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The size dependence of the dielectric constants of barium titanate or other ferroelectric
particles can be explored by embedding particles into an epoxy matrix whose dielectric
constant can be measured directly. However, to extract the particle dielectric constant
requires a model of the composite medium. We compare a finite element model for var-
ious volume fractions and particle arrangements to several effective medium approxi-
mations, which do not consider particle arrangement explicitly. For a fixed number of
particles, the composite dielectric constant increases with the degree of agglomeration,
and we relate this increase to the number of regions of enhanced electric field along the
applied field between particles in an agglomerate. Additionally, even for dispersed par-
ticles, we find that the composite method of assessing the particle dielectric constant
may not be effective if the particle dielectric constant is too high compared to the back-
ground medium dielectric constant. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5053442

I. INTRODUCTION

Dielectric materials for electrostatic capacitors with enhanced energy storage capability are cru-
cial to the future of electrified transportation, power conditioning, and power conversion. A promising
class of candidate materials are ceramic nanoparticles such as barium titanate (BaTiO3 or BTO). BTO
is a ferroelectric material commonly used in bulk as a dielectric, as it has a high dielectric constant of
about 1500–2000.1 However, nanosized BTO has exhibited intriguing size-dependent behavior.2–7

For instance, some have observed a dramatic increase in dielectric constant with decreasing particle
size down to a critical value, after which the dielectric constant decreases sharply.2,6

Though exciting, such claims remain unverified. This size-dependence also differs from a more
commonly accepted behavior seen in sintered ferroelectric materials in which BTO permittivity
begins to decrease and approach zero as the grain size drops below ∼ 1µm.8,9 For this reason,
reliable measurements of the dielectric constant of nanosized BTO are essential to the development
of improved BTO dielectrics. While we are primarily interested in BTO, the methods and results from
this study can readily be generalized to other dielectric materials since we do not consider material
properties beyond the dielectric constant.

aCurrent address: Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106,
United States

bCorresponding author: tmonson@sandia.gov
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Rather than attempting to isolate nanoparticles and measuring their dielectric constants, we
can more easily arrive at the values indirectly. One approach is to embed particles in an epoxy
composite and then measure the resulting dielectric constant. Several researchers have synthesized
and characterized these kinds of nanocomposites of varying compositions.10–14 While this approach
provides a measured value for the composite dielectric constant, additional steps are required to
extract the particle dielectric constant. With the pure epoxy dielectric constant and volume fraction of
BTO to epoxy known, the particle dielectric constant can be extracted from the composite’s measured
value using analytical or numerical models.

There are several well-established effective medium approximations (EMAs) that describe the
macroscopic dielectric behavior of composites and mixtures of linear dielectric phases. Generally,
the approximations relate the effective dielectric constant εc of a binary composite to the particle
dielectric constant εp and the background medium dielectric constant εm for a volume fraction of
particles δp. Several EMAs have been developed with various limitations, so we have focused on
those that are most applicable to our system.

The Maxwell-Garnett EMA15 is given by:

εc − εm

εc + 2εm
= δp

(
εp − εm

εp + 2εm

)
(1)

The main distinction of this EMA is that it assumes all particles are spatially separated and non-
interacting, so while perhaps not generally applicable, we used it to validate our finite element (FE)
calculations for isolated particles.16

The Bruggeman EMA17 is given by:

εp − εc

εp − εm
=

(
1 − δp

) ( εc

εm

) 1
3

(2)

This approximation was initially obtained from a model of a regular array of spheres, and is symmetric
with respect to the choice of particle and background medium phases.18 While the Bruggeman EMA
has the advantage that it does not assume spatially separated particles, it performs poorly when
εp �εm, as is likely true for BTO particles in epoxy.

The Jayasundere-Smith approximation was originally derived from the Kerner equation for
spheroidal particles, which includes an additional parameter describing the ratio of the average
electric fields in the constituent phases along the applied field.19 By replacing this ratio with an ana-
lytical solution for electric field interactions between two spheroidal particles, the Jayasundere-Smith
approximation is obtained:20
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Because of this modification to the Kerner equation, Jayasundere-Smith partially accounts for the
effects of neighboring particles, which are likely important in real composites.

