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ABSTRACT
We study the field of an electric point charge that is slowly lowered into an n + 1 dimensional Schwarzschild-Tangherlini black hole. We find
that if n > 3, then countably infinite nonzero multipole moments manifest to observers outside the event horizon as the charge falls in. This
suggests the final state of the black hole is not characterized by a Reissner-Nordström-Tangherlini geometry. Instead, for odd n, the final state
either possesses a degenerate horizon, undergoes a discontinuous topological transformation during the infall of the charge, or both. For even
n, the final state is not guaranteed to be asymptotically flat.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124502

I. INTRODUCTION
The properties of four-dimensional black holes are rigidly constrained. For instance, all stationary and asymptotically flat black hole

solutions to the Einstein-Maxwell equations are topologically spherical and unique up to the choice of three asymptotic observables: mass,
electric charge, and angular momentum.1–7 This is Wheeler’s famous “no-hair theorem.”8

Higher dimensional black holes are less constrained, largely for two reasons (see Ref. 9 for a separate and less heuristic perspective). First,
the rotation group SO(n) permits ⌊ n

2 ⌋ independent angular momenta. Accordingly, the rotational degrees of freedom of black holes in n + 1
dimensional spacetime become progressively more complex as n increases.10,11 Furthermore, black holes with fixed masses in n ≥ 5 spatial
dimensions may have arbitrarily large angular momentum.12 Second, Hawking’s theorem on the topology of black holes5 does not directly
generalize to higher dimensions because his proof relies on the Gauss-Bonnett theorem. Although topological restrictions exist for higher
dimensional black holes,13–15 a hyperspherical topology is not the only option.11,16 As a result, extended black p-branes are not precluded in
higher dimensional spacetimes.11,16,17 These results imply that the uniqueness theorems for four-dimensional black holes do not immediately
extend to higher dimensions.

However, if restricted to solutions with hyperspherical topology and nondegenerate horizons, then the Schwarzschild-Tangherlini (ST)
black hole18 is the unique static and asymptotically flat vacuum solution to the higher dimensional Einstein equations.10,19–21 Furthermore, the
higher dimensional Reissner-Nordström (RN-Tangherlini or simply RNT) black hole is the unique static and asymptotically flat electrovac
solution to the higher dimensional Einstein-Maxwell equations.22,23 Nonuniqueness is most apparent in the context of stationary black hole
solutions.11,12,16,17

For four-dimensional black holes, the no-hair theorem implies that the process of slowly24 lowering an electric point charge of strength
q into a Schwarzschild black hole of mass M results in a RN black hole of mass M and charge q. Furthermore, the resulting black hole does
not possess unconserved charges like electric multipole moments (excluding the monopole) as these are “hair” for the black hole. The details
of this process can be found in Ref. 25.

That in four dimensions the slow infall of an electric charge into a Schwarzschild black hole results in only one type of black hole—the RN
black hole—may be viewed as a corollary of the uniqueness theorem for RN black holes. In the same way, the uniqueness of RNT black holes
ostensibly implies that a sufficiently slow infall of an electric charge into a ST black hole results in a unique final state—the RNT black hole.

J. Math. Phys. 60, 102502 (2019); doi: 10.1063/1.5124502 60, 102502-1

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1063/1.5124502
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5124502
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5124502&domain=pdf&date_stamp=2019-October-7
https://doi.org/10.1063/1.5124502
http://orcid.org/0000-0001-6078-8168
mailto:msfox@g.hmc.edu
https://doi.org/10.1063/1.5124502


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

If this is the final state, then, due to the hyperspherical symmetry of RNT spacetime, all electric multipole moments (except the monopole)
necessarily vanish as the charge approaches the event horizon.

Following the analyses of Refs. 25 and 26, we prove the contrary: if an electric point charge falls slowly into a ST black hole, then the final
state acquires countably infinite nonzero multipole moments. Depending on the spatial dimension n, these multipole fields need not even
be finite. This suggests the resulting black hole is not RNT in nature and, depending on n, brings about the possibility of destruction of the
horizon.

In this paper, we employ the metric signature (− + ⋅ ⋅ ⋅+) and work in the natural system of units in which c = G = 1. We also adopt the
following notation: Sn+1 is the n + 1 dimensional ST spacetime, Rn is the n dimensional Euclidean space, C is the complex plane, Z+ is the set
of positive integers, Z∗ ∶= Z+ ∪ {0} is the set of nonnegative integers, and Sn−1 is the unit n − 1 sphere.

