a manner analogous to what
we did for the two-scalar model in Eq. (33),

4Im½ðF†FÞ12ðF†FÞ23ðF†FÞ31� ¼ J ½TrðF†FÞ�3; ð84Þ

where J is a Jarlskog-like invariant. In Appendix C, we
show that J ≤ 1=27. However, the optimal choice for the
baryon asymmetry may lead to an overproduction of DM.
To demonstrate this, we introduce the angle

cos θ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF†FÞ11
TrF†F

r
; ð85Þ

which is analogous to the θi angles of the two-scalar model
and describes how strongly Φ is coupled to χ1 relative to
the two heavier species. Similarly, a related quantity,

cos θ2 ¼
1

sin θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF†FÞ22
TrF†F

r
; ð86Þ

specifies the coupling of Φ to χ2 relative to its coupling to
χ3. As shown in Appendix C,

J ∝ cos2 θ1 sin4 θ1 sin2ð2θ2Þ; ð87Þ

which is maximized for cos θ1 ¼ 1=
ffiffiffi
3

p
and θ2 ¼ π=4.

However, the DM abundance depends on

ρχþχ̄ ∝ M1 cos2 θ1 þM2 sin2 θ1 cos2 θ2

þM3 sin2 θ1 sin2 θ2: ð88Þ

IfM1 → 0, then it may be preferable to have θ1 ≪ 1, which
suppresses the baryon asymmetry but also prevents an
overabundance of DM. For our numerical studies, we fix
θ2 ¼ π=4 but scan over all possible values of θ1 to uncover
the largest possible parameter space consistent with both
the observed baryon asymmetry and DM abundance. For a
complete description of the other parameters in J and their
optimal values, see Appendix C.
Since ΓΦ ¼ TrðF†FÞMΦ=16π, it is possible to express

the asymmetry in terms of MΦ, ΓΦ (or, equivalently, cτΦ),
and the mass splittings ΔM2

IJ. To simplify the numerical
study, we parametrize the χ masses and splittings through a
single parameter, Mχ : M1 ¼ 0, M2 ¼ Mχ , and M3 ¼ 2Mχ .
This minimizes the DM abundance while keeping an equal
mass splitting between states.
We now investigate the possibility that the χ fields con-

stitute the DM. In this case, we fix the values of MΦ, Mχ ,
and J as described above; requiring the χ abundances as
calculated in Eq. (76) to match the observed DM abun-
dance dictates the value of TrðF†FÞ, which in turn can be
used to calculate the baryon asymmetry. This is the
maximum baryon asymmetry subject to the requirement
of obtaining the DM abundance, since the baryon asym-
metry can always be made smaller with smaller values of
the CP-violating phases in J .
We show in Fig. 8 our results for a scalar mass of

MΦ ¼ 1 TeV.We see that, even for the favorable parameters
we have chosen, themaximumpossible baryon asymmetry is
YB ≈ 6 × 10−11, below the observed value. Since MΦ ≳
1 TeV from current collider constraints (see Sec. V), we
conclude that simultaneously accounting for DM and the
baryon asymmetry is impossible, or at least very difficult, in
this particular scenario. The lack of viable parameter space is
directly linked to the fact that the asymmetry arises atOðF6Þ
with a single scalar while the DM abundance is still
established at OðF2Þ, a serious obstacle to simultaneously
satisfying both observed abundances.
In examining our results, we have found that the largest

baryon asymmetry consistent with the DM abundance is
associated with large mixing angles θ1 ∼ 1. This is in
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contrast with our findings in the two-scalar model, where
there was a larger parameter space associated with small
mixings. Since we now have two massive χ states, and Φ
must couple to all three of them to generate a baryon
asymmetry, it is difficult to get an appreciable asymmetry
without significantly populating the heavier states.
Additionally, according to Eq. (87) the baryon asymmetry
for small mixing angles is proportional to θ41, which is a
significant suppression. Indeed, as we show in the next
section, it is difficult to obtain the observed baryon
asymmetry even for maximal mixing and removing all
constraints from DM.

2. Baryon asymmetry without dark matter

Above, we found that imposing the requirement that χ
constitute the DM yields a baryon asymmetry that is too
small. Alternatively, obtaining the correct baryon asym-
metry leads to an overabundance of χ. This is not
necessarily a problem: since the χ hidden sector is relatively
poorly constrained, it is possible that there exist additional
states to which the heavier χ fields could decay. For
example, we could imagine a model with a new massless
singlet scalar φ such that χ2;3 → χ1φ prior to recombina-
tion. Because all of the χ fields have subthermal number
densities and they are produced at T ∼ TeV, such a scenario
is safely within cosmological limits from the effective
number of neutrinos (Neff ) provided χ1 is sufficiently light.
While it may be possible for χ or some other hidden

sectors fields to be DM in this scenario, the details depend
sensitively on the content and structure of the hidden
sectors. Because of the loss of predictive power with
respect to the DM abundance in this scenario, we instead
take a different approach: we simply assume that the χ
fields decay to (nearly) massless particles that are safe from
cosmological limits, and abandon the requirement of

obtaining the DM density. We then explore which param-
eters can still give rise to the baryon asymmetry based on
the production and oscillations of χ.
As in Sec. II B, the baryon asymmetry depends on

several physical parameters: the mass of the scalar, MΦ;
the Yukawa couplings, or alternatively the Φ lifetime
cτΦ ¼ 1=ΓΦ; the mass splittings, ΔM2

IJ, and the CP phases
as encoded in J . Because we wish to explore the most
expansive parameter space that gives rise to the observed
baryon asymmetry, we set J to its maximal single-scalar
value of 1=27 (see Appendix C). Once again, we para-
metrize the χ masses and splittings through a single
parameter, Mχ : M1 ¼ 0, M2 ¼ Mχ , and M3 ¼ 2Mχ .
Up until now, we have employed a perturbative analysis

as outlined in Sec. II, which is valid in the out-of-
equilibrium, weak-washout regime. The requirement that
χ constitute the DM situates us safely within the perturba-
tive regime. Once we relax this assumption, however, it is
possible that χ attains a near-equilibrium abundance and
baryogenesis can still occur. For example, if χ decouples at
T ≳ 100 GeV, then each Weyl fermion only contributes
0.05 to Neff [77]. As a result, we must consider the
possibility that the χ particles come close to equilibrium.
It is perhaps surprising that the strong-washout regime

would be relevant at all for baryogenesis, since the asym-
metry appears to be exponentially damped. However, if the
CP-violating source and washout terms are both large, then
the asymmetry can reach a quasi-steady-state solution where
dYB=dz ¼ 0 due to a cancellation between source and
washout terms: if the kinetic equations have the form
dYB=dz ¼ SðzÞ −WðzÞYB, we see that a quasi-steady-state
solution is obtained with YB ¼ SðzÞ=WðzÞ. In this case, the
asymmetry is not exponentially suppressed.
To generate a sizable asymmetry in the strong washout

regime, we need a large source of CP-violation down to
T ∼ Tew; since the production rate of Φ is suppressed by
e−MΦ=Tew , this suggests that MΦ cannot be too much larger
than the electroweak scale for the strong washout regime to
be relevant. Furthermore, we must have Yχ ≠ Yeq

χ . For the
optimal benchmark outlined in Appendix C with J ¼
1=27, F†F has a zero eigenvalue, meaning that there is a
linear combination of χ states that does not interact with Φ.
This is valid until oscillations become important, in which
case the final χ state is brought into equilibrium. For
sufficiently small Mχ , this can lead to an appreciable CP-
violating rate even at T ∼ Tew.
There is one final effect we must consider: sphaleron

decoupling. In the strong-washout regime, the baryon
asymmetry is being continually generated and destroyed
at T ∼ Tew and so the final baryon asymmetry depends
sensitively on the effects of sphaleron decoupling. In other
words, it is perhaps too simplistic to assume that sphaleron
decoupling is instantaneous at Tew ≈ 130 GeV. To go
beyond this instantaneous approximation, we follow
Ref. [43]; since there are no new chiral states that couple

