
 

Palatini f(R;Lm;RμνTμν) gravity and its Born-Infeld semblance

Matthew S. Fox*

Department of Physics, Harvey Mudd College, Claremont, California 91711, USA

(Received 2 December 2018; published 19 June 2019)

We investigate Palatini fðR;Lm;RμνTμνÞ modified theories of gravity. As such, the metric and affine
connection are treated as independent dynamical fields, and the gravitational Lagrangian is made a function
of the Ricci scalarR, the matter Lagrangian density Lm, and a “matter-curvature scalar”RμνTμν. The field
equations and the equations of motion for massive test particles are derived, and we find that the
independent connection can be expressed as the Levi-Civita connection of an auxiliary, energy
momentum–dependent metric that is related to the physical metric by a matrix transformation. Similar
to metric fðR; T;RμνTμνÞ gravity, the field equations impose the nonconservation of the energy-
momentum tensor, leading to the appearance of an extra force on massive test particles. We obtain the
explicit form of the field equations for massive test particles in the case of a perfect fluid and an expression
for the extra force. The nontrivial modifications to scalar fields and both linear and nonlinear
electrodynamics are also considered. Finally, we detail the conditions under which the present theory
is equivalent to the Eddington-inspired Born-Infeld theory of gravity.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) [1] and direct measurements of the light curves
from several hundred type Ia supernovae [2] suggest that
the Universe is currently undergoing a phase of late-time,
accelerated expansion. While the physics underlying this
phenomenon remain unsettled, at least one thing is certain:
the acceleration is either a trait of the gravitational
interaction itself, or it is a gravitational manifestation of
something else (dark energy). By and large, the copious
models of the former type derive from revisions to the
Einstein-Hilbert action

SEH ¼ 1

2κE

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð1Þ

where κE is the Einstein constant,R is the Ricci scalar, and
g is the determinant of the spacetime metric gμν.
Among the most straightforward generalizations of SEH

are the fðRÞ models. These constitute a class of higher-
order gravity theories in which SEH is restyled with terms of
higher degree in the scalar curvature. Indeed, the mystery of
cosmic expansion can be unraveled in this approach [3].
Some models [4] even appear to avoid the fatal instabilities
and acute weak-field constraints that bar many other
proposals [5]. Incidentally, the lure of fðRÞ gravity is
broader in application than to just cosmic speed-up. For
instance, theories with higher-order curvature invariants

show promise as effective first-order approximations to
quantum gravity and can encourage quantum and gravita-
tional fields to be well behaved in the ultraviolet regions
neighboring curvature singularities [6]. Further fðRÞ
phenomenology has been extensively surveyed in the
literature [7].
Interesting extensions of the fðRÞ models are those

theories which include in the action an explicit nonminimal
coupling between matter and curvature invariants. A
notable subset of these models is so-called fðR;LmÞ
gravity (Lm being the matter Lagrangian density) intro-
duced by Bertolami et al. in Ref. [8]. Their model was
linear in the nonminimal coupling, which prompted the
author of Ref. [9] to study the maximal extension of SEH in
whichR and Lm are coupled arbitrarily. Cosmological and
astrophysical phenomena have been studied in various
fðR;LmÞ frameworks [10], in addition to more general
studies into the properties of the theory itself [11].
Generally speaking, nonminimal theories such as

fðR;LmÞ gravity do not admit chart transitions that locally
transform away the influence of a gravitational field on
matter [12]. In turn, the covariant divergence of the energy-
momentum tensor is generally nonzero, the motion of test
particles is generally nongeodesic (due to the presence of
an extra force orthogonal to the 4-velocity [8]), and thus the
equivalence principle (EP) is generally violated. Hence,
these theories are stringently constrained by tests of the EP.
It is important to note, however, that a violation of the EP
does not in principle disqualify the specific theory [13].
A set of models related to fðR;LmÞ gravity derives from

the case in which the functional dependence on Lm
*msfox@g.hmc.edu

PHYSICAL REVIEW D 99, 124027 (2019)

2470-0010=2019=99(12)=124027(13) 124027-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.124027&domain=pdf&date_stamp=2019-06-19
https://doi.org/10.1103/PhysRevD.99.124027
https://doi.org/10.1103/PhysRevD.99.124027
https://doi.org/10.1103/PhysRevD.99.124027
https://doi.org/10.1103/PhysRevD.99.124027


manifests via a dependence on the trace T of the energy-
momentum tensor. These so-called fðR; TÞ models have
drawn significant attention and were explicitly introduced
by Harko et al. in Ref. [14]. However, Poplawski [15] was
first to consider a model in which the cosmological
constant is a function of T, which is considered a
relativistically covariant model for interacting dark energy
and which is evidently a subset of the fðR; TÞ theory. We
note that explicit dependences on T may be induced by
quantum effects (e.g., conformal anomalies) or exotic
imperfect fluids. The reader is referred to the review
[16] for additional fðR;LmÞ and fðR; TÞ phenomenology.
Further extensions to the fðR;LmÞ and fðR; TÞ theories

were proposed in Refs. [17,18], in which terms of the form
RμνTμν, where Rμν is the Ricci tensor, were incorporated
into the fðR; TÞ Lagrangian. Instances of this coupling are
known to arise in Born-Infeld models of gravity [19] when
one Taylor expands the Lagrangian. The cosmological
implications of these so-called fðR; T;RμνTμνÞ gravity
theories were surveyed in Refs. [17,18,20], and the
criterion to circumvent the Dolgov-Kawasaki instability
[21] can be found in Ref. [18]. Moreover, energy conditions
and thermodynamic laws in fðR; T;RμνTμνÞ gravity were
considered in Ref. [22]. Finally, it is known that metric
fðR; T;RμνTμνÞ gravity acquires ghostlike instabilities due
to the additional RμνTμν coupling [23] and that these
instabilities can be avoided with a Palatini or metric-affine
variation [24].
The appearance of the RμνTμν coupling in Born-Infeld

gravity is the chief motivation for our study. The Born-
Infeld models themselves, akin to Born-Infeld electromag-
netism, modify the determinantal structure of SEH. Among
the many Born-Infeld models, a prominent one is the
Eddington-inspired Born-Infeld (EiBI) theory proposed in
Ref. [25]. Whereas many fðRÞ models differ from general
relativity (GR) even in vacuum, EiBI does not. Yet in
ultraviolet regions, such as near cosmological singularities,
EiBI gravity is characterized by curing the geometrical
divergences plaguing GR [25]. See Ref. [26] for a recent
review on Born-Infeld modifications to gravity.
Importantly, in all of these theories, independent of the

details of the modification, one must ultimately choose
between two ostensibly similar methods for varying the
action: either one treats the metric as the sole dynamical
entity and fixes a priori the connection to be the Levi-
Civita connection of gμν (the metric formalism), or one
regards the metric and affine connections as independent
dynamical structures (the metric-affine or Palatini formal-
isms, depending on whether matter couples to the con-
nection or not, respectively). In GR, the distinction is
superfluous as they both lead to the same physics.
However, in general, nearly all the aforementioned theories
forecast different physics depending on whether the metric
and affine structures are handled independently or not. In
fact, in some theories, such as EiBI gravity [25] and