II. SCHWARZSCHILD-TANGHERLINI GEOMETRY
The n + 1 dimensional ST black hole is described by the n + 1 dimensional ST spacetime, Sn+1. In this spacetime, there exists a chart

(Un+1,ψ) (the ST chart) with map ψ ∶= (t, r,φ) : Un+1 ⊆ Sn+1 → Rn+1 that reduces to the canonical four-dimensional Schwarzschild map
(t, r, θ,ϕ) : U3+1 ⊆ S3+1 → R4 when n = 4. In this way, the ST chart is a dimensional continuation of the four-dimensional Schwarzschild
chart. In the ST chart, the coordinates t : Un+1 → R and r : Un+1 → R retain the meaning (outside the event horizon) of “time as mea-
sured by an asymptotic observer” and “circumferential radius as measured by an asymptotic observer,” respectively. The angular functions
(θ,ϕ), however, are generalized to the hyperspherical coordinates φ ∶= (φ1, . . .φn−1), where φi : Un+1 → [0,π] for i = 1, . . . , n − 2 and φn−1
: Un+1 → [0, 2π).

In the ST chart, the metric g of Sn+1 possesses the line element18

g(dψ, dψ) = −(1 −
2M
rn−2 )dt2 + (1 −

2M
rn−2 )

−1
dr2 + r2γ(dφ, dφ), (1)

where γ is the metric of Sn−1 with line element

γ(dφ, dφ) = dφ2
1 +

n−1

∑
i=2

i−1

∏
j=1

sin2φj dφ2
i . (2)

The value M in Eq. (1) is a constant related to the physical mass M of the black hole by

M ∶=
8πM

(n − 1)Ωn−1
, (3)

where Ωn−1 ∶= 2πn/2/Γ(n/2) is the volume of Sn−1. The singular nature of Eq. (1) at r = rs ∶= (2M)1/(n−2) (the ST radius) is an artifact of
the choice of chart (an appropriate diffeomorphism will transform it away). However, the singular nature at r = 0 is a genuine curvature
singularity (the Kretschmann scalar is infinite there). The locus of points for which r = rs constitute the event horizon of the black hole and
the singular point for which r = 0 is the singularity.

Of interest to us is the effect of the geometry (1) on the form of Laplace’s equation. Using the abstract index notation, the Laplacian Δ on
a general n + 1 dimensional spacetime with metric g is defined by27

Δ ∶=
1

√
∣det g∣

∂i(
√
∣det g∣gij∂j), (4)

where vertical bars denote absolute value and Latin indices run over the spatial components. In the ST chart, Latin indices will run from 1 to
n corresponding to r,φ1, . . . ,φn−1, respectively. The Laplacian on Sn+1 in the ST chart, ΔSn+1 , is thus

ΔSn+1 =
1

rn−1 ∂r[rn−1
(1 −

rn−2
s

rn−2 )∂r] +
1
r2ΔSn−1 , (5)

where ΔSn−1 is the Laplacian on Sn−1 in hyperspherical coordinates (the hyperspherical Laplacian).

A. Hyperspherical harmonics
The eigenfunctions of the hyperspherical Laplacian constitute the higher dimensional generalization of the canonical spherical harmonics

on S2. These eigenfunctions are the hyperspherical harmonics. Specifically, an n dimensional hyperspherical harmonic of degree k ∈ Z∗ is a map
Yk : Sn−1 → C satisfying
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ΔSn−1 Yk(φ) = −k(k + n − 2)Yk(φ), (6)

among other conditions.28 Indeed, for the case n = 3, Eq. (6) reduces to the equation ΔS2 Yk(φ) = −k(k + 1)Yk(φ), which is familiar from
quantum mechanics.