FIG. 8. For θ2 ¼ π=4, MΦ ¼ 1 TeV, and equally-spaced χ
masses M1 ¼ 0, M2 ¼ Mχ , and M3 ¼ 2Mχ , the maximum
baryon asymmetry that can be obtained in the single-scalar
scenario of Sec. IV B when we impose the requirement that
the total χ abundance match the observed DM abundance. The
observed baryon asymmetry is indicated with a dashed red line.
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to sphalerons in our model, the rates relating baryon and
lepton number are the same as in the SM. The effect is a
gradual decoupling of sphalerons as we approach Tew.
Putting all of these effects together, we solve the kinetic

equations with a thermal ansatz for the χ energies to
compute the baryon asymmetry, including washout and
back-reaction terms. To illustrate the parameter space for
which strong washout is relevant, we compare the full
solution of the kinetic equations with that of our perturba-
tive analysis in Fig. 9. We show results for both the optimal
benchmark couplings from Appendix C, as well as for a
modified benchmark (also outlined in Appendix C) which
leads to an earlier equilibration time of all χ interaction
eigenstates. Any area to the left of the indicated contours
can give rise to the observed baryon asymmetry. The
asymmetry in the strong-washout limit is still relevant,
but is much reduced relative to the optimal benchmark.
We show in Fig. 10 the contours giving rise to the

observed baryon asymmetry for different χ masses using
the solution to the full kinetic equations. We show results
for both the optimal CP-violating parameters and the
modified benchmark (see Appendix C). We see that it is
possible to obtain the observed baryon asymmetry for
Mϕ ≲ 2.5 TeV depending on the Φ lifetime. It is evident
that the strong-washout limit is relevant for a wide range of
χ masses. We also observe interesting features in the shapes
of the contours, which are due to the presence of a
multitude of important time scales in the asymmetry
generation process, including three oscillation times cor-
responding to the ΔM2

IJ, as well as the time scale of the
decays and inverse decays of Φ. While we have attempted
to characterize the precise shapes of the oscillations in the

contours in Fig. 10, we have been unable to find a simple
explanation due to the irreducible complexity of the four
different time scales. However, we have checked that our
solutions are robust against variations of the methods of
performing the numerical integration, as well as under
small variations of the initial conditions and parameters,
suggesting that our solutions are physically correct.
For cτΦ < 0.01 cm, the only phenomenologically dis-

tinguishable feature of the model is the value of MΦ: the
Φ − χ −Q couplings are sufficiently small as to be difficult
to probe directly, and Φ now decays promptly in a collider
experiment, which removes the main experimental conse-
quence of the nonzero lifetime. Therefore, we truncate
Fig. 10 at cτΦ ¼ 0.01 cm, and for shorter lifetimes present
instead the maximum value of MΦ that can give rise to the
baryon asymmetry with cτΦ < 0.01 cm. The maximum
MΦ values are found via a scan over the cτΦ −MΦ
parameter space, and to remove jaggedness associated with
the granularity of the scan we perform a running average.
We show the maximum value of MΦ consistent with the
baryon asymmetry for different values ofMχ in Fig. 11. We
see that the maximum value of MΦ is obtained for
Mχ ∼ 10–20 keV, such that oscillations regularly occur
at the sphaleron decoupling temperature but are not too fast.
We also see that the modified benchmark permits a smaller
range for MΦ at cτΦ < 0.01 cm, which is consistent with
Fig. 9.
To summarize the results of the analysis with a single

QCD-triplet scalar, neglecting flavor-dependence in the
quark thermal masses, we find that obtaining the observed
baryon asymmetry is possible but is apparently incompat-
ible with χ being DM candidates. The parameter space for a

FIG. 9. For the single-scalar model with no DM constraint, comparison of parameters giving rise to the observed baryon asymmetry
based on (blue, dashed) perturbative analysis, and (purple, solid) solution of kinetic equations. The χ masses areM1 ¼ 0,M2 ¼ 5 keV,
M3 ¼ 10 keV. (Left) Couplings correspond to optimal CP-violating parameters from Appendix C. (Right) Couplings correspond to the
modified benchmark from Appendix C.
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baryon asymmetry is quite limited, with the scalar having a
mass MΦ ≲ 2.5 TeV, with lifetimes ranging from prompt
to the centimeter scale. This gives the model excellent
prospects for discovery or exclusion in the high-luminosity
phase of the LHC.

3. Comparison of asymmetry with ARS leptogenesis

We conclude this section by comparing two potential
OðF6Þ contributions to the baryon asymmetry: (1) the
standard ARS contribution involving flavor-dependent

washout, and (2) the contribution studied above and
identified in Ref. [65], which survives when the active
fermions have flavor-universal chemical potentials, i.e., the
relevant one in the QCD-triplet scalar case.
To make this comparison we need to go beyond the

kinetic equations developed in Appendix A 3, which
assume flavor-universal chemical potentials for the active
fermions. We instead consider

dYχ
IJ

d ln z
¼ −

1

2

�X
α

γ̃α; Yχ − Yχ
eq

�
; ð89Þ

dδYα

d ln z
¼ Tr½γ̃αYχ − γ̃�αY χ̄ � − δYα

�
Yχ
eq

Yα
eq

�
Trγ̃wα ; ð90Þ

where δYα is the asymmetry in the SM fermion flavor α;
because of rapid scattering, we do not have to keep track of
oscillations or preserve off-diagonal components of the δYα

density matrix. Note that we now include a flavor-specific
washout reaction density γ̃wα along with γ̃0α, the flavor-
specific version of the reaction density considered earlier.
In place of Eq. (73), we can write these χ-space matrices as

γ̃0;wα ðzÞIJ ≡ F�
αIFαJeiΔM

2
IJz

3=3μ2osc γ̄0;wðzÞ; ð91Þ

where γ̄0ðzÞ and γ̄wðzÞ are dimensionless and flavor-
universal functions of temperature.
The standard analytic results for ARS assume that the

scattering processes for χ production are dominated by
2 ↔ 2 processes and decays of the SM Higgs where the
dominant contribution to the Higgs mass comes from
thermal processes. In this case, all reaction densities are
by dimensional analysis proportional to T4, and because the

FIG. 10. Comparison of parameters giving rise to the observed
baryon asymmetry for cτ > 0.01 cm, based on a full solution of
kinetic equations for (top) the optimal CP-violating parameters;
(bottom) the modified benchmark, both from Appendix C. The χ
masses are M1 ¼ 0, M2 ¼ Mχ , M3 ¼ 2Mχ with: (purple) 5 keV,
(black) 30 keV, (red) 50 keV, (blue) 80 keV.

FIG. 11. Maximum value of MΦ that allows successful gen-
eration of the baryon asymmetry in the strong washout limit
(cτΦ < 0.01 cm) as a function of Mχ . The χ masses are M1 ¼ 0,
M2 ¼ Mχ ,M3 ¼ 2Mχ . The CP-violating parameters are (red) the
optimal benchmark, and (blue) the modified benchmark de-
scribed in Appendix C. It is evident that Φ must be lighter than
approximately 2.5 TeV.
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barred reaction densities are obtained from these by
stripping off the coupling factors and dividing by
Yχ
eqsðzÞHðzÞ, we have

γ̄0;wðzÞ ¼ α0;wχ T4
ew

Yχ
eqsewHew

z; ð92Þ

where α0χ and αwχ are dimensionless constants. To make a
meaningful comparison we use this form for the reaction
densities to calculate both OðF6Þ contributions.

Conventional ARS contribution.—At OðF4Þ, the χ abun-
dance leads to an asymmetry in SM fermions due to a
difference in χ and χ̄ rates for flavor α:

δYαðzÞ ¼
Z

z

0

dz2
z2

Tr½γ̃0αðz2ÞYχðz2Þ − γ̃0αðz2ÞY χ̄ðz2Þ�

¼ 4
X
I<J

Im½FαJF�
αIðF†FÞJI�

Z
z

0

dz2
z2

Z
z2

0

dz1
z1

× γ̄0ðz1Þγ̄0ðz2Þ sin
�
ΔM2

JIðz32 − z31Þ
3μ2osc

�
Yeq
χ : ð93Þ

However, as argued in Sec. II A, the total asymmetry is zero
because

δYχ ¼ −
X
α

δYα ∝
X
α

½FαIF�
αJðF†FÞIJ� ¼ 0: ð94Þ

A total asymmetry arises at OðF6Þ because

d
d ln z

X
α

δYα ¼ −
�
Yχ
eq

Yα
eq

�X
α

δYαTrγ̃wα : ð95Þ

Integrating to zew ¼ 1, we obtain

δYχ ¼
X
α

Z
1

0

�
Yχ
eq

Yα
eq

�
dz
z
δYαðzÞTrγ̃wα ðzÞ ð96Þ

¼
X
α

ðFF†Þαα
�
Yχ
eq

Yα
eq

�Z
1

0

dz
z
δYαðzÞγ̄wðzÞ: ð97Þ

Thanks to Eq. (92), the analytic results simplify signifi-
cantly because the factors of z cancel in the integrals and we
have, restricting ourselves to only two χ particles,

Z
z

0

dz2

Z
z2

0

dz1 sin

�
ΔM2

21ðz32−z31Þ
3μ2osc

�
≈1.4

�
μ2osc
ΔM2

21

�
2=3

ð98Þ

for ΔM2
21=3μ

2
oscz3 ≫ 1 (i.e., many oscillations prior to time

z) [76]. We then have

δYχ ¼ 5.6αwχ ðα0χÞ2T12
ew

ðYχ
eqsewHewÞ3

�
μ2osc
ΔM2

21

�
2=3

Yχ
eq

×
X
α

Yχ
eq

Yα
eq
ðFF†ÞααIm½Fα1F�

α2ðF†FÞ12�; ð99Þ

which agrees with Eq. (A8) of Ref. [76] for the case where
χ is coupled to SM leptons.