(already mentioned) fðR; T;RμνTμνÞ gravity [24], the
Palatini formalism will remove ghostlike instabilities that
otherwise afflict their metric counterparts. Whether the
affine connection is determined by the metric degrees of
freedom (d.o.f.) or not is a truly fundamental question and
demands experimental investigation.
Though matter couplings to the connection may arise

due to quantum gravitational corrections, we shall ignore
that possibility here, and so we exercise the Palatini
formalism. Studies of Palatini fðRÞ and fðR; TÞ models
can be found in Refs. [27] and [28,29], respectively, and
more general actions varied à la Palatini and metric-affine,
including the role of torsion, can be found in Ref. [24]. To
the best of our knowledge, no studies of pure Palatini
fðR; T;RμνTμνÞ or Palatini fðR;Lm;RμνTμνÞ gravity
have yet been completed, though indirect pursuits exist
(see, e.g., Ref. [24]). In this paper, we shall investigate
Palatini fðR;Lm;RμνTμνÞ gravity, from which Palatini
fðR; T;RμνTμνÞ gravity follows after a simple modifica-
tion to the field equations. In addition to studying
fðR;Lm;RμνTμνÞ gravity on its own, we ultimately seek
the conditions under which our theory corresponds to EiBI
gravity.
The present paper is structured as follows. In Sec. II,

we vary the fðR;Lm;RμνTμνÞ action à la Palatini and
derive the theory’s equations of motion and an explicit
form for the independent connection. In Sec. III, we survey
the bimetric structure of fðR;Lm;RμνTμνÞ gravity in
addition to the nonminimal structure of the field equa-
tions. In Sec. IV, we explore various properties of the
fðR;Lm;RμνTμνÞ field equations, including their non-
conservation equation, the nongeodesic motion of test
particles, the nature of the extra force, the weak-field limit,
and the modified Poisson equation. In Sec. V, we derive the
fðR;Lm;RμνTμνÞ field equations for the cases of linear
and nonlinear electromagnetic fields as well as canonical
scalar fields. Finally, in Sec. VI, we derive the conditions
under which the fðR;Lm;RμνTμνÞ model responds iden-
tically to the EiBI theory for specific matter sectors.
In this paper, we shall operate in a four-dimensional

spacetime ðM; gμν;Γα
μνÞ in which the metric gμν and

connection Γα
μν will be treated as independent dynamical

fields. We shall utilize the metric signature ð−;þ;þ;þÞ
and, where appropriate, adopt the natural system of units in
which c ¼ 8πG ¼ 1.

II. FIELD EQUATIONS OF
f(R;Lm;RμνTμν) GRAVITY

The Ricci tensor can be defined solely in terms of the
affine connection, and this underpins the Palatini and
metric-affine formalisms. Explicitly, the Ricci tensor fol-
lows from the Riemann curvature tensor

Rα
βμν ¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μλΓλ
νβ − Γα

νλΓλ
μβ ð2Þ
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via the contraction RμνðΓÞ≡Rα
μανðΓÞ. Only now, one

needs to invoke the metric to define the Ricci scalar
Rðg;ΓÞ≡ gμνRμνðΓÞ and a matter-curvature scalar
Vðg;Γ;ΨÞ≡RμνðΓÞTμνðg;ΨÞ, where Tμν is the symmetric
(Hilbert) energy-momentum tensor. As we shall see below
in Eq. (5), the energy-momentum tensor is constructed à la
Palatini so that Tμν depends only on the metric and a set of
matter fields Ψ. We note that the symmetry of gμν and Tμν

imposes that only the symmetric part of the Ricci tensor
enters into this theory’s action. This considerably simplifies
the role of torsion in the theory and renders a separate
consideration for fermionic matter immaterial [24].
With all this in mind, the action considered in this work

bears the form

S½g;Γ;Ψ� ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR;Lm; VÞ þ Sm½g;Ψ�; ð3Þ

where κ is a coupling constant with suitable dimensions.
Here, the matter Lagrangian density Lm, encoded in both
the function fðR;Lm; VÞ ¼ fðR;Lm;RμνTμνÞ and the
matter action

Sm½g;Ψ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm½g;Ψ�; ð4Þ

is assumed to capture all matter fields Ψ present in M.
Moreover, Lm determines the manifestly symmetric
energy-momentum tensor

Tμν ≡ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

; ð5Þ

which again is independent of the affine connection in the
Palatini formulation.
If we denote by δSg and δSΓ the variation of Eq. (3) with

respect to the metric and connection, respectively, then
δS ¼ δSg þ δSΓ with

δSg ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
fgμν þ fRRμν þ fLΞμν

þ fVΠμν − κTμν

�
δgμν ð6Þ

and

δSΓ ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
ðfRgμν þ fVTμνÞ δRμν

δΓλ
αβ

�
δΓλ

αβ: ð7Þ

Here, we have introduced the definitions fR ≡ ∂Rf, fV ≡
∂Vf; fL ≡ ∂Lm

f as well as the manifestly symmetric
matter and matter-curvature tensors

Ξμν ≡ ∂Lm

∂gμν ; ð8Þ

Πμν ≡Rαβ
δTαβ

δgμν
; ð9Þ

respectively. Since gμν and Γα
μν are independent fields,

δS ¼ 0 if and only if δSg and δSΓ vanish separately. In the
case of the metric variation (6), δSg ¼ 0 implies

fRRμν −
1

2
fgμν ¼ κTμν − fLΞμν − fVΠμν: ð10Þ

This is the fðR;Lm; VÞ generalization of Einstein’s
equation. Its properties shall be explored in the coming
sections. We note here, however, that as a consequence of
the nonminimal coupling there appear in Eq. (10) strict
couplings between matter fields and curvature terms. This
is very much unlike GR and other minimally coupled
theories in which matter fields are wholly separable from
curvature terms such that the field equations may be written
in a “curvature = matter” type representation. Ultimately,
however, writing the field equations in this way is more for
physical tidiness and less for mathematical substance.
Hence, the mathematical representation of these equations
may as well be chosen such that it facilitates later
computation. To this end, we define a curvature-dependent
effective energy-momentum tensor by

Σμν ≡ Tμν −
fL
κ
Ξμν −

fV
κ
Πμν; ð11Þ

which refashions the field equations (10) into a form similar
to those in Palatini fðRÞ gravity:

fRRμν −
1

2
fgμν ¼ κΣμν: ð12Þ

The variation with respect to the connection takes more
care. We refer the reader to Ref. [24], in which a nearly
complete derivation is given. One shall find that δSΓ ¼ 0
only if

∇ðpÞ
σ ½ ffiffiffiffiffiffi

−g
p ðfRgμν þ fVTμνÞ� ¼ 0; ð13Þ

where ∇ðpÞ is the derivative operator associated with the
independent connection and which is manifestly distinct
from ∇ðgÞ, the covariant derivative compatible with the
spacetime metric gμν. The resemblance of Eq. (13) to the
companion EiBI field equation will be studied in Sec. VI.
We note that Eq. (13) holds well even in the presence of

torsion. This follows from this theory’s insensitivity to the
projective d.o.f. in projective transformations of the inde-
pendent connection, which ultimately derives from only the
symmetric part of the Ricci tensor entering into the action
(3). See Ref. [24] for details.
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Together, Eqs. (10) and (13) comprise the field equations
for fðR;Lm; VÞ gravity. We see in Eq. (13) a natural
auxiliary metric ingrained into this theory’s mathematical
structure, namely, a metric pμν of which the inverse,
denoted pμν [30], satisfies

ffiffiffiffiffiffiffi
−p

p
pμν ¼ ffiffiffiffiffiffi

−g
p ðfRgμν þ fVTμνÞ; ð14Þ

where p≡ detðpμνÞ. Evidently, the symmetry of gμν and
Tμν forces pμν (and hence pμν) to be symmetric. Moreover,

pμν satisfies ∇ðpÞ
σ ð ffiffiffiffiffiffiffi−pp

pμνÞ ¼ 0 by construction, so pμν is
compatible with ∇ðpÞ, provided the coefficients of the
independent connection are the Christoffel symbols in pμν,

Γα
μν ¼

1

2
pασð∂μpσν þ ∂νpμσ − ∂σpμνÞ: ð15Þ

Consequently, the independent connection is the Levi-
Civita connection in the auxiliary metric pμν. Note also
that the determinant p can be computed explicitly with
Eq. (14) and the relation p ¼ det−1ðpμνÞ. One finds

p ¼ g2 det ðfRgμν þ fVTμνÞ: ð16Þ

We shall apply these formulas to various physical phenom-
ena in the coming sections. But first, we briefly comment
on some general characteristics of the field equations.