Importantly, if k ≠ l, then the functions Yk(φ) and Y l(φ) can be chosen to be orthogonal over Sn−1 with respect to the inner product29

⟨Yk, Yl⟩ ∶= ∫
Sn−1

Ŷk(φ)Yl(φ) dΩn−1 = 0, (7)

where a hat denotes complex conjugation and dΩn−1 ∶=
√

det γ dφ is the natural volume form on Sn−1.
For fixed n ≥ 3, the degree of a hyperspherical harmonic completely determines the number of hyperspherical harmonics of the same

degree that are linearly independent to it. With this in mind, we denote by Γk the number of linearly independent hyperspherical harmonics
of degree k. For n ≥ 3, a combinatorial argument28,29 proves

Γk =
(2k + n − 2)(n + k − 3)!

k!(n − 2)!
. (8)

The Gram-Schmidt orthonormalization procedure then allows one to produce an orthonormal set of hyperspherical harmonics {Y i
k}

Γk
i=1 that

satisfy

⟨Y i
k, Y j

l ⟩ = ∫Sn−1
Ŷ i

k(φ)Y j
l (φ) dΩn−1 = δk,lδi,j, (9)

where δk,l is the Kronecker delta. These functions constitute an orthonormal basis for all square-integrable functions on Sn−1.28 Thus, the
hyperspherical harmonics obey the completeness relation

∑
k≥0

Γk

∑
l=1

Ŷ l
k(ϑ)Y l

k(φ) = δn−1(φ − ϑ), (10)

where ϑ : Un+1 → Sn−1 is a hyperspherical coordinate and δ is the Dirac delta function.

B. Poisson’s equation
Consider now a real-valued test field Ψ : Un+1 → R, i.e., a real scalar field weak enough that the geometry is unaffected by it. Let Ψ satisfy

the d’Alembert wave equation,
□Ψ ∶= ∇μ

∇μΨ = Ωn−1 f (t, r,φ), (11)

where f : Un+1 → R is a well-behaved function,∇ is the covariant derivative with respect to the metric g on Sn+1, and Greek indices run from
0 to n corresponding to t, r,φ1, . . . ,φn−1, respectively. In the case where both Ψ and f are time-independent, Eq. (11) reduces to Poisson’s
equation,

ΔSn+1Ψ(r,φ) = Ωn−1 f (r,φ). (12)

We now show that the equation of motion for the fieldΨ of an electrostatic charge in the vicinity of a ST black hole satisfies Poisson’s equation.
In a general curved spacetime with metric g, Maxwell’s equations can be written as27

Ωn−1jν =
1

√
∣det g∣

∂μ(
√
∣det g∣Fμν), (13)

where Fμν ∶= ∂μAν − ∂νAμ are the components of the Faraday tensor and Aμ are the components of the electromagnetic potential. In particular,
in an appropriate gauge, Ψ ∶= A0 is the electric potential. Assuming no magnetic fields (Ai = 0) and static electric fields (time-independent Ψ),
the vector current jν vanishes trivially for ν = 1, . . . , n + 1. However, for ν = 0, Eq. (13) reduces to the nontrivial expression

Ωn−1j0
= g00ΔSn+1Ψ −

g00rn−2
s (n − 2)
rn−1 ∂rΨ. (14)

AsΨ(r,φ) is time-independent (by assumption), so is the physical source j0(r,φ). Hence, the electrostatic problem reduces to solving Poisson’s
equation with the effective source
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f eff(r,φ) ∶= g00j0(r,φ) +
rn−2

s (n − 2)
Ωn−1rn−1 ∂rΨ(r,φ). (15)

Consequently, to understand Eq. (12) is to understand electrostatics in Sn+1.

III. RADIAL EQUATION OF MOTION
Consider Poisson’s equation (12) with the effective source (15), but in the absence of physical sources, j0(r,φ) = 0. Then, Eq. (12)

reduces to

ΔSn+1Ψ(r,φ) =
rn−2

s (n − 2)
rn−1 ∂rΨ(r,φ). (16)

We look for solutions to Eq. (16) of the form

Ψ(r,φ) = ∑
k≥0

Rk(r)Yk(φ). (17)

Using Eq. (5) and the eigenfunction relation (6), one deduces that, for each k ∈ Z∗, Rk(r) must satisfy

R′′k +
(n − 1)

r
R′k −

k(k + n − 2)rn−4

rn−2 − rn−2
s

Rk = 0. (18)

For later convenience, we abbreviate the polynomial coefficients to

Pk(r, rs) ∶=
(n − 1)

r
(19)

and

Qk(r, rs) ∶= −
k(k + n − 2)rn−4

rn−2 − rn−2
s

. (20)

Note that the differential equation (18) is invariant under the exchange k↔ −(k + n − 2). Hence, given a solution, a second solution follows
by swapping k↔ −(k + n − 2). Of course, one must check that this second solution is linearly independent of the first.