Contribution without flavor-dependent washout.—We now
compare the ARS result with what we get when we evaluate
Eqs. (80) and (81), plugging in Eq. (92) as the barred
reaction density. Defining βIJ ≡ ΔM2

IJ=3μ
2
osc, and taking

the limit of many oscillations (z3βIJ ≫ 1), we find

f̃IJðzÞ →
α0χT4

ew

Yχ
eqsewHew

eiπ=6
Γð4=3Þ
β1=3IJ

; ð100Þ

where we have selected mass orderings such that βIJ > 0 to
simplify the phases. This gives us

δYχ ≈ 2.1
ðα0χÞ3T12

ewY
χ
eqμ2oscIm½ðF†FÞ12ðF†FÞ23ðF†FÞ31�

ðYχ
eqsewHewÞ3ðΔM2

21ΔM2
32ΔM2

31Þ1=3
:

Beyond Oð1Þ factors, the relative factor of α0χ=αwχ , and the
fact that this contribution relies on a distinct combination of
Yukawa couplings from the ARS asymmetry in Eq. (99), we
find that the new contribution suffers from a ðμ2osc=ΔM2Þ1=3
suppression10 relative to the ARS contribution; otherwise,
the asymmetries from the two terms are comparable.

V. SIGNALS OF FREEZE-IN BARYOGENESIS

A. Collider signatures

The models proposed in this paper have very specific
phenomenological signatures that follow naturally from the
observed baryon asymmetry. They arise from the existence
of one or more QCD-triplet scalars, Φ, with lifetimes often
governed by

ΓΦ ≲Hew ∼ cm−1: ð101Þ

Connections between the baryon asymmetry, particle life-
time and the Hubble expansion rate at the electroweak scale
arise in other models as well [78–81], but in our case the
connection between the decay rate of the scalar and Hew is
particularly direct.
Particles which travel macroscopic distances before

decaying give rise to spectacular signatures at colliders.
Because the only truly long-lived particles (LLPs) in the
SM have masses ≲5 GeV, the decay of a TeV-scale LLP
has no irreducible backgrounds. However, such decays may

10This is a suppression because μ2osc < ΔM2; otherwise, the
assumption of many oscillations prior to the electroweak phase
transition is not satisfied and these results do not hold.
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not be reconstructed using standard algorithms, and the
backgrounds are challenging to characterize. Searching for
LLPs has therefore been identified as a primary opportunity
for the discovery of new particles, and a large community
of theorists and LHC experimentalists are working on new
ways of looking for LLPs [82].11

Several earlier studies have noted that freeze-in DM
models can give rise to LLP signatures [60,85–95]. In
particular, Ref. [90] has done a careful study of models that
are accessible at the LHC. However, general freeze-in DM
models do not necessarily predict states that are accessible
at colliders: the BSM particles may be very heavy while
still giving rise to the observed DM abundance. By
contrast, when we require both DM and baryogenesis in
a freeze-in model, the parameter space shrinks considerably
in both mass and lifetime: very long lifetimes yield an
insufficient abundance of baryons, while very short life-
times lead to excessive washout and overproduction of DM.
Furthermore, Φ masses well above the TeV scale suppress
the baryon asymmetry, and so our model largely predicts
new scalars that are accessible at current or future colliders
and with lifetimes in the 1–100 cm range.
The primary prediction of our model is the existence of

one or more scalars Φ, which carry QCD charge and have
proper lifetimes ranging from promptly decaying to
10 meters. These particles subsequently decay to a SM
quark and an invisible χ state. This leads to several distinct
signatures depending on the decay location, including:
(1) One or more heavy quasistable charged particles

resulting fromΦ being bound inside a hadronic final
state prior to its decay. These states leave tracks with
unusual ionization or timing properties that can be
distinguished from SM particle tracks;

(2) One or two displaced hadronic vertices or jets,
accompanied by missing transverse momentum;

(3) A pair of prompt jets plus missing transverse
momentum, in the case where the Φ decay occurs
sufficiently rapidly that its decay point cannot be
reliably distinguished from the interaction point.

Top quarks may be produced inΦ decays, in which case the
signatures only become more striking, with a sizable
fraction of events having final-state leptons. In the sin-
gle-scalar scenario of Sec. IVA, for example, Φ decays
would yield a mixture of light quarks and tops. Below we
focus on light-quark signatures, under the assumption that
top couplings lead to even stronger constraints.

1. Heavy stable charged particles

The most relevant search for heavy stable charged
particles (HSCPs) is from ATLAS [96]. This search uses
36 fb−1 of data at 13 TeV. The analysis makes use of
the distinctive ionization signature in the inner tracker of

slow-moving, massive LLPs; as a result, this search is
sensitive to shorter-lifetime LLPs than other HSCP
searches. The analysis also provides limits on the scalar
mass as a function of cτ. In the case of a scalar with the
same charges as uR, the search excludes LLPs with
cτ ≳ 10 cm, with the most stringent constraint of
1375 GeV for Φ that traverses the entire detector.

2. Displaced and delayed jets

There are many different searches for high-mass particles
decaying to displaced and delayed jets targeting decays in
different parts of the detector and in different kinematic
regimes [97–101]. Most relevant for us are searches most
sensitive to LLP lifetimes cτ ≲ 1 m, since these are the
parameters that are largely uncovered by the HSCP
searches.
There are two powerful searches that are readily reinter-

preted for ourmodel. The first is a search byCMS for delayed
jets [101]with 137 fb−1 of data at 13TeV. This search ismost
sensitive to heavy LLPs with cτ ∼ 0.1–1 m m, since the
propagation of the slow LLP over an appreciable time leads
to a significant delay for the resulting jets [102]. The CMS
search includes limits on a benchmark model with LLPs that
decay to a gluon plus an invisible particle; this is very similar
to our model where the LLP decays to a quark plus an
invisible particle. We assume there is no appreciable change
in the signal efficiency for the quark scenario, and interpret
their cross-section limits as a function of LLP mass and
lifetime in terms of our signal. The best constraints are for
MΦ ≲ 1.6 TeV for lifetimes of 20 cm, and we truncate the
sensitivity atMΦ ¼ 1 TeV since that is as low as Ref. [101]
goes in their search.
The second search is a CMS search for displaced jets

[98] based on 35.9 fb−1 of data at 13 TeV. This search relies
on a trigger requiring at least two displaced jets, meaning
jets that contain less than three prompt tracks and at least
one displaced track. Displaced tracks associated with each
jet pair in the event are used to construct secondary vertices,
which must have a track mass larger than 4 GeV. While the
parton produced in Φ decays is massless, QCD gives a
mass associated with the resulting jets, allowing for this
selection to be passed. Importantly, the vertex recon-
struction does not require tracks from both jets in a pair
to be assigned to the vertex; as a result, displaced jets
arising from separate decays (in our case, from the two
Φ → jχ decays) can still pass the selections, which gives
sensitivity to our model. Ref. [98] gives cross-section limits
for a model where the LLP decays to a gluon and a
massless, invisible particle. This is not exactly the same as
our model, which gives a quark in the LLP decay, and so we
suspect there may be a slightly lower sensitivity to the
quark model because the jet mass is smaller. Nevertheless,
we expect comparable limits for the two cases, and in the
absence of more information for reinterpretation we assume
the limits are the same for gluon and quark decays for the

11For other reviews of theoretical motivations for LLPs and
existing experimental searches, see Refs. [83,84].
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purpose of our analysis. CMS presents limits on two LLP
masses: 950 GeV and 2400 GeV. The 950 GeV is most
appropriate for our model, and so we reinterpret the cross
section limits in terms of limits on MΦ as a function of cτ.
The strongest limit is for cτ ∼ 2 cm, with constraints on
MΦ ≳ 1.6 TeV, although there exist constraints on MΦ ≳
0.8 TeV for lifetimes ranging from 0.1–1000 cm.
Other searches, including an ATLAS displaced vertex

search [97], are expected to yield comparable results.
ATLAS does not provide an interpretation in terms of a
jet plus missing momentum LLP decay, and so it is more
involved to reinterpret that search; furthermore, given that
the cross section limits in Ref. [97] are comparable to those
from the searches we have used, we expect the results to be
qualitatively similar.