III. REMARKS ON THE f ðR;Lm;VÞ
FIELD EQUATIONS

As noted above, for theories in which couplings are
minimal, the matter fields can in general be placed on one
side of the theory’s field equation, and the symmetric part
of the Ricci tensor will be given solely in terms of gμν. But
for nonminimal theories, the matter fields are generally
inseparable from the geometry terms, and the symmetric
part of the Ricci tensor need not be given solely in terms of
gμν. Such is the case for fðR;Lm; VÞ gravity, as made
evident by the field equations (10) and (13). Other aspects
of the present theory’s nonminimal character are addressed
in this section.

A. Matter and matter-curvature tensors

The matter-curvature tensor Πμν is a hallmark of the
present theory’s nonminimal coupling. For the sake of
computation, it is of interest to write this tensor in a form
entirely in terms of the matter Lagrangian and Ricci tensor.
To this end, assuming the matter Lagrangian is independent
of derivatives of the metric, one can show that Eq. (5) is
equivalent to

Tμν ¼ Lmgμν þ 2
∂Lm

∂gμν : ð17Þ

Incidentally, this equation has the matter tensor Ξμν

implicitly built into it,

Ξμν ¼
1

2
ðLmgμν − TμνÞ; ð18Þ

which we shall find useful later on. Moreover, Eq. (17)
facilitates calculating the functional derivative

δTαβ

δgμν
¼ gαβ

∂Lm

∂gμν þ 2
∂2Lm

∂gμν∂gαβ þ Lmδ
ðαβÞ

μν; ð19Þ

where δðαβÞμν ¼ 1
2
ðδαμδβν þ δβμδ

α
νÞ is the upper symmetric

part of the generalized Kronecker symbol (we herein
denote symmetrization by parentheses). Combining this
result with the definition of the matter-curvature tensor in
Eq. (9) implies

Πμν ¼ R
∂Lm

∂gμν þ 2Rαβ
∂2Lm

∂gμν∂gαβ þRμνLm: ð20Þ

Another useful identity is

Πμν ¼ 2RλðμTλ
νÞ þRαβ

δTαβ

δgμν
; ð21Þ

which follows from substituting Tμν ¼ gμαgνβTαβ into the
definition (9) of the matter-curvature tensor.
A notable matter sector is that of a perfect fluid (PF),

for which we shall take Lm ¼ P [31], where P is the
isotropic pressure of the fluid. The corresponding energy-
momentum tensor is

TðPFÞ
μν ¼ ðρþ PÞuμuν þ Pgμν; ð22Þ

where ρ is the energy density of the fluid and the fluid’s
4-velocity uμ satisfies the condition uμuμ ¼ −1. One can
show the pressure P satisfies

δP ¼ −
1

2
ðρþ PÞuμuνδgμν ð23Þ

by using Eq. (17) with Lm ¼ P and comparing to Eq. (22).
Moreover, one has [33]

δρ ¼ 1

2
ρðgμν − uμuνÞδgμν; ð24Þ

which ultimately follows from the conservation of the

matter fluid current, ∇ðgÞ
μ ðρuμÞ ¼ 0. Using these formulas

appropriately, one shall find

ΞðPFÞ
μν ¼ −

1

2
ðρþ PÞuμuν ð25Þ
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and, from Eq. (21) and the identity δuα
δgμν ¼ − 1

2
gαðμuνÞ,

ΠðPFÞ
μν ¼ RλðμT

ðPFÞ
νÞλ þ 1

2
ρRαβuαuβgμν

−
1

2
½ð2ρþ PÞRαβuαuβ þ ðρþ PÞR�uμuν: ð26Þ

The effective energy-momentum tensor for a perfect fluid
then follows from its definition (11). The rather exotic
coupling of matter and the 4-velocity to the Ricci tensor in
Eq. (26) suggests that the matter-curvature tensor will play
a significant role in the field equations in regions of high
density, such as within a black hole or in the very early
Universe. This is quantitatively similar to EiBI gravity,
which has in its field equations a similar RμνTμν coupling
that also gives rise to couplings between the Ricci tensor
and the 4-velocity of perfect fluids (see Ref. [26] or Sec. VI
of this paper). It is natural to hypothesize, then, that
fðR;Lm; VÞ gravity may be fashionable such that it
corresponds to GR in the weak-field regime but then cures
the curvature singularities of GR in high density regions—
behavior that mimics the preeminent characteristics of EiBI
gravity.

B. Auxiliary metric

The introduction of the “natural” auxiliary metric pμν into
the present theory affords a specific bimetric structure to the
fðR;Lm; VÞ model. In addition to the physical spacetime
metric gμν, through which the gravitational observables
manifest, there is the auxiliary metric upon which the
mathematical edifice of the theory is best supported. This
structure is analogous to EiBI gravity wherein there also
exists a natural bimetric arrangement [25,26]. In the present
theory, however, unlike the minimal nature of EiBI theory,
the gravitational Lagrangian has built into it a direct coupling
between the matter fields and the auxiliary metric via the
scalar curvature R and the matter-curvature scalar V≡
RμνTμν. This coupling appears through the explicit depend-
ence of the independent connection (15) on pμν and its
inverse. Such a coupling suggests that there is some physical
nature tied to the auxiliary metric. But because all physical
observables manifest via the spacetime metric, the non-
minimal coupling suggest a general link between the
auxiliary and spacetime metrics. Obviously, the particulars
of this link cannot be properly realized until the details of the
nonminimal coupling are known (which necessitates speci-
fying a particular function f). However, a general relation-
ship can be drawn.
A natural link to proffer is that of a conformal relation-

ship, in which pμν ¼ Θ2gμν for some real-valued, smooth
function Θ defined on M. This approach, however, is
consistent only for specific matter sectors [34]. Thus,
conformality between pμν and gμν fails to capture the
general framework we seek. A more general approach,

again analogous to EiBI gravity, is to introduce a differ-
entiable deformation matrix Ωμ

ν satisfying

pμν ¼ gμλΩλ
ν: ð27Þ

In matrix notation, this reads p ¼ gΩ so that p−1 ¼
Ω−1g−1. Direct comparison to Eq. (14) reveals that

Ω−1 ¼ 1ffiffiffiffi
Ω

p ðfRIþ fVg−1TÞ; ð28Þ

where I is the identity matrix andΩ≡ detðΩÞ follows from
Eq. (16). It is now an algebraic problem to solve for Ω and
hence pμν, explicitly, following the specification of the
matter Lagrangian and the fðR;Lm; VÞ model of interest.
One subsequently obtains the form of the connection and
related curvature terms for the specific theory, and all that
remains to resolve a given problem is the differential
equations (10). An example of this procedure, in the
context of EiBI gravity, can be found in Ref. [26].