The differential equation (18) has three nonessential singularities at r = 0, r = rs, and r = ∞. When rs = 0, the singularities are r = 0 and
r = ∞, and two independent solutions are rk and r−(k+n−2). Evidently, these solutions are valid for all r ∈ (0,∞). When rs ≠ 0, we substitute
ρ ∶= ( rs

r )n−2 into Eq. (18), which becomes

ρ2(ρ − 1)R̈k +
k(k + n − 2)

(n − 2)2 Rk = 0, (21)

where a dot denotes differentiation with respect to ρ. This is a special case of the hypergeometric differential equation. The equation has three
nonessential singularities at ρ = 0, ρ = 1, and ρ = ∞ corresponding to r = ∞, r = rs, and r = 0, respectively.

We shall solve the differential equation (21) around ρ = 0 for two reasons. First, after transitioning back to the ST chart, Frobenius’
method30 guarantees a convergent solution for all r ∈ (rs, +∞), which is the desired region of study. Second, only by solving around ρ = 0 is
the physically meaningful limit rs → 0+ [M → 0+ in Eq. (3)] well-defined in the solution. To understand the second point, first note that the
structure of Eq. (18) is such that

lim
rs→0+

lim
r→∞

rPk(r, rs) = lim
r→∞

lim
rs→0+

rPk(r, rs) (22)

and

lim
rs→0+

lim
r→∞

r2Qk(r, rs) = lim
r→∞

lim
rs→0+

r2Qk(r, rs) (23)

for all k ∈ Z∗. That these two pairs of limits commute implies the indicial equation around r = +∞ for Eq. (18) does not change as rs → 0+.
Accordingly, the form of the solutions is the same for all rs ≥ 0. This is obviously crucial if the solutions to Eq. (18) with rs ≠ 0 are to reduce
to rk and r−(k+n−2) in the limit as rs → 0+. Incidentally, this does not happen if the differential equation is solved around either r = 0 or
r = rs.

The differential equation (21) is solved by first noting that around ρ = 0, the indicial equation has roots
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χ±k ∶=
1 ± 1

2
+

k
n − 2

. (24)

Clearly, χ+
k > χ

−
k and χ+

k − χ
−
k ∈ Z∗ if and only if (n − 2) ∣ k, where ∣means “divides.” One solution to Eq. (21) is then of the form

R(α)
k (r, rs) ∶= ∑

m≥0
αk,mρ

m+χ+
k , (25)

and a second follows from the exchange k↔ −(k + n − 2),

R(α)
k (r, rs) ∶= ∑

m≥0
αk,mρ

m−χ−k . (26)

Here, we have utilized the relation

χ±−(k+n−2) = −χ
∓
k . (27)

In Eqs. (25) and (26), {αk,m}m≥0 and {αk,m}m≥0 are k- and m-dependent sequences of real numbers for which αk,0 ≠ 0 and αk,0 ≠ 0 for all
k ∈ Z∗. The barred sequence is related to the unbarred sequence via the conjugation k↔ −(k + n − 2), i.e., αk,m ∶= α−(k+n−2),m. Substituting
Eq. (25) into Eq. (21) establishes that each αk,m must satisfy

α̃k,m ∶=
αk,m

αk,0
=
(χ+

k )m(χ
−
k )m

m!(2χ+
k )m

, (28)

where (x)m ∶= x(x + 1) ⋅ ⋅ ⋅ (x + m − 1) is the Pochhammer symbol defined such that (x)0 = 1 for all x ∈ R. Accordingly, from Eq. (27), the barred
sequence satisfies

˜̄αk,m ∶=
αk,m

αk,0
=
(−χ−k )m

(−χ+
k )m

m!(−2χ−k )m

. (29)

Importantly, the unbarred sequence {αk,m}m≥0 terminates if and only if k = 0, while the barred sequence {αk,m}m≥0 terminates if and only if
there exists an Nk ∈ Z∗ such that

Nk = min{z ∈ Z∗ : (−χ−k )z+1
= 0 or (−χ+

k )z+1
= 0}. (30)

Such an Nk exists if and only if (n − 2) ∣ k, in which case Eq. (30) implies Nk = χ−k . With this in mind, we introduce the piecewise function

Λk ∶= {
χ−k if (n − 2) ∣ k,
+∞, otherwise. (31)