Though EMAs are a useful starting point, we have pursued FE modeling both as additional
verification and to investigate specific particle arrangements not well-described by any EMA. FE
modeling is a useful tool for situations where analytical expressions fail to capture complex physics
and has been used to model various dielectric composite materials.21–25 One key case of interest
is particle agglomeration, which is common for nanoparticles due to the energy cost of their high
surface-to-volume ratio. We have experimentally observed that the dielectric constant of a BTO-
epoxy composite is often higher than the maximum possible value predicted by EMAs, and we
suspect particle agglomeration to be the cause. Sareni et al. modeled agglomerates in two dimensional
composites and found that they produced a higher composite dielectric constant than both randomly
and regularly arranged isolated particles.22 However, to the extent of the authors’ knowledge, there
has not been significant modeling done of three-dimensional particle agglomeration in dielectric
composites.
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In the present study, we use a FE model of BTO-epoxy composite capacitors to study various
arrangements of particles, focusing on the effect of particle interaction and agglomeration. Results
are compared to EMAs when applicable and interpreted using basic electrostatics. We also explain
some features of our model using the method of images and provide insight into the range of dielectric
constants for the embedded particles and background medium over which the composite technique
will yield useful results.

II. METHODOLOGY

Some terms used throughout are reiterated in Table I. FE calculations were performed using
COMSOL Multiphysics version 5.2 and its AC/DC Module,26,27 which supports electrostatics mod-
eling. Our model, shown in Figure 1, consists of a cube of the epoxy background medium of side
length `. Thin copper electrodes of cross sectional area `2 and thickness t were placed on the top and
bottom faces of the cube. Spheres of radius r, representing BTO nanoparticles, were placed inside
the cube, replacing the epoxy material in those regions. The value of r and the number of particles
were chosen to achieve the desired volume fraction, δp, of BTO particles in epoxy. We assumed the
particles are spheres rather than irregular spheroids, allowing us to neglect particle orientation and
shape.

We chose dimensions ` = 100 mm and t = 1 mm, though the absolute dimensions of the model
are irrelevant since the dielectric constant is dimensionless. However, we assumed a sufficiently large
spatial scale that renders valid a classical continuum field theory that neglects discrete atomic or
molecular effects. The electrode thickness and choice of copper were arbitrary since the electrodes
were simply treated as perfect conductors. The only material property by which the epoxy and
BTO materials were distinguished was their dielectric constant, which we assigned. The epoxy
background medium dielectric constant εm was chosen to be 4.5, our average measured value for
the particular epoxy that we used (Fibre Glast System 2000 Epoxy Resin). For calculations in which
the BTO particle dielectric constant εp was fixed, we set εp = 1500. This was within the range of
observed bulk values and also large enough that increasing its value produced negligible changes in

TABLE I. Important term symbols and definitions.

Symbol Definition

δp volume fraction of particles in composite
εp particle dielectric constant
εm background medium dielectric constant
εc composite dielectric constant

FIG. 1. Visualization of the composite model with epoxy background medium (grey), BTO particles (blue), and electrodes
(orange).
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the composite dielectric constant εc for all values of δp and all particle configurations, as explained in
Section III A.

The inner surface of the top electrode (where it makes contact with the epoxy) was held at 0 V,
while the inner surface of the bottom electrode was held at 10 V. Periodic boundary conditions were
imposed on the four remaining faces of the cube so as to model an ideal (infinite) parallel plate
capacitor. The default interface condition for the electric displacement field D was applied to the
boundaries within the cube between particles and epoxy and between copper and epoxy:27

n2 · (D1 − D2)=σf (4)

where σf is the free surface charge density between adjacent regions 1 and 2 and n2 is the normal
pointing from region 2 to region 1. In our case, σf = 0, so this boundary condition simply expresses
the continuity of the normal component of the electric displacement field.

For the FE mesh, we first added a triangular mesh on two adjacent non-electrode faces of the cube.
Then this mesh was copied to the opposite faces to comply with the periodic boundary conditions. A
tetrahedral mesh was applied to the remaining entities in the model. The element sizes were chosen
using the predefined options in COMSOL for convenience and consistency. Unless stated otherwise,
the “Fine” mesh size was used in our calculations. This was found to be sufficient, as using finer
meshes yielded values for εc within 1% in all cases.

We used the default stationary study type from the electrostatics interface in COMSOL to solve
Laplace’s equation for dielectric materials in the entire model region,26,27

∇D=∇ · (−ε0∇V + P)= 0 (5)

where ε0 is the permittivity of free space, V is the electric potential, and P is the electric polarization.
After obtaining a solution, we calculated the resulting εc by first integrating the surface charge

density over the inner electrode surfaces to determine the charge, Q, on the capacitor. The surface
integral was performed over each electrode, and Q was taken to be the average of the absolute value of
the two, though they were always within 0.1% of each other. We then found εc from the capacitance,
C, using the parallel plate capacitor equation

C =
Q
V
=
εcε0A

d
(6)

where V is the potential difference, A is the plate area, and d is the plate separation.
Alternatively, the stored energy U is the integral of the electric energy density over the whole

volume and is directly proportional to the capacitance:

U =
∫∫∫

1
2
εε0E2 =

1
2

CV2 (7)

where E is the magnitude of the electric field and ε is the dielectric constant, equal to εp in the
particles and εm in the epoxy background medium. Then Equation (6) can be used to find εc from C.
We found that these two methods consistently yielded values for εc within 1% (and usually within
0.001%) of each other, so we used the former.