C. Likeness to other f theories

The Palatini fðR;Lm; VÞ formalism contains as special
cases the Palatini fðRÞ and fðR;LmÞ theories but not in
general the Palatini fðR; TÞ and fðR; T; VÞ theories.
Evidently, Palatini fðR;Lm; VÞ and fðR; T; VÞ gravity
correspond only when Lm ¼ T, which is a hefty constraint
by which most matter fields do not abide [35]. That said, for
matter fields with a vanishing energy-momentum trace
(such as electromagnetic fields), the fðR;Lm; VÞ model
clearly contains the fðR; T; VÞ model. We say that Palatini
fðR;Lm; VÞ and fðR; T; VÞ are circumstantially equivalent
theories of gravity since their equivalence is such that it holds
only for specific matter fields (this notion is made more
precise in Sec. VI). There is, however, a simple procedure to
obtain Palatini fðR; T; VÞ gravity from the fðR;Lm; VÞ
theory for arbitrary matter sectors: merely replace the fLΞμν

term in the field equations (10) by fT ∂T
∂gμν, and continue on

that way. Since in the Palatini formalism the trace T ≡ Tμ
μ is

independent of the independent connection, its incorporation
into the function f will not affect Eq. (13). In this respect,
most results derived herein afford similar mathematical
structure to Palatini fðR; T; VÞ gravity, up to the replace-
ment of all fLΞμν terms with fT ∂T

∂gμν terms and the
subsequent manipulations of those terms. Evidently, the
exception to this rule is those results which utilize, in a
nontrivial manner, the full entourage of dependencies in the
fðR;Lm; VÞ model, such as the present theory’s circum-
stantial equivalence to EiBI gravity (see Sec. VI).

IV. PROPERTIES OF THE f(R;Lm;V)
FIELD EQUATIONS

Here, we shall consider various properties of the
fðR;Lm; VÞ field equations, including their conservation
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equation, their effect on the motion of massive test
particles, and their weak-field limit.

A. Conservation equation

In fðR;Lm; VÞ gravity, matter is nonminimally coupled
to curvature. Hence, the covariant divergence of the energy-
momentum tensor is not necessarily zero. In this section,
we derive an explicit expression for such nonconservation
of the energy-momentum tensor. In what follows, we use
tildes to decorate tensors which have been transvected by
the auxiliary metric pμν.
We begin with the field equations (12) in the form

G̃μ
ν ¼

1

fR

�
κΣ̃μ

ν þ
1

2
fðΩ−1Þμν

�
−
1

2
δμνR̃; ð29Þ

where G̃μ
ν is the Einstein tensor raised by pμν and ðΩ−1Þμν

is Ω−1 in index notation. Using the definition (14), one
finds

Σ̃μ
ν ¼

ffiffiffiffi
g
p

r
ðfRΣμ

ν þ fVTμλΣλνÞ; ð30aÞ

R̃ ¼
ffiffiffiffi
g
p

r
ðRfR þ VfVÞ: ð30bÞ

The condition we seek follows from the contracted
Bianchi identities, ∇ðpÞ

μ G̃μ
ν ¼ 0. All that remains is a

straightforward problem in algebra: expand Σμ
ν in

Eq. (30a) using its definition (11), then isolate the covariant
divergence of Tμ

ν. We find

κ∇ðpÞ
μ Tμ

ν ¼
ffiffiffiffi
p
g

r �
∇ðpÞ

μ

� ffiffiffiffi
g
p

r �
fLΞμ

ν þ fVΠμ
ν −

fV
fR

TμλΣλν −
ffV
2fR

Tμ
ν

��

−
1

2
∂ν

� ffiffiffiffi
g
p

r
ðf −RfR − VfVÞ

�
− κTμ

ν∂μ

� ffiffiffiffi
g
p

r ��
: ð31Þ

Alternatively, this nonconservation can be expressed
in terms of the connection ∇ðgÞ compatible with the
spacetime metric gμν. The relationship between the
covariant derivatives ∇ðpÞ (that defined with the inde-
pendent connection of the auxiliary metric) and ∇ðgÞ is
the following:

∇ðpÞ
μ Tμ

ν ¼ ∇ðgÞ
μ Tμ

ν þ CμμλT
λ
μ − CλμνTμ

λ; ð32Þ

where

Cαμν ¼
1

2
pασð∇ðgÞ

μ pσν þ∇ðgÞ
ν pμσ −∇ðgÞ

σ pμνÞ: ð33Þ

The metric/auxiliary metric relationship (27), the compat-
ibility of gμν with ∇ðgÞ, and the symmetry property of the
auxiliary metric imply the coefficients can be expressed
in a form that is independent of pμν:

Cαμν ¼
1

2
ðΩ−1Þασð∇ðgÞ

μ Ωσ
ν þ∇ðgÞ

ν Ωσ
μÞ

−
1

2
gμλðΩ−1Þασ∇σ

ðgÞΩ
λ
ν: ð34Þ

We note that any covariant derivative with respect to Ωμ
ν

can be replaced by a derivative with respect to ðΩ−1Þμν,
as their inverse relationship implies

ðΩ−1Þλν∇ðgÞ
σ Ωμ

λ þ Ωμ
λ∇ðgÞ

σ ðΩ−1Þλν ¼ 0: ð35Þ
With this in mind, the coefficients (34) become

Cαμν ¼ −
1

2
Ωλ

ν∇ðgÞ
μ ðΩ−1Þαλ −

1

2
Ωλ

μ∇ðgÞ
ν ðΩ−1Þαλ

þ 1

2
gμλðΩ−1ÞασΩγ

νΩλ
ϵ∇σ

ðgÞðΩ−1Þϵλ; ð36Þ

and the nonconservation of the energy-momentum tensor
turns out to be

∇ðgÞ
μ Tμ

ν ¼
1

κ

ffiffiffiffi
p
g

r �
∇ðpÞ

μ

� ffiffiffiffi
g
p

r �
fLΞμ

ν þ fVΠμ
ν −

fV
fR

TμλΣλν −
ffV
2fR

Tμ
ν

��

−
1

2
∂ν

� ffiffiffiffi
g
p

r
½f −RfR − VfV �

��
þ CλμνTμ

λ: ð37Þ

Clearly, the curvature and energy-momentum depend-
ences in Eq. (37) and the energy-momentum dependence of
ðΩ−1Þμν restrict these formulas from simplifying much
beyond what is given here. We emphasize, therefore, that

∇ðgÞ
μ Tμ

ν does not in general vanish. Hence, the energy-
momentum tensor in Palatini fðR;Lm; VÞ gravity is in
general not conserved. On the other hand, in Sec. VI, we
shall indirectly derive two nontrivial functions of
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fðR;Lm; VÞ for which the covariant divergence of specific
but nontrivial Tμν necessarily vanish, hence conserving the
energy-momentum tensor. That said, this conservation will
not be obvious at the level of Eq. (37), though it will
nevertheless be true. Finally, we note that for the Einstein-
Hilbert model fðR;Lm; VÞ ¼ R − 2Λ the conservation of
Tμν is restored, as desired.