3. Prompt jets and ET

Finally, in the short lifetime limit there exist stringent
constraints on Φ → jχ from searches for jets and missing
transverse momentum. The most stringent constraint comes
from searches for squarks: if Φ decays predominantly to
light-flavor quarks, then MΦ ≳ 1.13 TeV, while the con-
straints are slightly stronger if it decays to tops
(MΦ ≳ 1.175 TeV) or bottoms (MΦ ≳ 1.25 TeV) [103].
Strictly speaking, these limits only apply in the limit of
prompt decays (cτ ≲ 10 μm). If Φ has a longer lifetime, the
sensitivity is expected to degrade, but provided it decayswell
before the calorimeter the jets should still be reconstructed.
Recently, there have been more efforts to reinterpret

prompt searches in terms of LLP models in order to
determine precisely at what lifetimes prompt searches fail,
and to identify any possible gaps between prompt and long-
lived searches [82,104–108]. None of these studies are
directly applicable to the Φ → jþ ET signature in our
model; however, several reinterpret prompt searches for
gluinos decaying to 2jþ ET. Since we expect the lifetime
dependence of the jet reconstruction efficiency to be
roughly independent of the number of jets in the final
state, we use the results of Ref. [107] to derive a ratio
between the excluded prompt cross section and the
excluded cross section at a finite lifetime cτ. We then
assume this ratio is the same for our signature, and use this
to reinterpret the prompt squark limits of Ref. [103] for
finite lifetimes. While this is only an approximate pro-
cedure, we expect that it gives the correct qualitative
behavior of the limits for Φ → qχ decays.

4. Summary of collider constraints and prospects

We summarize the existing collider constraints in
Fig. 12. It is evident that nearly all the parameter space
with MΦ ≤ 1 TeV is ruled out, with the possible exception
of a small sliver around cτ ¼ 10 cm. However, it is likely
that the delayed jet search has some sensitivity below
1 TeV, which would close most of the sliver. It is evident

that a combination of prompt and long-lived searches
currently gives excellent sensitivity to the freeze-in baryo-
genesismodelwith a newQCD-charged scalar. The search of
Ref. [103] is new and, as understanding of the detectors
improves, we expect sensitivity could get even better,
allowing excellent prospects for discovery. At

ffiffiffi
s

p ¼
14 TeV, the high-luminosity phase of the LHC should have
more than 10 signal events forMΦ ≲ 2.5 TeV, and this is the
upper mass limit of possible sensitivity at the LHC for high-
efficiency, low-background searches.
While our reinterpretations of existing searches show

good sensitivity to Φ → qχ, most of the existing searches
do not directly give results in terms of our simplified model.
It may be true, for example, that the smaller mass of the
quark-initiated jet could reduce sensitivity relative to a
model with gluons. We therefore suggest that the exper-
imental collaborations explicitly include a quark þET
model in their LLP studies, since it is theoretically well
motivated and it may be that variants of the existing search
strategies could be used to improve signal efficiency for the
quark model. It would also facilitate reinterpretation and
give a more accurate understanding of how much of the
model space is covered by current and planned collider
searches.

B. Z2-violating signals

So far, we have assumed that the only coupling of Φ to
the SM is via the operator(s) in Eq. (2). This is true if there
exists a Z2 symmetry under whichΦ and χ are charged and
the SM fields are uncharged. However, one can also
imagine a scenario without such a symmetry: in this case,
baryon-number-violating terms such as

λijΦ�dci d
c
j þ H:c: ð102Þ

are allowed, depending on the Φ quantum numbers (here
we have switched to Weyl-spinor notation). Unless the λij

FIG. 12. Summary of existing collider constraints from (purple)
heavy stable charged particle searches; (blue) delayed jet
searches; (red) displaced jet searches; (brown) searches for
prompt decays to jets and ET. Details are provided in the text.
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couplings are tiny (that is, not much larger than the FIα
couplings responsible for the baryon asymmetry and DM
production), this term would lead to rapid Φ → jj decay,
leaving prompt signatures in colliders. Because the term
violates baryon number, it would also potentially lead to a
larger asymmetry that does not depend on spectator effects
in the manner of the Z2-symmetric models.
However, such operators lead to proton decay via off-

shell Φ-mediated processes, such as p → πþχ. This leads
to extremely strong constraints on λ: indeed, we have
checked that even if Φ couples exclusively to heavy-flavor
quarks at tree-level, there are couplings to light-flavor
quarks induced at loop level that violate proton decay
constraints unless jλj ≪ jFj. Therefore, our preliminary
investigation finds that Z2-violating couplings of Φ to
quarks are constrained to be so small that, if present, they
are unlikely to dramatically alter the phenomenology.
Another potentially important Z2-violating term is the

neutrino-portal coupling

L ⊃ yL̄Hχ þ H:c: ð103Þ

This coupling leads to decays χ → 3ν and, more impor-
tantly, χ → γν, giving rise to X-ray line signatures with
Eγ ¼ Mχ=2 if χ is the DM. This could, for example, explain
a possible feature in X-ray data at Eγ ≃ 3.5 keV (first noted
in Refs. [109,110]), although there is conflicting evidence
(or lack thereof) for the existence of this line in different
galaxies and clusters. The coupling y could easily be large
enough to account for any X-ray lines that are observed,
while being small enough to not otherwise disrupt how our
mechanism works. In particular, since χ is produced at
temperatures well above the electroweak scale, it is
produced colder than conventional sterile neutrinos via
the Dodelson-Widrow mechanism, although a 3.5 keV X-
ray line would still be in tension with structure formation
constraints that require Mχ ≳ 10 keV [71].

VI. CONCLUSIONS

Early-Universe oscillations of DM particles, χ, may have
played a central role in generating the baryon asymmetry.
In this paper we studied models in which these oscillations
lead to asymmetric rates for χ̄q → Φ and χq̄ → Φ�, where
Φ is a a QCD-triplet scalar. Exploration of the phenom-
enology for different BSM-particle spins and SM charges is
a work in progress. Together, these various scenarios
constitute a rich array of testable low-scale baryogenesis
models, which simultaneously explain the DM and baryon
abundances and generically predict new long-lived states at
colliders.
We considered separately the minimal case, with a single

χ interaction term, and scenarios in which there are
multiple, distinct ways of producing and annihilating χ
particles. The presence of multiple channels tends to greatly

enhance the baryon asymmetry. For concreteness, we
demonstrated this enhancement in a model with two
QCD-charged scalars, both with couplings to χ. Alter-
natively, a primordial out-of-equilibrium abundance of χ
from inflation or dynamics in the very early Universe is
sufficient to realize the enhancement.
Along with sub-MeV χ masses, viable parameter points

for DM and baryogenesis typically haveMΦ ∼ 1–fewTeV,
and cτΦ ≳ 1 cm, leading to striking signatures at colliders.
The DM constraint pushes us into the weak-washout
regime, where the asymmetry calculation is analytically
tractable and physically transparent. Independent of DM
considerations, the baryon asymmetry in the weak-washout
regime is strongly suppressed for Φ lifetimes much less
than the Hubble time at sphaleron decoupling, because it
depends on the Φ=Φ� asymmetry at that time. This
provides a concrete link between cosmological time scales
and long-lived particle searches at colliders.
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APPENDIX A: COMPARISON OF
CALCULATIONAL SCHEMES FOR

THE TWO-SCALAR MODEL

In this appendix we compare various methods of
calculating YB and ρχþχ̄ with the simplified perturbative
calculation from Sec. II B. We first consider two modified
perturbative calculations, one that includes thermal masses
(Sec. A 1), and a second that adopts a thermal ansatz for the
χ momentum distribution (Sec. A 2). We then use that
thermal ansatz to go beyond the perturbative framework
(Sec. A 3). We write down and numerically solve an
appropriate system of kinetic equations that incorporates
back-reaction and washout effects, thermal masses, and
quantum statistics. We find that the discrepancies when
compared with the “minimal” YB and ρχþχ̄ calculations of
Sec. II B are typically smaller than ∼50%, corresponding to
modest differences in the viable parameter regions for
baryogenesis and DM.
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1. Thermal mass effects