III. RESULTS AND DISCUSSION

A. Dielectric constant sweep

To test the dependence of εc on εp, we swept over a range of values for εp while holding εm

fixed at 4.5. Figures 2 and 3 show the results of the sweep for an evenly spaced cubic array of 64
particles at various δp.

In each case here (and in other particle arrangements), εc increases with increasing εp until
it reaches a plateau value. These values are summarized in Table II and compared to EMAs. The
Maxwell-Garnett EMA predicts a lower εc than FE, though they match to within 1% up to δp = 0.3.
Jayasundere-Smith and Bruggeman, on the other hand, predict a higher εc than FE, as shown in
Figure 3 for δp = 0.1 and 0.2, with Jayasundere-Smith having more than double the discrepancy of
Bruggeman. The discrepancy also tends to grow as δp is increased.
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FIG. 2. Composite dielectric constant εc versus particle dielectric constant εp for various volume fractions, δp. An evenly
spaced cubic array of 64 particles was used. Dotted lines indicate Maxwell-Garnett EMA and solid lines indicate FE results.

FIG. 3. Composite dielectric constant εc versus particle dielectric constant εp for δp = 0.1 and 0.2. An evenly spaced
cubic array of 64 particles was used. Dashed, dash-dotted, and dotted lines indicate Jayasundere-Smith, Bruggeman, and
Maxwell-Garnett EMAs, respectively. Solid lines indicate FE results.

The asymptotic behavior can be explained physically. In the limit that εp goes to infinity, the
electric field inside the particle must go to zero in order for the polarization to remain finite (this
follows from the definition of electric susceptibility). Therefore, as εp increases, the particle behaves
more and more like a perfect conductor. Once this state is reached and there is zero electric field
inside the particle, increasing εp further makes no difference. For all other calculations, εp was fixed
at 1500, well into the plateau region, to give an upper bound on εc in each case.

The disagreement between our FE results and the various EMAs can be interpreted by considering
the assumptions made in each. Maxwell-Garnett assumes spatially separated particles, so it is accurate
for evenly spaced particles at low δp but diverges from the FE results at higher δp, where interactions
between particles become significant. Bruggeman and Jayasundere-Smith do not assume spatially
separated particles, so they predict a higher εc when particle interactions are minimized. Since
Jayasundere-Smith accounts for some of the particle interactions explicitly, it consistently produces

TABLE II. Plateau values of εc (at εp = 1500) for various δp, calculated by FE and EMAs. Parentheses indicate percent
difference from FE result.

δp FE Max.-Garn. Brugg. Jaya.-Smith

0.1 5.991 5.985 (-0.1) 6.152 (3) 6.431 (7)
0.2 7.875 7.837 (-0.5) 8.715 (11) 9.839 (25)
0.3 10.428 10.212 (-2) 12.900 (24) 15.331 (47)
0.4 14.541 13.367 (-8) 20.185 (39) 23.900 (64)
0.5 25.911 17.761 (-32) 33.917 (31) 37.274 (44)
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a higher value than Bruggeman. It is also known that the Bruggeman EMA does not work well for
εp �εm,18 consistent with Figure 3.

An important observation to note is that due to the shape of curves in Figure 2, extracting εp

using our model may not actually work for modest values of δp. Based on its bulk dielectric constant,
nanosized BTO may reside on the plateau, in which case the uncertainty in the extracted εp would
be too large to be useful. Wada et al. encountered this issue when extracting a value for εp using FE
modeling (see Figure 13 of Ref. 2). This suggests that an alternative procedure may be necessary for
high-permittivity inclusions.

B. Two-particle arrangement

To investigate the effect of particle agglomerations, we examined what happens when two
separated particles are brought closer together. We considered two arrangements: the “parallel”
arrangement where the particles are separated along the direction of the applied electric field, and the
“perpendicular” arrangement where the particles are separated perpendicular to the applied electric
field. We doubled the size of the model along one direction to accommodate the two particles, but
all other dimensional and electrostatic conditions remained the same. In each case the particles are
centered on the long axis of the box, as shown in Figure 4.