B. Motion of test particles

For clarity, we denote by Δν the right-hand side of

Eq. (37). Then, ∇ðgÞ
μ Tμ

ν ¼ Δν. For the case of a perfect
fluid, for which Tμν ¼ ðρþ PÞuμuν þ Pgμν, it is straight-
forward to show, using the constraint from the conservation

of the matter fluid current, ∇ðgÞ
μ ðρuμÞ ¼ 0, that

uμ∇ðgÞ
μ uν ¼ Δν − uν∇ðgÞ

μ ðPuμÞ − ∂νP
Pþ ρ

: ð38Þ

Here, the left-hand side coincides with the well-known
identity

uμ∇ðgÞ
μ uν ¼ d2xν

ds2
þ Γν

αβ

dxα

ds
dxβ

ds
: ð39Þ

Therefore, Eq. (38) is the equation of motion for particles in
the presence of an isotropic pressure P. Absent this
pressure, the equation reduces to

d2xν

ds2
þ Γν

αβ

dxα

ds
dxβ

ds
¼ fν; ð40Þ

where the extra force fν ¼ ρ−1Δν
ðP¼0Þ with

ΔðP¼0Þ
ν ¼ 1

κ

ffiffiffiffi
p
g

r �
∇ðpÞ

μ

�
−

ffiffiffiffi
g
p

r
ρ

2
fLuμuν þ

fVρ
2

ffiffiffiffi
g
p

r
ð½Rσμuν þRσ

νuμ�uσ þRαβuαuβ½δμv − 2uμuν� −RuμuνÞ

þ
ffiffiffiffi
g
p

r
fVρ2

κfR

�
½κ − fL�uμuν þ

fV
2
½Ruμuν − uμRα

νuα þ 4Rαβuαuβuμuν�
�

−
ffiffiffiffi
g
p

r
ffV
2fR

ρuμuν

�
−
1

2
∂ν

� ffiffiffiffi
g
p

r
½f −RfR − VfV �

��
þ ρCαβνu

βuα ð41Þ

[see Eqs. (25) and (26) to derive this]. Since Δν
ðP¼0Þ is

in general nonzero, the extra force fν is in general nonzero.
Hence, test particles in fðR;Lm; VÞ gravity do not in
general obey the geodesic equation. In other words,
test particles traverse geodesics of gμν if and only if
Δμ

ðP¼0Þ ¼ 0.

C. Newtonian limit

In the weak-field regime, we consider the gravitational
effect of nonrelativistic dust, for which Tμν ¼ ρuμuν where
uμ ¼ ð∂0Þμ is the rest frame 4-velocity and ρ is the dust’s
energy density [38]. We shall linearize the fðR;Lm; VÞ
equations by keeping terms linear in ρ and in the pertur-
bations introduced below. To facilitate the coming analysis,
we adopt the following notation.
Let γμν and γ̂μν be smooth 2-forms (soon to be pertur-

bations). Further, let A and B be mathematical objects
composed, in some acceptable fashion, of the objects ρ; γμν,
and γ̂μν. Then, by A ≪ B, we shall mean A is first order
(linear) in at least one of ρ, γμν, or γ̂μν, while B is zeroth
order in all. Moreover, byA ≅ B, we shall meanA ¼ B up
to at least linear corrections in all ρ, γμν, and γ̂μν. Finally, by
A ∼ B, we shall mean A and B are of the same order in ρ,
γμν, or γ̂μν, but not necessarily equal (thus, A ≅ B
implies A ∼ B).

Consider the metric/auxiliary metric relation posited in
Eq. (27). This establishes that any perturbation δpμν upon
pμν satisfies

δpμν ¼ gμλδΩλ
ν þ Ωλ

νδgμλ: ð42Þ
Specifically, we shall consider perturbations δpμν ¼ γ̂μν
and δgμν ¼ γμν upon a Minkowski background ημν.
Then, pμν ¼ ημν þ γ̂μν and gμν ¼ ημν þ γμν such that
γ̂μν; γμν ≪ ημν. Here, pμν and gμν are related by Eq. (27),
and furthermore, the perturbations γ̂μν and γμν satisfy
Eq. (42). Together, these imply ημλΩλ

ν − ημν ≪ ημν, which
is possible if and only ifΩμ

ν ≅ δμν þ kμν, where kμν ≪ δμν.
In deriving this, one must also assume that the deformation
matrix reacts smoothly to slight perturbations upon the
Minkowski background, i.e., that gμλδΩλ

ν ≪ ημν, which
necessitates ημλδΩλ

ν ∼ γμν and γμλδΩλ
ν ≅ 0.

Transcribed to matrix notation, we have Ω ≅ Iþ k.
Thus, Ω−1 ≅ I − k, to which we shall directly compare
Eq. (28). Since the tensor Tμ

ν → g−1T is in general
different from the identity matrix, it must be that fR ≅ffiffiffiffi
Ω

p
and fVg−1T ≅

ffiffiffiffi
Ω

p
k, where

ffiffiffiffi
Ω

p
≅ 1þ 1

2
TrðkÞ. But

since TrðkÞk ≅ 0, with 0 the zero matrix, we simply have
k ≅ fVg−1T. Together, these results yield both pμν and pμν

to the desired first-order precision:
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pμν ≅ ημν þ γμν þ fVTμν; ð43aÞ

pμν ≅ ημν − γμν − fVTμν; ð43bÞ

where Tμν ¼ ημαηνβTαβ and γμν ¼ ημαηνβγαβ. We see from
Eq. (43a) that

γ̂μν ≅ γμν þ fVTμν ð44Þ

and similarly from Eq. (43b) that γ̂μν ≅ γμν þ fVTμν.
Hence, the connection coefficients (15) are, to linear order
in γ̂μν,

Γα
μν ≅

1

2
ηασð∂μγ̂σν þ ∂νγ̂μσ − ∂σγ̂μνÞ; ð45Þ

which yields the Ricci tensor

Rμν ≅ ∂σ∂ðνγ̂μÞσ −
1

2
∂σ∂σγ̂μν −

1

2
∂μ∂νγ̂; ð46Þ

where γ̂ ≡ γ̂μμ. Note that Eq. (46) is entirely of linear order
in γ̂μν. Hence, V ¼ RμνTμν ≅ 0 since Tμν is linear in ρ.
Moreover, fVΠμν ≅ 0 since δTαβ=δgμν ∼ ρ for dust [see
Eq. (24)], andRμν ∼ γ̂μν. We shall impose the Lorenz gauge
∂σγ̂μσ ¼ 0 so that the fðR;Lm; VÞ field equations, to linear
order in γ̂μν and ρ, bear the form

−
1

2
∂σ∂σγ̂μν −

1

2
∂μ∂νγ̂ −

1

2
fgμν ≅ κTμν − fLΞμν: ð47Þ

To obtain the matter tensor, we necessarily take Lm ¼ −ρ
for the matter Lagrangian of the pressureless dust. Hence,
from Eq. (24), Ξμν ¼ 1

2
ρðuμuν − ημν − γμνÞ. Here, ρ is the

leading-order correction from the matter sector; thus, the
product ργμν must be regarded as a second-order correction.
This implies that, to first order, Ξμν ≅ 1

2
ρðuμuν − ημνÞ and

hence Ξ≡ Ξμ
μ ≅ − 5

2
ρ. It follows that the trace of the field

equations (10) is, to first order,

fRR − 2f ≅ ρ

�
5

2
fL − κ

�
: ð48Þ

Note that Πμ
μ ≅ 0 since Πμν ≅ 0. Thus, Πμ

μ is absent from
Eq. (48) in this approximation. Note also that the already
first-order corrections ρ and R force f to be at least a first-
order correction; hence, we can rewrite Eq. (47) as

−
1

2
∂σ∂σγ̂μν −

1

2
∂μ∂νγ̂ −

1

2
fημν

≅ κρuμuν −
1

2
ρfLðuμuν − ημνÞ: ð49Þ

The 00 component of this equation encodes the weak-field
dynamics in which we are interested. Since the spacetime is

assumed static, the time derivatives vanish, leaving the
expression

−
1

2
Δγ̂00 ≅ κρ −

1

2
f − ρfL; ð50Þ

where Δ≡∇2 is the Laplacian operator. Using Eq. (44)
and the definition of the Newtonian potential,Φ≡ − γ00

4
, we

obtain the modified Poisson equation in fðR;Lm; VÞ
gravity:

ΔΦ ≅
1

2
κρ −

1

4
f −

1

2
ρfL þ 1

4
ΔðfVρÞ: ð51Þ

Since f is implicitly a function of Tμν, and hence of ρ, the
quantity 1

2
κρ − 1

4
f − 1

2
ρfL acts as a sort of effective density

1
2
κρ̄. In these terms, Eq. (51) reads

ΔΦ ≅
1

2
κρ̄þ 1

4
ΔðfVρÞ: ð52Þ

This modification to Poisson’s equation is formally iden-
tical to those in both EiBI and Palatini fðR; TÞ gravity
(see Refs. [26,28], respectively). Consequently, we ex-
pect all these theories to afford similar nonrelativistic
phenomenology.