Two solutions to Eq. (18) are then

R(α)
k (r, rs) = r−(k+n−2)

s ∑
m≥0

α̃k,m(
rs

r
)

k+(m+1)(n−2)
(32)

and

R(α)
k (r, rs) = rk

s

Λk

∑
m=0

˜̄αk,m(
r
rs
)

k−m(n−2)
. (33)

Here, we have fixed αk,0 = r−(k+n−2)
s and αk,0 = rk

s so that R(α)
k → r−(k+n−2) and R(α)

k → rk as rs → 0+, as desired. Crucially, both solutions
are absolutely convergent on (rs, +∞) by Frobenius’ method.30 The linear independence of the solutions follows from the fact that,
asymptotically,
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R(α)
k (r, rs) ∼ r−(k+n−2) (34)

and

R(α)
k (r, rs) ∼ rk. (35)

Thus, assuming n ≥ 3, the Wronskian,

W[R(α)
k , R(α)

k ] ∶= R(α)
k R′(α)

k − R′(α)
k R(α)

k ∼
2k + n − 2

rn−1 , (36)

is nonzero asymptotically for all k ∈ Z∗. Hence, for n ≥ 3, the Wronskian is nonzero on (rs, +∞) for all k ∈ Z∗, so the solutions (32) and (33)
are linearly independent on (rs, +∞) for all k ∈ Z∗. Abel’s identity30 proves that the general, nonasymptotic Wronskian is the same as the
asymptotic value given in Eq. (36). Therefore,

W[R(α)
k , R(α)

k ] =
2k + n − 2

rn−1 . (37)

Evidently, the Wronskian is nonzero and finite for all r ∈ (rs, +∞) and is likewise (= 2k+n−2
rn−1

s
) as r → r+

s . These statements hold true for all k ∈ Z∗

when n ≥ 3. We now study the behavior of the solutions (32) and (33) as r → r+
s .

Since these solutions are Gaussian hypergeometric functions, Gauss’ hypergeometric theorem31 proves

lim
r→r+

s

R(α)
k (r, rs) =

Γ(2χ+
k )

Γ(χ+
k )Γ(1 + χ+

k )
r−(k+n−2)

s . (38)

This limit converges for all k ≥ 0 when n ≥ 3. On the other hand,

lim
r→r+

s

R(α)
k (r, rs) = rk

s

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
Λk

m=0
˜̄αk,m if (n − 2) ∣ k,

Γ(−2χ−k )
Γ(−χ−k )Γ(1−χ−k ) , otherwise.

(39)

We study this limit in the two possible cases.
First, suppose (n − 2) ∤ k. Then, n > 3,32 Λk = +∞, and χ−k ∶=

k
n−2 ∉ Z∗. The analytically continued gamma function has a simple pole

at each nonpositive integer. Thus, Eq. (39) converges if and only if 2χ−k ∉ Z+. Since (n − 2) ∤ k, 2χ−k ∉ Z+ if and only if n ≠ 2(dk + 1), where
dk ∈ Z+ is a divisor of k.

Now, suppose (n − 2) ∣ k. Then, Λk = χ−k ∈ Z∗. As a result, Eq. (39) converges for all k ∈ Z∗ when n ≥ 3. In fact, if k ≠ 0, then

Λk

∑
m=0

˜̄αk,m = −
(−Λk − 1)Λk+1(−Λk)Λk+1

(Λk + 1)!(−2Λk)Λk+1
= 0, (40)

where equality to zero follows from (−Λk)Λk+1 = 0. Using R(α)
0 (rs, rs) = 1, Eqs. (39) and (40) imply

lim
r→r+

s

R(α)
k (r, rs) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if k = 0,

0 if k ∈ Z+ and (n − 2) ∣ k,
Γ(−2χ−k )

Γ(−χ−k )Γ(1−χ−k ) rk
s , otherwise.

(41)

These convergence and divergence properties constitute the origin of the electric multipole hair on ST black holes. They also indicate why
n = 3 is special: only with this dimension does (n − 2) ∣ k, and thus is R(α)

k (r, rs) = 0 as r → r+
s , for all k ∈ Z+.