We approximate quark thermal mass contributions based
on the finite-temperature quark dispersion relation in the
high-momentum regime. Using bars where thermal effects
are included, we therefore take

M̄2
Φi

¼ M2
Φi

þ ðAg þ Ai
selfÞT2; ðA1Þ

M̄2
Q ¼ AgT2; ðA2Þ

where the gauge contributions, identical for Φi and Q, are
given by [75]

Q ¼ QL∶ Ag ¼
1

3
g23 þ

3

16
g22 þ

1

144
g21; ðA3Þ

Q ¼ uR∶ Ag ¼
1

3
g23 þ

1

9
g21; ðA4Þ

Q ¼ dR∶ Ag ¼
1

3
g23 þ

1

36
g21: ðA5Þ

In our analysis of two-scalar models, we neglect contri-
butions to M̄Q from SM Yukawa couplings, leaving a more
careful treatment of the top quark for future work. The
coefficient Ai

self allows us to consider the effects of extra
contributions to M̄Φi

coming from scalar self-interactions.
We incorporate thermal mass effects in our YB and ρχþχ̄

calculations with the help of the dimensionless functions

τiðzÞ ¼
M̄Φi

ðzÞ
MΦi

; ðA6Þ

and

ρiðzÞ ¼ 1 −
M̄2

QðzÞ
M̄2

Φi
ðzÞ : ðA7Þ

Neglecting thermal masses amounts to taking τi → 1 and,
given that we neglect Yukawa contributions to Q masses,
ρi → 1. For the Φi decay widths, these definitions imply

Γ̄Φi
ðzÞ ¼ τiðzÞρ2i ðzÞΓΦi

: ðA8Þ

Using these functions, the final baryon asymmetry can still
be represented by Eq. (31), except with a modified
expression for Iij:

Iij ¼
Z

∞

0

dy
e−y

y2

Z
1

0

dzSΦi
ðzÞz2τ2i ðzÞρiðzÞe−

1−ρiðzÞ
ρiðzÞ y

× e−αi
z2
y τ

2
i ðzÞρiðzÞ

Z
z

0

dz0z02τ2jðz0Þρjðz0Þe
−
1−ρjðz0Þ
ρjðz0Þ

y

× e−αj
z02
y τ

2
j ðz0Þρjðz0Þ sin

�
βosc

�
z3 − z03

y

��
; ðA9Þ

and with the survival function now given as

SΦi
ðzÞ ¼ exp

�
−
ΓΦi

Hew

Z
1

z
dz0z0τiðz0Þρ2i ðz0Þ

×
K1ðMΦi

Tew
τiðz0Þz0Þ

K2ðMΦi
Tew

τiðz0Þz0Þ

�
: ðA10Þ

We choose to preserve the definition αi ¼ ðMΦi
=2TewÞ2,

which involves the zero-temperature scalar masses. The

summed abundance of χ and χ̄ particles from Φð�Þ
i decays,

given by Eq. (14) in the absence of thermal masses,
becomes

Yχþχ̄
i ¼ 45gΦ

2π4g�

�
ΓΦi

Hew

��
MΦi

Tew

�
2

×
Z

∞

0

dzz3τ3i ðzÞρ2i ðzÞK1

�
MΦi

Tew
τiðzÞz

�
: ðA11Þ

For a particular choice of inputs, Fig. 13(a) shows that
including thermal masses slightly shifts the parameter
space allowed by the baryon asymmetry and DM con-
straints. The ρχþχ̄ and YB contours move together some-
what, and in fact the range of viable Φ1 masses is not
significantly affected when we include thermal masses.
To make the plots of Fig. 14, we decoupleΦ2 and choose

a value for the χ abundance left behind from Φ2 decays.
Using ðYBÞM̄→M to denote the asymmetry neglecting
thermal masses and taking SΦi

ðzÞ → SΦi
ð0Þ, and using

ðYBÞM̄ to denote the asymmetry with thermal masses and
the full z-dependence in SΦ1

ðzÞ, the blue contours of
Fig. 14(a) show the fractional difference

2 ×
ðYBÞM̄→M − ðYBÞM̄
ðYBÞM̄→M þ ðYBÞM̄

: ðA12Þ

For the inputs chosen in Fig. 14, neglecting thermal masses
overestimates YB by roughly 25%. For smaller Φ1 life-
times, ΓΦ1

=Hew ≳ 1, the SΦ1
ðzÞ → SΦ1

ð0Þ approximation
significantly overestimates washout of the asymmetry byΦ
decays, partially compensating for the effect of neglecting
thermal masses. Figure 14(b) shows that the fractional
difference is somewhat smaller for the ratio YB=ρχþχ̄ than
for YB alone. In general, we find that the minimal
perturbative calculation of Sec. II B typically agrees with
a perturbative calculation incorporating thermal masses at
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the 50% level or better, for those parameter regions that are
viable for baryogenesis and DM.

2. A thermal ansatz for the χ momentum distribution

In Appendix A 3, we will compare our perturbative
calculations of YB and ρχþχ̄ to numerical solutions of
quantum kinetic equations derived using a thermal ansatz
for the χ and χ̄ momentum distributions. Here we imple-
ment the thermal ansatz in the perturbative context to
isolate its impact. We start with Eq. (13) from our
perturbative calculation, where we found the energy spec-
trum of χ particles produced by Φj decays at z0 to be
proportional to

e−ye
−M2

Φj
z0=ð4T2

ewyÞ; ðA13Þ

where y ¼ Eχ=T. We replace this spectrum with a
Maxwellian one,

e−ye
−M2

Φj
z0=ð4T2

ewyÞ →
MΦj

z0

2Tew
K1

�
MΦj

z0

Tew

�
y2e−y; ðA14Þ

where the y-independent factors are determined by the
requirement that the integrals over y be the same. We also
replace the χ energy dependence in the oscillation factor
with a thermal average,

sin

�
βosc

�
z3 − z03

y

��
→ sin

�
βosc



T
Eχ

�
ðz3 − z03Þ

�
; ðA15Þ

with



T
Eχ

�
¼
� π2

18ζð3Þ ≃ 0.456 ðFDÞ;
1=2 ðMBÞ:

ðA16Þ

After making the replacements in Eqs. (A14)–(A15), we
carry out the y integration in Eq. (30) to obtain

YB ¼ 45g2Φ
8π6g�

KB

KΦ
J
�
nχeqðTÞ
T3

�−1�MΦ1

Tew

�
2
�
MΦ2

Tew

�
2

×

�
ΓΦ1

Hew

��
ΓΦ2

Hew

�
ðI12 − I21Þ; ðA17Þ

where the equilibrium χ abundance factor is for a single
mass eigenstate and helicity,

�
nχeqðTÞ
T3

�−1
¼
� ð4π2Þ=ð3ζð3ÞÞ ≃ 10.9 ðFDÞ
π2 ðMBÞ; ðA18Þ

and where in this version of Iij, only the integrations overΦ
production and decay times remain:

(a) (b)

FIG. 13. Variations on our perturbative calculations of YB and ρχþχ̄ . In both plots, we adopt Maxwell-Boltzmann statistics and replace
the survival function by its z ¼ 0 value: SΦi

ðzÞ → SΦi
ð0Þ. The solid contours reproduce our earlier results, see Fig. 2(a). In (a), The

dashed contours show the effect of including thermal mass contributions, with Aself ¼ 0. (Turning on a moderate scalar self-coupling of
Aself ¼ 1=3 barely changes the plot.) In (b) we adopt a thermal ansatz for the χ momentum distribution, leading to Eqs. (A17) and (A19).
We use the Maxwell-Boltzmann expressions for hT=Eχi and nχeq in Eqs. (A16) and (A18); switching to the Fermi-Dirac ones again
produces an almost unnoticeable shift.
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Iij ¼
Z

1

0

dzSΦi
ðzÞz3K1

�
MΦi

Tew
z

�

×
Z

z

0

dz0z03K1

�
MΦj

Tew
z0
�
sin

�
βosc



T
Eχ

�
ðz3 − z03Þ

�
;

ðA19Þ

with SΦi
ðzÞ given in Eq. (28). Strictly speaking, Eq. (A17)

applies for the case of Maxwell-Boltzmann statistics, but
we provide Fermi-Dirac expressions for certain quantities
for reference. We can also obtain Eqs. (A17) and (A19) by
perturbatively solving the kinetic equations presented in the
following section, once we neglect thermal masses and
adopt Maxwell-Boltzmann statistics.
For a particular set of inputs, Fig. 13(b) compares the

results of the “direct” calculation of Sec. II B with those
based on Eqs. (A17) and (A19). As with thermal mass
effects, the thermal ansatz only modestly impacts the
preferred parameter space.
When

MΦ2
≫ MΦ1

≫ Tew ðA20Þ

and

ΔM2
21M0

M3
Φ2

≪ 1 ðA21Þ

apply, we can follow the same steps that led to Eq. (48) to
approximate the thermal-ansatz results of Eqs. (A17)
and (A19) by

YB≃
gΦKBJ
4π2KΦ

Yχþχ̄
2

�
nχeqðTÞ
T3

�−1�Tew

MΦ1

�
2
�
ΓΦ1

Hew

�

×SΦ1
ð0Þ
Z

∞

0

dxx3K1ðxÞsin
�
β̃osc
8



T
Eχ

�
x3
�
: ðA22Þ

The ratio of the thermal-ansatz-based YB of Eq. (A22) and
the “direct” YB of Eq. (48) depends on the single dimen-
sionless parameter β̃osc ¼ 4ΔM2

21M0=3M3
Φ1
. Figure 15

shows that the numerical discrepancy between the two
expressions is less than ∼50%.