V. SOME APPLICATIONS

The weak-field equations considered above disclosed a
relationship between fðR;Lm; VÞ and other theories of
gravity in the Newtonian regime. In this section, we derive
the field equations governing the response of fðR;Lm; VÞ
gravity in other regimes, in particular the electromagnetic
and scalar field sectors.

A. Electromagnetic fields

Consider next the traditional linear electrodynamics
(LED) of Maxwell for which the matter Lagrangian is
LðLEDÞ ¼ − 1

16πFμνFμν, where Fμν ≡ ∂μAν − ∂νAμ is the
Faraday tensor. The LED matter tensor follows quickly

from its definition (8), ΞðLEDÞ
μν ¼ − 1

8πFμλFλ
ν. Alternatively,

using Eq. (18),

ΞðLEDÞ
μν ¼ 1

2
ðLðLEDÞgμν − TðLEDÞ

μν Þ: ð53Þ

Similarly, from the symmetry of the Ricci tensor and
Eqs. (21) and (53), the LED matter-curvature tensor turns
out to be

ΠðLEDÞ
μν ¼ 2RλðμT

ðLEDÞ
νÞλ −RμνLðLEDÞ −

1

8π
RFμλFλ

ν

þ 1

4π
RαβFμβFαν: ð54Þ
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The LED effective energy-momentum tensor, ΣðLEDÞ
μν , then

follows trivially from its definition (11).
The matter-curvature couplings in Eq. (54) are very

much unlike, for instance, Palatini fðR; TÞ theory, in which
TðLEDÞ ¼ gμνTðLEDÞ

μν ¼ 0. Hence, the fðR; TÞ models
(whether Palatini or not) respond to linear electromagnetic
fields as an fðRÞ model. This is evidently not the case for
the present theory, in which there are nontrivial couplings
between curvature and matter terms, all of which have the
potential to invite new gravitational electrodynamic behav-
ior. We note that in the Palatini fðR; T; VÞmodel all the fV
couplings in Eq. (54) persist; therefore, even with a
vanishing trace [making the gravitational response a
Palatini fðR; VÞ theory], there remain new and nontrivial
corrections to the linear electrodynamics.
However, it is well known that the linear electrodynam-

ics in vacuo are only an approximation to the full
electrodynamic theory. General relativity, for example,
demands a gravitational coupling between electromagnetic
fields, which affords nonlinear electrodynamic behavior.
That said, more considerable nonlinearity arises from
quantum field effects, such as vacuum polarization [39].
It is therefore of interest to also derive the fðR;Lm; VÞ field

equations associated with a general set of nonlinear
electrodynamic (NED) theories. To this end, we set the
matter sector action to

SðNEDÞ ¼ 1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p
χðI; JÞ; ð55Þ

where χ is a well-behaved function of the algebraic
invariants I≡ 1

2
FμνFμν and J ≡ Fμνð⋆FÞμν. Here, ð⋆FÞμν ¼

1
2
ð−gÞ−1

2ϵμναβFαβ is the Hodge dual of the Faraday tensor,
with ϵμναβ denoting the Levi-Civita symbol. We note that I
and J are the unique algebraic invariants constructible from
Fμν and gμν [40,41] and also that the choice χðI; JÞ ¼ −I
corresponds to the LED theory considered above.
With 1

8π χðI; JÞ as the NED matter Lagrangian, and
defining χI ≡ ∂χ

∂I and χJ ≡ ∂χ
∂J, we find

ΞðNEDÞ
μν ¼ 1

8π

�
χIFμλFλ

ν þ
1

2
χJJgμν

�
: ð56Þ

It then follows from Eq. (21) and the NED equivalent of
Eq. (53) that

ΠðNEDÞ
μν ¼ 2RλðμT

ðNEDÞ
νÞλ þ 1

8π
ðχJJ − χÞRμν þ

1

4π

�
1

2
RχI −RαβFαλFλ

βχII −
1

2
RχJIJ2

�
FμλFλ

ν

−
1

8π

�
RαβFαλFλ

βχIJJ þ
1

2
RχJJJ2

�
gμν −

1

4π
RαβχIFαμFνβ: ð57Þ

As before, ΣðNEDÞ
μν then follows from its definition (11),

and TðNEDÞ
μν follows from the NED equivalent of Eq. (53).

Note that, as expected, upon fixing χðI; JÞ ¼ −I, Eq. (57)
reduces to Eq. (54). As in the LED case, these field
equations have in them nontrivial matter-curvature cou-
plings which again bear new possibilities for NED gravi-
tational dynamics, such as in studies of nonsingular black
holes. We also note that these equations again differ
drastically in their matter-curvature couplings from the
field equations for NED in fðR; TÞ gravity (see, e.g.,
Ref. [28]). This much is evident from the fV coupling
terms, which persist only in the fðR;Lm; VÞ framework.

B. Canonical scalar fields

Scalar fields comprise another set of generic matter fields
for which fðR;Lm; VÞ gravity admits new and nontrivial
dynamics. Here, we shall consider the effect of a real-
valued scalar field ϕ in a potential UðϕÞ, the Lagrangian
density of which bears the form LðϕÞ ¼ − 1

2
∂λϕ∂λϕ−

UðϕÞ. One shall find ΞðϕÞ
μν ¼ − 1

2
∂μϕ∂νϕ and, from

Eq. (20),

ΠðϕÞ
μν ¼ −

1

2
R∂μϕ∂νϕþ ∂λϕ∂ðμϕRλ

νÞ þRμνLðϕÞ: ð58Þ

Hence,

κΣðϕÞ
μν ¼ κTðϕÞ

μν þ 1

2
ðfL þRfVÞ∂μϕ∂νϕ − fVLðϕÞRμν

− fV∂λϕ∂ðμϕRλ
νÞ: ð59Þ

As with the electromagnetic field, specifying particular
fðR;Lm; VÞ functions and solving the associated field
equations will conceivably yield new nonminimal correc-
tions to ordinary GR problems, which brings about new
possibilities. For example, as posited for Palatini fðR; TÞ
gravity [28], free [UðϕÞ ¼ 0] geonic solutions of the kind
in EiBI gravity [42] are conceivable in the present theory.

VI. COMPATIBILITY WITH EiBI GRAVITY

In this section, we shall investigate the conditions under
which the fðR;Lm; VÞ paradigm encapsulates the EiBI
theory. We shall denote by fBI any fðR;Lm; VÞ function
that does this. To begin, it is imperative that we be precise
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with the meaning of “one gravitational theory correspond-
ing to another.”
Let A and B be two Palatini theories of gravity defined

on a world manifold M, and let Ψ be a matter field on M.