Finally, we compute the derivative of R(α)
k (r, rs) as r → r+

s . The derivative properties of hypergeometric functions imply

lim
r→r+

s

R′(α)
k (r, rs) = −(n − 2)r−(k+n−3)

s

⎡
⎢
⎢
⎢
⎣
α̃k,1∑

m≥0
β̃k,m +

Γ(2χ+
k )χ+

k

Γ(χ+
k )Γ(1 + χ+

k )

⎤
⎥
⎥
⎥
⎦

, (42)

where the sequence {β̃k,m}m≥0 is defined by
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β̃k,m ∶=
(1 + χ+

k )m(χ+
k )m

m!(1 + 2χ+
k )m

. (43)

The same methods used to obtain Eqs. (38) and (39) show that the β̃k,m sum in Eq. (42) diverges for all k ∈ Z∗. Consequently, R′(α)
k (r, rs)

diverges as r → r+
s for all k ∈ Z∗ when n ≥ 3.

IV. GREEN’S FUNCTION
For sake of clarity, we write r ∶= (r,φ) and henceforth suppress all dependencies on rs. We assume the physical source function j0(r) in

Eq. (15) is zero for sufficiently large r. Furthermore, we impose the Dirichlet boundary condition G ∼ r−(n−2), where G is the Green’s function to
be determined in this section. The situation we examine is when j0(r) is nonzero only at a singular point p ∈ Sn+1, for which r(p) = rp ∶= (rp,φp)
is constant. We shall assume rp > rs until stated otherwise. In this case, the electric field is generated by a stationary point source outside the
black hole. The source function is then a particular instance of the effective source (15),

f eff(r) = g00δn(r − rp) +
rn−2

s (n − 2)
Ωn−1rn−1 ∂rG(r, rp). (44)

Here, the normalizations of the δ functions are chosen so that

∫ δ(r − rp)rn−1 dr = 1 (45)

and

∫
Sn−1

δn−1(φ − φp) dΩn−1 = 1. (46)

The solution to the Dirichlet problem is the Green’s function G(r, rp). To find this, we first write

δn(r − rp) = δ(r − rp)∑
k≥0

Γk

∑
l=1

Ŷ l
k(φp)Y l

k(φ), (47)

where we have employed the completeness relation (10). Next, we propose the ansatz

G(r, rp) = ∑
k≥0

Γk

∑
l=1

Zl
k(φp)Rk(r, rp)Y l

k(φ). (48)

Here, {Zl
k}

Γk
l=1 is a set of undecided, complex-valued functions on Sn−1. Substituting Eq. (48) into Eq. (12) establishes that Zl

k(φp) = Ŷ l
k(φp) and

that Rk(r, rp) satisfies

d
dr
[rn−1

(1 −
rn−2

s

rn−2 )R′k] − rn−3 k(k + n − 2)Rk − (n − 2)rn−2
s R′k = g00Ωn−1rn−1δ(r − rp). (49)

This is identical to Eq. (18) for all r ≠ rp. Therefore, Rk(r, rp) is a linear combination of both R(α)
k and R(α)

k ,

Rk(r, rp) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

AkR(α)
k (r) + AkR(α)

k (r) if r > rp,

BkR(α)
k (r) + BkR(α)

k (r) if r < rp.
(50)

As G ∼ r−(n−2), we require Ak = 0 since R(α)
k (r) ∼ rk by Eq. (35). We determine Bk by requiring the Lorentz scalar

1
2

FμνFμν = (∂rV)2 + (1 −
rn−2

s

rn−2 )

−1

(∂φi V)(∂φi V) (51)

to be finite as r → r+
s when rp > rs. As in Eq. (42), R′(α)

k is divergent for all k ≥ 0 as r → r+
s . We therefore set Bk = 0 to suppress the divergence

of ∂rV . Finally, we require that the solution be continuous at r = rp. We conclude that
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Rk(r, rp) = CkR(α)
k (r>)R(α)

k (r<), (52)

where Ck ∶= Ak/R(α)
k (rp) = Bk/R(α)

k (rp) is a constant and r< ∶= min{r, rp}, while r> ∶= max{r, rp}. At r = rp, the function Rk(r, rp) is continuous
(by design), though its first derivative is not. Integrating Eq. (49) over the interval (rp − ϵ, rp + ϵ) of radius ϵ > 0 and using the Wronskian (37),
we determine the value of Ck to be

Ck = −
Ωn−1

2k + n − 2
. (53)