3. Numerical solution of kinetic equations

To write down the kinetic equations for the two-scalar
model we follow Refs. [65,76]. We avoid having to track

(a) (b)

FIG. 14. Comparison of the “minimal” perturbative calculation of Sec. II B with more refined estimates of YB and ρχþχ̄ . Here we
decouple Φ2 and set the combined χ þ χ̄ abundance left behind from Φ2 decays to be Yχþχ̄

2 ¼ 3 × 10−5, and we take J ¼ 1. The blue
contours show the effect of modifying the perturbative calculation to incorporate thermal masses and the full z dependence in the
survival function SΦ1

ðzÞ. The red contours compare the minimal calculation with numerical solution of the kinetic equations presented in
Appendix A 3; in the numerical calculation we use quantum statistics, include thermal masses, and adopt a thermal ansatz for the χ
momentum distribution. We show the fractional difference in YB in (a) and the fractional difference in YB=ρχþχ̄ in (b). For the parameters
chosen, ρχþχ̄ ¼ ρcdm is realized for cτ ≃ 6 cm and ðYBÞmax > ðYBÞobs is realized for cτ ≲ 130 cm.

FIG. 15. Comparison of the approximate YB expressions of
Eqs. (A22) and (48), obtained with and without the thermal
ansatz for the χ momentum distribution.
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momentum-dependent quantities by adopting a thermal
ansatz for the momentum dependence of the χ number-
density matrix,

nχIJðpÞ ¼
nχIJ
nχeq

fχeqðpÞ; ðA23Þ

and similarly for χ̄. Doing so leaves us with the simpler task
of solving momentum-integrated kinetic equations. The χ
and χ̄ number densities are given by the traces of nχIJ and
nχ̄IJ, respectively.
We neglect χ masses except in oscillations. An unbroken

Uð1Þχ−Φ symmetry under which only χ and Φi are charged
(oppositely) then simplifies the analysis. Here we are
motivated by DM considerations, which lead us to focus
on parameter regions with Mχ ∼ 10–100 keV.
Our main goal is to compare our perturbative calculation

from Sec. II B with numerical integration of kinetic
equations that incorporate washout effects and quantum
statistics. To that end we make further simplifying approx-
imations that might be abandoned in future work. We adopt
the flavor-universal Q masses given in Eqs. (A3)–(A5),
thereby ignoring top-Yukawa-related effects. The 1 ↔ 2
processes Φi ↔ Qχ are therefore kinematically allowed at
all temperatures. We neglect 2 ↔ 2 processes, which we
expect to be subdominant, as we found thermal-mass
effects to be. Finally, we assume that quark flavor mixing
is sufficiently rapid to ensure that theQ chemical potentials
are flavor universal.
With these assumptions, the reaction densities entering

into the kinetic equations can be summarized by the matrix
expression

½γX;i�IJ ¼ gΦðFi†FiÞIJðM̄2
Φi

− M̄2
QÞ
Z

dΠΦi
FΦ

X;iðk;p;qÞ;

ðA24Þ

where the equilibrium distribution functions enter through

F 0;iðk;p;qÞ ¼ FΦ1;iðk;p;qÞ ¼ ½1 − fQeqðpÞ�fΦi
eq ðqÞ

FQ1;iðk;p;qÞ ¼ fQeqðpÞfΦi
eq ðqÞ

FQ2;iðk;p;qÞ ¼ fχeqðkÞfQeqðpÞ
FΦ2;iðk;p;qÞ ¼ fχeqðkÞfΦi

eq ðqÞ: ðA25Þ

In Eq. (A24), the indices i ¼ 1, 2 and I; J ¼ 1, 2 reference
Φ and χ flavors, respectively, while X indicates whether the
associated contributions to dnχ=dt and dnχ̄=dt survive in
the absence of asymmetries (“0”), are driven by a Qα − Q̄α

asymmetry (“Q1” and “Q2”), or are driven by a Φi −Φ�
i

asymmetry (“Φ1” and “Φ2”).

The phase space factor in Eq. (A24) is

dΠΦi
¼ d3k

ð2πÞ3
1

2EχðkÞ
d3p
ð2πÞ3

1

2EQðpÞ

×
d3q
ð2πÞ3

1

2EΦi
ðqÞ ð2πÞ

4δ4ðq − p − kÞ; ðA26Þ

with EχðkÞ ¼ jkj, EQðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ M̄2

Q

q
, and EΦi

ðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þ M̄2

Φi

q
. Carrying out all integrations besides those

over EΦi
and Eχ gives

½γX;i�IJ ¼
gΦðFi†FiÞIJðM̄2

Φi
− M̄2

QÞ
32π3

×
Z

∞

M̄Φi

dEΦi

Z
Eþ
χ

E−
χ

dEχFΦ
X;iðk;p;qÞ; ðA27Þ

where

E�
χ ¼ M̄2

Φi
− M̄2

Q

2M̄Φi

 
EΦi

M̄Φi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
EΦi

M̄Φi

�
2

− 1

s !
: ðA28Þ

In Eq. (A27) it is to be understood that FΦ
X;iðk;p;qÞ

depends on its arguments only through the associated
energies, with EQ ¼ EΦi

− Eχ . For example,

FΦ
0;iðk;p;qÞ →

�
eðEΦi

−EχÞ=T

eðEΦi
−EχÞ=T þ 1

��
1

eEΦi
=T − 1

�
: ðA29Þ

We present the kinetic equations in terms of dimension-
less interaction-picture quantities

Yχ ¼ U†nχU
s

Y χ̄ðzÞ ¼ U†nχ̄U
s

ðA30Þ

and

γ̃ ¼ U†γU
Yχ
eqsH

γ̃� ¼ U†γ�U
Yχ
eqsH

; ðA31Þ

where s ¼ 2π2g�T3=45 is the entropy density, H ¼ T2=M0

is the Hubble parameter, Yχ
eq is the equilibrium abundance

for a single mass eigenstate, and oscillation effects are
encoded in the diagonal matrix

UðzÞIJ ¼ exp

�
−i


T
Eχ

�
M2

IM0

6T3
ew

z3
�
δIJ: ðA32Þ

The thermal average hT=Eχi is given in Eq. (A16). Note
that for γ̃� we complex-conjugate the couplings appearing
in γ but not the U matrices. For the case of two χ mass
eigenstates, we can apply an inconsequential overall phase
to rewrite Eq. (A32) as
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UðzÞ ¼ diag

�
1; exp

�
−iβosc



T
Eχ

�
z3
��

; ðA33Þ

where we define βosc ¼ ΔM2
21M0=ð6T3

ewÞ as before.
For Φi and Q we similarly define Y ¼ n=s, along with

the asymmetries

δYQ ¼ YQ − YQ̄ ðA34Þ

δYΦi ¼ YΦi − YΦ�
i : ðA35Þ

We define these quantities and their equilibrium counter-
parts YΦi

eq and YQ
eq to include a sum over gauge degrees of

freedom (but not, for Q, a sum over flavor degrees of
freedom), while Yχ

eq is the equilibrium abundance for a
single mass eigenstate (and a single helicity: χ or χ̄,
not both).
As is typically done, we linearize in Q chemical

potentials,

fQðp;�μQÞ
fQeqðpÞ

≃ 1� δYQ

2YQ
eq
: ðA36Þ

However, a Φi −Φ�
i asymmetry can leave Φi or Φ�

i
particles around after Φi −Φ�

i annihilations have effec-
tively completed, in which case μΦi

≪ T is not satisfied and
it is not appropriate to linearize in μΦi

. We assume that
Φi −Φ�

i annihilations keep these particles in chemical
equilibrium even for temperatures T ≪ MΦi