Further, let gðAÞ
μν and gðBÞμν be the solutions generated from A

and B, respectively, in response to Ψ, and ∇ðAÞ and ∇ðBÞ be
the derivative operators of A and B, respectively, defined
on M. On one hand, we say A and B are equivalent if, for

all Ψ, (i) ∇ðAÞ
σ ξμ ¼ ∇ðBÞ

σ ξμ for all vectors ξμ defined on
some tangent space in the tangent bundle of M and

(ii) gðAÞ
μν ¼ Θ2gðBÞμν for some real-valued, smooth conformal

factor Θ defined on M. Evidently, condition i ensures that
both theories measure the same intrinsic curvature of M,
that both have the same notion of transport, and so forth,
while condition ii establishes that the gravitational dynam-
ics of the two theories are the same (since they afford the
same solution, up to a conformal factor, for a given matter
sector Ψ). On the other hand, we say A and B are
circumstantially equivalent if conditions i and ii hold only
for particular Ψ. Indeed, we shall prove in this section that
EiBI and fðR;Lm; VÞ are circumstantially equivalent
theories of gravity; in particular, that condition i shall hold
well for all Ψ but that condition ii shall hold well only for
specific Ψ.
The (Palatini) EiBI action bears the form [26]

SBI½g;Γ;Ψ� ¼
1

2κϵ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ ϵRμνðΓÞj

q
− λ

ffiffiffiffiffiffi
−g

p i

þ Sm½g;Ψ�; ð60Þ

where ϵ is a coupling parameter, λ is related to the
cosmological constant Λ by λ ¼ 1þ ϵΛ, and the vertical
bars denote the absolute value of the determinant. The
reader is referred to Refs. [25,26] for details on the
variation. The field equations are

qμν ¼ gμν þ ϵRμν; ð61aÞ
ffiffiffiffiffiffi
−q

p
qμν ¼ ffiffiffiffiffiffi

−g
p ðλgμν − κϵTμνÞ; ð61bÞ

where q is the determinant of the auxiliary metric qμν and

qμν satisfies both qμλqλν ¼ δμν and ∇ðBIÞ
σ ð ffiffiffiffiffiffi−qp

qμνÞ ¼ 0,
where ∇ðBIÞ is the derivative operator associated with the

Palatini EiBI theory. Hence, ∇ðBIÞ
σ qμν ¼ 0.

We note that λ ≠ 0 (equivalently Λ ≠ −ϵ−1), for other-
wise Eq. (61b) implies that in vacuo

ffiffiffiffiffiffi−qp
qμν ¼ 0, which is

nonsense. Moreover, with Tμν ¼ 0 and λ ≠ 1, the solutions
from the two theories do not coincide; EiBI affords a de
Sitter or anti-de Sitter universe, while fðR;Lm; VÞ outputs
Minkowski space. In speaking of a possible equivalence
between the theories, it is natural to demand that at least
the vacuum solutions correspond. To this end, we shall
hereafter fix λ ¼ 1, making EiBI Minkowskian in vacuo.

Note that there is no loss of generality in doing this. Should
one wish to append a cosmological constant to either
theory, one would simply do so via the matter sector.
We have merely “tared” the two theories at the level of their
vacuum solutions.
As previously defined, ∇ðpÞ is the derivative operator

associated with the Palatini fðR;Lm; VÞ theory. Thus, for
an EiBI=fðR;Lm; VÞ equivalence to exist, condition i

demands that ∇ðBIÞ
σ ξμ ¼ ∇ðpÞ

σ ξμ for all smooth vectors ξμ.
This implies, in particular, that

∇ðBIÞ
σ qμν ¼ ∇ðpÞ

σ qμν ¼ ∇ðpÞ
σ pμν ¼ 0: ð62Þ

The connections of both fðR;Lm; VÞ and EiBI gravity are
torsion free. Hence, as required by the fundamental
theorem of Riemannian geometry, Eq. (62) holds well if
and only if pμν ¼ qμν, which is true if and only ifffiffiffiffiffiffi−qp

qμν ¼ ffiffiffiffiffiffiffi−pp
pμν. Therefore, the definitions (14) and

(61), together with condition ii, i.e., the requisite conformal

relationship gðfÞμν ¼ Θ2gðBIÞμν [gðfÞμν being the solution from the
fðR;Lm; VÞ theory], imply (with λ ¼ 1)

ð1 − Θ2fRÞgμνðBIÞ − ðκϵTμν
ðBIÞ þ Θ4fVT

μν
ðfÞÞ ¼ 0; ð63Þ

where Tμν
ðBIÞ and Tμν

ðfÞ are the energy-momentum tensors of

the EiBI and fðR;Lm; VÞ theories, respectively, each
raised by their respective metric. We cannot impose a priori
that these energy-momentum tensors be the same since
they are functions of their respective metrics. We can
impose, however, that the two parenthetical terms in
Eq. (63) vanish separately. This is necessarily the case if
we seek generality in the matter sector, as, for instance,
Eq. (63) holds in vacuo if and only if the two parenthetical
terms vanish separately. Consequently, Θ2fR ¼ 1, and
κϵTμν

ðBIÞ ¼ Θ4fVT
μν
ðfÞ. Differentiating the former with res-

pect to R demands that fR is constant and hence that the
conformal factor Θ is constant. The same is true for the
latter, where differentiation upon V implies fV is constant.
These results indicate two things. First, TBI

μν ∝ TðfÞ
μν . For

equivalence between the two theories to hold, this constant
proportionality must hold in general, for arbitrary choices
of the matter sector. But since the conformal transforma-
tion properties of the energy-momentum tensor depend on
the matter sector, constant proportionality is guaranteed
only with exact equality between the metrics, i.e., with
Θ2 ¼ 1 and hence fV ¼ −κϵ. Second, the vanishing of the
second derivatives fRR and fVV implies that the EiBI=
fðR;Lm; VÞ function fBI is of the form fBIðR;Lm; VÞ ¼
f1ðRÞ þ hðLmÞ þ f2ðVÞ for well-behaved functions f1, h,
and f2. In fact, with the conformal factor set at unity and
the energy-momentum tensors identical, we simply have
from Eq. (63) that f1ðRÞ ¼ R and f2ðVÞ ¼ −κϵV. Hence,
from Eq. (10), the fBI field equations bear the form
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Rμν −
1

2
ðRþ h − κϵVÞgμν

¼ κTμν − h0Ξμν þ 2κϵRλðμTλ
νÞ þ κϵRαβ

δTαβ

δgμν
; ð64Þ

where gμν¼gðBIÞμν ¼gðfÞμν , Tμν ¼ TðBIÞ
μν ¼ TðfÞ

μν , h0 ≡ dh=dLm,
and the identity (21) has been substituted for the matter-
curvature tensor.
We now wish to compare Eq. (64) with the EiBI field

equations (61) to fix the function h in fBI. However, at the
level of the EiBI equations (61), it is not obvious how to do
this. Fortunately, the EiBI equations are equivalent to the
more useful form [26]

ϵRμν þ
�
1 −

ffiffiffi
q
g

r �
gμν ¼ κϵTμν þ κϵ2RλðμTλ

νÞ: ð65Þ

The spacetime is 3þ 1 dimensional, so qμνqμν ¼ 4. This

condition allows one to explicitly solve for
ffiffiffiffiffiffiffiffi
q=g

p
. Eq. (65)

becomes

Rμν −
1

4
ðR − κT − κϵVÞgμν ¼ κTμν þ κϵRλðμTλ

νÞ: ð66Þ

Wewish to investigate what must be true of h and, possibly,
Lm such that the field equations (64) and (66) are the same.
To this end, we set them equal (by solving for Rμν − κTμν

in both), which, after tracing the 2-forms, generates the
requisite condition:

Rþ κϵRαβ
δTαβ

δgμν
gμν ¼ −2h − κT þ h0Ξ: ð67Þ

There are independent ways of satisfying this equation
depending on if Ξ ¼ 0 or Ξ ≠ 0. Hence, one will have to
choose h based on the matter sector under consideration,
which demonstrates that fðR;Lm; VÞ gravity is at best
circumstantially equivalent to the EiBI framework.
For the former, we assume Ξ ¼ 0 identically. Then,

the matter sector is constant throughout M, implying
Lm ¼ Λ=κ. In this regime, EiBI gravity is known to
produce a de Sitter/anti-de Sitter universe equivalent to
GR [25]. Therefore, R ¼ −4Λ, and so, in order for
fðR;Lm; VÞ theory to match EiBI theory, one ultimately
demands from Eq. (67) that h ¼ −2ϵΛ2 so that

fBIðR;Lm; VÞ ¼ R − 2ϵΛ2 − κϵV: ð68Þ

This solution implies that fðR;Lm; VÞ gravity can be
nontrivially fashioned to have the same de Sitter/anti-de
Sitter solutions as both EiBI and GR. It also bespeaks a
degeneracy in the fðR;Lm; VÞ framework since the inde-
pendent (“trivial”) choice fðR;Lm; VÞ ¼ R − 2Λ would
just as well deliver the de Sitter/anti-de Sitter spacetime.

For Ξ ≠ 0, the process of choosing an h is not as
straightforward. We do so in a fashion that shall let us
get rid of constraints on curvature. We note, however, that
one could in principle impose constraints on curvature to
generate more solutions. In our approach, we shall keep in
mind two things. First, h is only a function of the matter
Lagrangian density. No terms involving curvature may be
appear in its differential equation. Second, not imposing
constraints on curvature implies the curvature terms should
cancel themselves due to a judicious choice of the matter
sector. There is a unique prescription that satisfies these
conditions—namely, that h which makes the right side of
Eq. (67) vanish identically and the corresponding Lm that
makes the left side follow suit.
Demanding the right side of Eq. (67) to vanish implies

the differential equation −2h − κT þ h0Ξ ¼ 0. We shall
impose Ξ to be nonzero identically, so that one can solve for
hðLmÞ explicitly,

hðLmÞ ¼
1

ω

�
Cþ κ

Z
dLmωT

�
; ð69Þ

whereC is a constant and ω is an integrating factor given by
ωðLmÞ ¼ exp ð−2 R dLmΞ−1Þ. The fact that C is arbitrary
implies there is not a unique fBI when Ξ ≠ 0 but rather
a class of functions for which this particular EiBI=
fðR;Lm; VÞ concordance holds well. Now, with the
specific choice (69) in hand, we require from Eq. (67)

that Rþ κϵRαβ δTαβ

δgμν g
μν ¼ 0. This is manifestly true in

vacuum (with Λ ¼ 0). Outside vacuum, the condition sim-
plifies by noting Rμν ≠ 0 and R ¼ Rμνgμν. Hence, by
retracting the Ricci tensor, the previous condition neces-

sitates gμν þ κϵ
δTμν

δgαβ
gαβ ¼ 0 for nonzero Rμν. Tracing this

expression, and applying algebra upon the identity (17),
recasts the condition into a form in terms of the matter
Lagrangian and trace T of the energy-momentum tensor,

gμνgαβ
∂2Lm

∂gμν∂gαβ − 2Lm þ T −
2

κϵ
¼ 0; ð70Þ

or exclusively in terms of the matter Lagrangian:

gμνgαβ
∂2Lm

∂gμν∂gαβ − 2gμν
∂Lm

∂gμν þ 2Lm −
2

κϵ
¼ 0: ð71Þ

Consequently, any matter Lagrangian density Lm satisfying
Eq. (71) and for which Ξμν ≠ 0 will, in the fðR;Lm; VÞ ¼
Rþ hðLmÞ − κϵV framework [with hðLmÞ set by
Eq. (69)], spawn a gravitational response identical to that
in EiBI theory. Incidentally, this implies that the non-
conservation equation (37) necessarily vanishes. This
follows because EiBI is a minimally coupled theory, as
evident from its action (60); hence, the metric connec-
tion conserves the energy-momentum tensor. Of course,
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Eq. (37) also vanishes for the nontrivial de Sitter/anti-de
Sitter solution (68).

VII. CONCLUSIONS

In this paper, we have investigated a union of the
fðR;LmÞ and fðR; T;RμνTμνÞ gravity models in which
we allowed arbitrary coupling between the scalar curvature,
matter Lagrangian density, and a matter-curvature scalar
V ≡RμνTμν. The model was studied under the Palatini
formalism to generate a bimetric structure commensurate
with EiBI theory. This implies, in particular, that the
independent connection is the Levi-Civita connection of
an energy momentum–dependent auxiliary metric that is
related to the spacetime metric via a matrix transformation.
The equations of motion were derived and expressed in a
manner formally equivalent to fðRÞ theories, following the
definition of an effective energy-momentum tensor. We
briefly described how one obtains the Palatini fðR; T; VÞ
theory from the present theory, though the exact details of
Palatini fðR; T; VÞ gravity warrant further investigation. It
is of interest to better understand the extra d.o.f. that our
theory possesses; for instance, if these additional d.o.f. can
be interpreted as a perfect fluid entering into the dynamics
(see, e.g., Ref. [43]).
The field equations impose the nonconservation of the

energy-momentum tensor, which gives rise to nongeodesic
motion of massive test particles via the appearance of an
extra force that will have a nontrivial impact on the physics
for compact objects and relativistic stars. This is like EiBI
gravity, where the nontrivial matter-curvature couplings
give rise to new dynamics surrounding the early Universe
and black holes. In the nonrelativistic regime, the dynamics
of Palatini fðR;Lm; VÞ gravity are qualitatively similar to
the Palatini fðR; TÞ and EiBI theories. We therefore expect
all these theories to afford analogous nonrelativistic
phenomenology.

With the theory’s basic framework established, we
introduced the primary elements for some applications.
In the case of perfect fluids, the hydrodynamic field
equations are nontrivially altered by the nonminimal
matter-curvature couplings, even in the nonrelativistic
regime. When coupled to electromagnetic fields, either
the linear or nonlinear paradigms, the equations have new
and nontrivial couplings, and in the case of fðR; T; VÞ
theory, the electrodynamics reduce to a Palatini fðR; VÞ
theory due to the vanishing trace. In this realm, the problem
of nonsingular black holes can be studied from a separate
perspective. Similar remarks apply to scalar fields.
The resemblance to EiBI gravity was then discussed. We

showed that fðR;Lm; VÞ gravity is circumstantially equiv-
alent to EiBI, meaning that the two theories have identical
spacetime structure and afford identical gravitational
dynamics, but only in response to very specific matter
fields. It is a curiosity if the conformal transformation
properties of both EiBI gravity and fðR;Lm; VÞ gravity
behave similarly in the matter sector in which they are
known to yield identical gravitational dynamics. (For
general information on the conformal transformation prop-
erties of many extended theories of gravity, see Ref. [44].)
In this regard, the conformal invariance of both theories can
be better understood, potentially spawning new domains in
which to study AdS=CFT dualities (see, e.g., Ref. [45]).
In summary, the Palatini fðR;Lm;RμνTμνÞ gravity

theory considered in this work generates a myriad of
avenues for future research and the potential to explore
new physics. Further research is expected in this respect, on
which we hope to report soon.
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