Combining this with Eq. (48), we obtain the Green’s function

G(r, rp) = −Ωn−1∑
k≥0

Γk

∑
l=1

R(α)
k (r>)R(α)

k (r<)Ŷ l
k(φp)Y l

k(φ)

2k + n − 2
. (54)

V. MULTIPOLE HAIR AND DISCUSSION
Let q be the globally conserved Noether charge that results from integrating the Noether current ∇νjν = 0 over the ST manifold. Since j0

is the only nontrivial component of the vector current, Stokes’ theorem27 implies

q = ∫ j0(r,φ)
√
∣det g∣ dr dφ = ∫ j0(r,φ)rn−1 dr dΩn−1. (55)

In our model, we consider the effect of a point source of strength q located at rp = (rp,φp), where rp > rs (outside the event horizon). The
normalizations (45) and (46) establish that the physical source is then j0(r,φ) = qδn(r − rp). Consequently, the solution Ψ(r, rp) to Eq. (12)
that behaves appropriately is Ψ(r, rp) = qG(r, rp).

In this analysis, we shall examine the behavior of the field Ψ at points r = (r,φ) for which r > rp as rp → r+
s . Physically, this limit cor-

responds to a “slow fall” of the charge into the event horizon of the ST black hole. We assume the fall is slow enough such that our static
considerations remain valid. In the following, the multipole moments are identified relative to the monopole term, which in n + 1 dimensional
spacetime is asymptotic to r−(n−2). Accordingly, terms asymptotic to r−(μk+n−2) characterize the μk-pole moment.

For the n = 3 case, Cohen and Wald25 found that the spacetime approaches the Reissner-Nordström geometry for any observer outside
the event horizon and hence that all electric multipole moments vanish, with the exception of the conserved monopole charge q. The con-
clusion is markedly different when n > 3. Here, the final ST black hole exhibits countably infinite nonzero multipole moments. Furthermore,
there exist spatial dimensions n > 3 in which a nonzero number of the multipole moments are of infinite strength. These conclusions follow
immediately from Green’s function (54), but we shall prove them explicitly below. In doing so, we frequently reference the set

Λ ∶= {k ∈ Z+ : (n − 2) ∤ k} ∪ {0}. (56)

As n ≥ 3, Λ = {0} if and only if n = 3.
We now consider the effect of lowering an electrostatic point charge of strength q into a ST black hole. Equation (41) implies R(α)

k (rs) is
nonzero if and only if k ∈ Λ. Therefore, an observer outside the horizon at r = (r,φ) measures the field

Ψ(r, rp)∣
rp=rs
= −qΩn−1∑

k∈Λ

Γk

∑
l=1
∑
m≥0

α̃k,mR(α)
k (rs)Ŷ l

k(φp)Y l
k(φ)

rk+n−2
s (2k + n − 2)

(
rs

r
)

k+(m+1)(n−2)
. (57)

If n = 3, then Λ = {0}. Furthermore, α̃0,m = 0 for all m ∈ Z+. Hence, in this case, Ψ only has a monopole term. This agrees with Cohen and
Wald’s result:25 the multipole moments of the field for an electrostatic point charge (except the monopole) vanish as the charge approaches
the event horizon of a Schwarzschild black hole. If n > 3, however, then there exists a k ∈ Λ/{0} for which R(α)

k (rs) ≠ 0. As α̃k,0 ≠ 0 for
k > 0, Ψ has a k-pole moment. But α̃k,m ≠ 0 for k > 0 and all m ∈ Z∗. Therefore, the existence of a single k-pole moment (excluding the
monopole) implies the existence of countably infinite multipole moments—namely, all μk-pole moments for which μk and k are congruent
modulo n − 2. This suggests that ST black holes acquire countably infinite electric multipole moments from infalling, electrically charged
matter.

Interestingly, if there exists a k ∈ Z+ with divisor dk such that n = 2(dk + 1), which is true if and only if n > 3 is even, then, by Eq. (41) and
the analysis thereafter, there exists a k-pole moment (and hence a countably infinite set of μk-pole moments) of infinite strength. Therefore,
in even dimensions n > 3, Ψ diverges globally (i.e., is everywhere infinite). However, if n > 3 is odd, then all nonzero multipole moments, and
hence Ψ, are everywhere finite.