.
In the T ≪ MΦi

regime Maxwell-Boltzmann statistics
should apply, giving

fΦiðq;�μΦi
Þ

fΦi
eq ðqÞ

¼ e�μΦi
=T; ðA37Þ

which leads to

fΦiðq;�μΦi
Þ

fΦi
eq ðqÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
δfΦiðqÞ
2fΦi

eq ðqÞ

�
2

s
� δfΦiðqÞ
2fΦi

eq ðqÞ
; ðA38Þ

where δfΦiðqÞ≡ fΦiðq; μΦi
Þ − fΦiðq;−μΦi

Þ. For the sce-
narios we study, Eq. (A38) is a good approximation even
when Maxwell-Boltzmann statistics does not apply. For

T ≳MΦi , it is safe to assume μΦi
≪ T and δfΦi ðqÞ

2f
Φi
eq ðqÞ

≪ 1, and

Eq. (A38) approximately reproduces what one gets by
linearizing the full quantum-statistics distribution in μΦi

,

fΦiðq;�μΦi
Þ ¼ fΦi

eq ðqÞ � δfΦiðqÞ
2

: ðA39Þ

Following our treatment of fQ, we neglect momentum

dependence in the ratio δfΦi ðqÞ
2f

Φi
eq ðqÞ

, giving

fΦiðq;�μΦi
Þ

fΦi
eq ðqÞ

¼ 1þ G
�
� δYΦi

2YΦi
eq

�
; ðA40Þ

where we define the function

GðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ x − 1: ðA41Þ

Having established our notation, we now give the kinetic
equations describing the evolution of the Yχ and Y χ̄

matrices:

dYχ
IJ

dlnz
¼
X
i

�
−
1

2
fγ̃0;i;Yχ−Yχ

eqg

þ δYQ

2YQ
eq

�
γ̃Q1;iY

χ
eqþ1

2
fγ̃Q2;i;Yχg

�

þG
�
−
δYΦi

2YΦi
eq

��
γ̃Φ1;iY

χ
eq−

1

2
fγ̃Φ2;i;Yχg

��
IJ

ðA42Þ

and

dY χ̄
IJ

d lnz
¼
X
i

�
−
1

2
fγ̃�0;i;Y χ̄ −Yχ

eqg

−
δYQ

2YQ
eq

�
γ̃�Q1;iY

χ
eqþ1

2
fγ̃�Q2;i;Y

χ̄g
�

þG
�
δYΦi

2YΦi
eq

��
γ̃�Φ1;iY

χ
eq−

1

2
fγ̃�Φ2;i;Y

χ̄g
��

IJ
: ðA43Þ

In any interaction involving Φð�Þ
i , the Uð1Þχ−Φ symmetry

requires that the changes in theΦi,Φ�
i , χ, and χ̄ populations

are related by

ΔNΦi − ΔNΦ�
i ¼ ΔNχ − ΔN χ̄ ; ðA44Þ

whichmeans that the evolution of δYΦi can be determined by

dδYΦi

d ln z
¼ Tr

�
dYχ

IJ

d ln z
−
dY χ̄

IJ

d ln z

�
i
; ðA45Þ

where on the right-hand-side we only include contributions

from interactions involving Φð�Þ
i . We therefore get

dδYΦi

d ln z
¼ −Tr½γ̃0;iYχ − γ̃�0;iY

χ̄ � þ Yχ
eq
δYQ

YQ
eq

Tr½γ̃Q1;i�

þ δYQ

2YQ
eq
Tr½γ̃Q2;iYχ þ γ̃�Q2;iY

χ̄ � − Yχ
eq
δYΦi

YΦi
eq

Tr½γ̃Φ1;i�

− G
�
−
δYΦi

2YΦi
eq

�
Tr½γ̃Φ2;iYχ � þ G

�
δYΦi

2YΦi
eq

�
Tr½γ̃�Φ2;iY

χ̄ �:

ðA46Þ

BRIAN SHUVE and DAVID TUCKER-SMITH PHYS. REV. D 101, 115023 (2020)

115023-32



Aswe did in Sec. II B, we neglectΦ1Φ�
2 ↔ Φ�

1Φ2 scattering.
The viability of the model does not depend on this
simplification.
In Sec. II B we expressed the Φ and baryon number

asymmetries in terms of the B − L asymmetry stored in
Standard Model particles. Here we also need to do that for
the Q asymmetry:

δYΦ1 þ δYΦ2 ¼ KΦYB−L;SM ðA47Þ

YB ¼ KBYB−L;SM ðA48Þ

δYQ ¼ KQYB−L;SM; ðA49Þ

withKB¼ð−54=79;−63=79;−45=79Þ andKQ ¼ ð25=158;
31=79; 40=79Þ for Q ¼ ðQL; uR; dRÞ, and with KΦ ¼ −3.
We replace δYQ → ðKQ=KΦÞðδYΦ1 þ δYΦ2Þ in Eqs. (A42),
(A43), and (A46) and numerically solve them to determine
the final baryon asymmetry as YB ¼ ðKB=KΦÞðδYΦ1þ
δYΦ2Þ, evaluated at sphaleron decoupling.
The red contours of Fig. 14 compare the minimal

perturbative calculation of Sec. II B with numerical sol-
ution of the kinetic equations just introduced, incorporating
thermal masses and quantum statistics. For the chosen
parameters, the fractional differences tend to be smaller
than when comparing with the refined perturbative calcu-
lation (blue contours), because the thermal ansatz increases
YB somewhat, partially compensating for the effect of
including thermal masses, which decreases the asymmetry.
To conclude this discussion, we note that we can

reproduce Eqs. (A17) and (A19) as an approximate, per-
turbative solution to Eqs. (A42), (A43), and (A46). We first
use Eqs. (A42) and (A43) at to obtain leading order (order-
F2) expressions for Yχ

IJðzÞ and Y χ̄
IJðzÞ. We use these

expressions in Eq. (A46) to determine the leading-order
expression for δYΦi. More precisely, we solve exactly the
differential equation obtained from Eq. (A46) by replacing
Yχ and Y χ̄ with their order-F2 expressions and neglecting
all reaction densities besides γ̃0;i and γ̃Φ1;i, which is equal to
γ̃0;i and takes into account Φi decays. We adopt Maxwell-
Boltzmann statistics by taking

F 0;iðk;p;qÞ ¼ FΦ1;iðk;p;qÞ → fΦi
eq ðqÞ → e−EΦi

ðqÞ=T

ðA50Þ

in Eq. (A27), giving

½γ0;i�IJ ¼ ½γΦ1;i�IJ ¼
gΦðF†FÞIJM̄3

Φi
Tew

32π3z

× ð1 − M̄2
Φi
=M̄2

QÞ2K1

�
M̄Φi

z

Tew

�
: ðA51Þ

If we further neglect thermal masses, this procedure finally
reproduces Eqs. (A17) and (A19).

APPENDIX B: CONSTRAINED MAXIMIZATION
OF YB IN THE DECOUPLED-Φ2 REGIME

In this appendix we describe how we obtain the contours
of Fig. 4. We use a routine that finds the maximum YB for
given ðMΦ1

;ΓΦ1
Þ values, consistent with the observed DM

abundance and with the relevant additional constraint (fixed
Yχþχ̄
2 , or fixed θ1 and θ2). We start by setting the mixing

angles and phases ρi andϕi to optimal values, so that theCP-
violating factor in Eq. (33) becomes J ¼ sin 2θ1 sin 2θ2.
WithMΦ1

and ΓΦ1
fixed, YB then depends on four quantities:

θ1, θ2, Y
χþχ̄
2 , and M2.

For the blue, Yχþχ̄
2 ¼ 4 × 10−3 contour of Fig. 4, we start

by turning Eq. (45) into an equality and using it to solve for
θ2 in terms ofM2 and θ1, with Y

χþχ̄
1 determined by Eq. (14).