The behavior of the field at the horizon as the source approaches the horizon can be determined by swapping r and rp in Eq. (57)
and taking the limit rp → r+

s . It is easy to see using Eqs. (38) and (39) that the field is infinite at the horizon if n > 3 is even. Otherwise,
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the field is well-behaved and finite at the horizon. This divergence in even dimensions brings about the possibility of destruction of the
horizon.

The conclusion that the final state of the ST black hole possesses countably infinite electric multipole moments presents a para-
dox. We expect the final state to be RNT in nature due to the uniqueness of the RNT solution among all nondegenerate, topologically
hyperspherical, static, asymptotically flat, electrovac solutions to the Einstein-Maxwell equations. However, the RNT black hole is hyper-
spherically symmetric, so it cannot possess electric multipole anisotropies. We conclude that the final state is not RNT in nature. In
particular, the final state is not a nondegenerate, topologically hyperspherical, static, asymptotically flat, electrovac solution to the Einstein-
Maxwell equations. One (or more) of these characterizations must not apply to the final state, so as to render it different from the RNT
spacetime.33

Staticity and, at least for odd dimensions n > 3, asymptotic flatness can be assured, however. Staticity follows from the observation that
our analysis never concerned itself with the rate at which the charge is lowered into the black hole. Thus, the lowering rate (the only non-
static phenomenon in this study) can be assumed arbitrarily close to zero. For asymptotic flatness, we note that the source of the global
divergence of Ψ as rp → r+

s for even n > 3 is the factor of R(α)
k (rp) in Eq. (57). That this factor is independent of r and φ implies ∂iΨ

diverges globally as rp → r+
s for even n > 3. Since the energy content of the field is related to ∂iΨ, the global divergence of ∂iΨ suggests Ψ

may influence the asymptotic geometry. In particular, asymptotic flatness of the final state is not guaranteed for even n > 3. Conversely,
for odd n > 3, ∂iΨ is everywhere finite in the horizon limit. Asymptotic flatness can then be assured by merely tuning the strength q of
the charge to a value small enough (though nonzero) such that the geometry is unaffected by it. For odd dimensions, therefore, our start-
ing assumption that the electric field does not influence the local spacetime geometry holds well as rp → r+

s for q sufficiently small. The
influence of Ψ on the asymptotic geometry must then be particularly negligible, thereby preserving asymptotic flatness. At least for odd
dimensions, these considerations guide us to the question of how a static and asymptotically flat black hole can exhibit electric multipole
fields.

Assuming the horizon of the final state is both nondegenerate and homeomorphic to Sn−1, then uniqueness of the RNT black hole
forces the final state to be RNT spacetime. However, as we have remarked, RNT spacetime is hyperspherically symmetric, and the final
state is not. As the final state (in odd dimensions) is static and asymptotically flat, we are led to the conclusion that one (or both) of the
remaining assumptions (nondegenerate horizon and hyperspherical topology) is incorrect. If the horizon is degenerate, then the final state
would be a counterexample to the expected nondegeneracy of static black hole solutions to the higher dimensional Einstein-Maxwell equa-
tions.34,35 Moreover, the final state would have a degenerate and necessarily ahyperspherical horizon in order to generate the multipole
anisotropies. On the other hand, if the final state is not topologically hyperspherical, suggesting that infalling electric charges induce dis-
continuous topological transformations to the horizon, then the uniqueness of the RNT solution is invalidated. This allows for a topologically
and geometrically ahyperspherical solution to characterize the final state, which is necessary for it to possess the multipole fields. While both
these mechanisms ostensibly resolve the paradox (and are not immediately mutually exclusive), uncovering their exact details warrants further
investigation.

We conclude with a comment on even dimensions n > 3. As, in this case, ∂iΨ diverges in the horizon limit, the global spacetime geometry
may be altered in a significant way. Thus, asymptotic flatness of the final state is not guaranteed. It follows that the nondegeneracy and/or
hyperspherical topology of the horizon need not be violated (though are not immediately precluded from being violated) to generate the
multipole anisotropies. This is because relaxing the assumption of asymptotic flatness is enough to render the ST solution nonunique among
all possible nondegenerate, topologically hyperspherical, and static solutions to the Einstein equations.20,21 It is conceivable, therefore, that in
the even dimensional case, the absence of asymptotic flatness in the final state accounts for the multipolar structure of the electric potential.
Of course, as in the odd dimensional case, the exact details of this possibility require a more in-depth analysis, on which we hope to report
soon.
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