The baryon asymmetry of Eq. (48) then depends on the
remaining two free quantities, θ1 and M2, through the
factor

sin 2θ1 sin 2θ2Ĩ12ðβ̃oscÞ; ðB1Þ

which we maximize numerically to get optimal values of θ1
andM2, subject to the constraintM2 > 10 keV. In this way
we determine the maximum baryon asymmetry for the
given ðMΦ1

;ΓΦ1
Þ point. For points on the blue contours of

Fig. 4, this maximum YB equals the observed baryon
asymmetry.
The green and red contours of Fig. 4 have fixed values of

θ1 and θ2, so only Yχþχ̄
2 and M2 need to be optimized. In

this case we use Eq. (45) to solve for Yχþχ̄
2 in terms of the

other parameters, and then we numerically maximize

Yχþχ̄
2 Ĩ12ðβ̃oscÞ ðB2Þ

with respect to M2.
We can understand the Yχþχ̄

2 ¼ 4 × 10−3 contour of
Fig. 4 qualitatively by considering two separate regimes
in turn. We first work under the assumption that the Φ1

couplings are too small for Φ1 decays to contribute
significantly to the DM energy density, which therefore
must originate almost entirely fromΦ2 decays. In that case,
the parameter θ1, which determines the relative coupling of

Φð�Þ
1 to χ1 vs χ2, effectively drops out of the DM constraint.

It only enters into the baryon asymmetry calculation via the
CP-violating factor J . In this case, the baryon asymmetry
is maximized when the sin 2θ1 factor in Eq. (33) is
maximal. After we also choose optimal values for ρi and
ϕi we are left with J ¼ sin 2θ2.
Having fixed θ1 ¼ π=4, maximizing YB for arbitrary

ðMΦ1
;ΓΦ1

Þ is straightforward. We saturate Eq. (45) to
determine θ2 in terms of M2, and then all that remains is to
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determine an optimal value of M2. Here we use our
working assumption that the DM density comes predomi-

nantly from Φð�Þ
2 decays, which means that Eq. (45) gives

θ2 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcdm=s

M2Y
χþχ̄
2

s
: ðB3Þ

The small angle approximation for θ2 is justified given that
we consider Yχþχ̄

2 ¼ 4 × 10−3 and M2 > 10 keV. In this
approximation, the dependence of YB on M2 is then
contained in the factors

β̃−1=4osc Ĩ12ðβ̃oscÞ; ðB4Þ

which is maximized for

M2 ¼ ð16.2 keVÞ ×
�
MΦ1

TeV

�
3=2

: ðB5Þ

With all parameters besides ðMΦ1
;ΓΦ1

Þ finally determined,
we show the points that give the observed baryon asym-
metry in the green contour in Fig. 16.
Now consider the opposite regime, in which the cou-

plings of Φ1 are so large that the DM constraint requires
θ1 ≪ 1. In that case, the small angle approximation applies
for both θ1 and θ2, and it is not difficult to show that the
maximum baryon asymmetry is realized when Φ1 and Φ2

decays contribute equally to the DM energy density. So,
we take

sin2 θ1 ¼
ρcdm=s

2M2Y
χþχ̄
1

sin2 θ2 ¼
ρcdm=s

2M2Y
χþχ̄
2

; ðB6Þ

and because the baryon asymmetry depends on the factor
sin 2θ1 sin 2θ2, which scales approximately as 1=M2, we
obtain an optimal value of M2 by maximizing

β̃−1=2osc Ĩ12ðβ̃oscÞ; ðB7Þ
which leads to

M2 ¼ ð12.9 keVÞ ×
�
MΦ1

TeV

�
3=2

: ðB8Þ

For these inputs, the points that give the observed baryon
asymmetry lie on the red contour in Fig. 16. Taken together,
the two contours we obtain by considering the opposite
extremes θ1 ¼ π=4 and θ1 ≪ 1 reproduce almost all of the
ðYBÞmax ¼ ðYBÞobs contour for Yχþχ̄

2 ¼ 4 × 10−3.

APPENDIX C: MIXING ANGLES AND PHASES
IN THE SINGLE-SCALAR MODEL

The single-scalar model is characterized by a single
matrix, FαI , which gives the Yukawa couplings between
each SM quark flavor α and χ mass eigenstate I. The matrix
F†F enters into the expression for the baryon asymmetry,
and it can be parametrized as follows (by analogy with the
two-scalar case in Sec. II B):

cos θ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF†FÞ11
TrF†F

r
; ðC1Þ

cos θ2 ¼
1

sin θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF†FÞ22
TrF†F

r
; ðC2Þ

cos ρ1 ¼
jðF†FÞ12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ11ðF†FÞ22
p ; ðC3Þ

cos ρ2 ¼
jðF†FÞ23jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ22ðF†FÞ33
p ; ðC4Þ

cos ρ3 ¼
jðF†FÞ13jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ11ðF†FÞ33
p ; ðC5Þ

ϕ1 ¼ argðF†FÞ12; ðC6Þ

ϕ2 ¼ argðF†FÞ23; ðC7Þ

ϕ3 ¼ argðF†FÞ31: ðC8Þ

In this case, we can compute the Jarlskog-like invariant in
Eq. (84) as

FIG. 16. Contours of ðYBÞmax ¼ ðYBÞobs for Yχþχ̄
2 ¼ 4 × 10−3.

For the blue, solid contour we impose the DM constraint of
Eq. (45) and require M2 > 10 keV (this reproduces the contour
from Fig. 4). As described in the text, the other contours impose
additional constraints. Green, dashed: we set θ1 ¼ π=4 and
use Eq. (B5) to determineM2. Red, dot-dashed: we use Eqs. (B6)
and (B8) to determine θ1, θ2, and M2.
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J ¼ cos ρ1 cos ρ2 cos ρ3 cos2 θ1 sin4 θ1 ðC9Þ

sin2ð2θ2Þ sinðϕ1 þ ϕ2 þ ϕ3Þ: ðC10Þ
However, unlike in the case of two scalars, these are not

completely independent parameters: the reason is that there
may not always exist a matrix F corresponding to that set of
parameters. For example, it is possible to have cos ρi ¼ 1
for all ρi, but in this case the sum of the phases
ϕ1 þ ϕ2 þ ϕ3 ¼ 0! Thus, J is not optimized by requiring
maximal mixing angles, since in that case the effect of the
phases vanishes.
Rather than do a systematic study of the mixing angles

and phases, we instead construct only the optimal value of
J , which allows us to map out the largest possible space of
baryogenesis for the other parameters (such as particle
masses and decay widths). Since J is independent of basis,
we can construct the optimal J through a judicious choice
of basis.
First, we think of FαI as a collection of 3 three-vectors in

active quark flavor space, Fα1, Fα2, and Fα3. ðF†FÞIJ,
which appears in the expression for J , can therefore be
seen as a dot product of pairs of these vectors. J is also
independent of the overall magnitudes of the three-vectors
and how the magnitudes are distributed amongst the three
vectors, and so we take each to have unit norm. We can
always choose a flavor basis where the coupling of χ1 is
exclusively to a single flavor (which we take to be α ¼ 3),
in which case Fα1 ¼ ð0; 0; 1Þ. Similarly, the freedom to
choose a basis and rephase the quark fields allows us to
write Fα2 ¼ ð0; cosφ; sinφÞ. Finally, there is no advantage

to having F13 ≠ 0, since its contribution to any dot product
is necessarily zero, and the optimal CP-violation comes
from a maximal relative phase between F23 and F33 (any
phase that is the same between the two entries contributes
only to the overall normalization factor and is irrelevant),
while the imaginary part of the dot product is maximized if
jF22j ¼ jF23j ¼ jF32j ¼ jF33j ¼ 1=

ffiffiffi
2

p
. The Yukawa tex-

ture for our benchmark case is thus

FαI ¼

0
BB@

0 0 0

0 1ffiffi
2

p iffiffi
2

p

1 1ffiffi
2

p 1ffiffi
2

p

1
CCA: ðC11Þ

It is straightforward to check that this set of Yukawa
couplings corresponds to ρ1 ¼ ρ2 ¼ ρ3 ¼ ϕ1 þ ϕ2 þ ϕ3 ¼
θ2 ¼ π=4, and cos θ1 ¼ 1=

ffiffiffi
3

p
. The corresponding value of

J ¼ 1=27, which we use in Sec. IV.
Because this texture of Yukawa couplings has a zero

eigenvalue of F†F, it has special properties with respect to
the equilibration of the χI states. We therefore consider a
second benchmark for the single-scalar study. We modify
the F11 coupling to give three nonzero eigenvalues of F†F.
The modified benchmark Yukawa texture is

FαI ¼

0
BB@

1 0 0

0 1ffiffi
2

p iffiffi
2

p

1 1ffiffi
2

p 1ffiffi
2

p

1
CCA: ðC12Þ
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