The results for the two-particle arrangement are shown in Figure 5 for δp = 0.1, which dis-
plays the same qualitative behavior as other volume fractions. As shown in Figure 4, the particle

FIG. 4. Natural logarithm of the z-component of the electric field in V/m (along the applied field) in the parallel arrangement
at separation of (a) 0.1 radii and (b) 1.47 radii. δp = 0.1. The perpendicular components of the electric field (not shown) are
very small.

FIG. 5. Composite dielectric constant εc versus separation divided by particle radius at δp = 0.1 for the parallel and per-
pendicular arrangements compared to EMAs. Note that no symmetric point at the largest possible separation was calculated
because of modeling errors due to particles intersecting the electrodes.
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separation here is taken between the nearest points on the boundaries of the particles rather than their
centers, and is normalized to the particle radius. Decreasing the separation to zero in the parallel
case causes an increase in εc, while doing so in the perpendicular case causes a decrease. However,
the magnitude of the change in the parallel case is about ten times greater than in the perpendicular
case.

These results are consistent with Jayasundere and Smith’s analysis of a similar FE model for two
spheres (separate from their EMA), in which they found that the particles interact most strongly when
aligned along the applied field.20 While the Jayasundere-Smith EMA includes these interactions, it
does not account for the slight reduction in εc in the perpendicular case, which may partly explain
why it tends to predict a higher εc. As the separation increases, both cases approach the Maxwell-
Garnett EMA for spatially separated particles. Note that maximum spatial separation occurs at a
separation of 1.47 particle radii in Figure 5, and larger values lead to proximity to the electrodes
as discussed later in this section. The composite dielectric constant intersects with the Bruggeman
and Jayasundere-Smith EMAs at lower separations, where the interaction between particles becomes
much more pronounced.

The reasons for these changes in εc can be observed in the electric field results, shown in
Figures 4 and 6 for the parallel and perpendicular arrangements, respectively. In the parallel case, the
field between the particles is strongly enhanced as the separation is reduced, which increases εc. For
perpendicular fields, we observe that there are lobes of electric field pointing in opposite directions
surrounding the two particles. As the particle separation is decreased, these lobes begin to cancel out
in the region between the particles, decreasing εc slightly.

As shown in Figure 5, the two-particle behavior is symmetric about a separation of 1.47 particle
radii, which is where the particle separation is exactly double the distance between each particle
and the closest electrode. Essentially, the particle interacts with its image on the opposite side of the
electrode, as we discuss in Section III D.

C. Simple cubic arrangement

Building on the model for two particles, we studied a simple cubic (sc) array of particles to
investigate the effects of agglomerates. As shown in Figure 7, we considered an evenly spaced
array of particles, referred to as the “spread” cubic arrangement, and an array of particles with
zero separation between adjacent particles, referred to as the “tight” cubic arrangement, as well as
intermediate spacings.

FIG. 6. y-component of the electric field in V/m (perpendicular to the applied field) in the perpendicular arrangement at
separation of (a) 0.1 radii and (b) 1.47 radii. δp = 0.1. The parallel component of the electric field (not shown) is approximately
the applied electric field.
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FIG. 7. (a) Tight and (b) spread cubic arrangements for 512 particles at δp = 0.2.

Figure 8 shows the results of varying particle separation in a sc arrangement of 64 particles.
Beginning with the spread cubic arrangement, we decreased the separation between adjacent particles
to zero, reaching the tight cubic arrangement. This results in an increase in εc. As shown in the results
in Figure 9, there is an increased magnitude of electric field in the regions between the particles as
they are brought together, as was the case in the parallel two-particle arrangement.

These results agree with our results for two particles. As the particle separation in the cubic
arrangement decreases, particles are brought closer together both parallel and perpendicular to the
applied field, and these two effects compete with one another. However, since the effect of bringing
particles together along the applied field is an order of magnitude greater than that of bringing them
together in the perpendicular direction, the net effect is an increase in εc, as we observe. This behavior
suggests that the agglomeration of particles within the composites tends to increase εc.
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FIG. 8. Composite dielectric constant εc versus separation divided by particle radius for a cubic array of 64 particles at δp =
0.1 and 0.2. Compared to EMAs.

While Figure 9 may suggest that the electrostatic energy is stored entirely in the background
medium, a non-negligible portion is stored in the particles themselves. The relative amounts of energy
stored inside each region can be calculated using Equation (7). There is almost no electric field inside

FIG. 9. Electric field magnitude in V/m for a cubic array of 64 particles at δp = 0.1 and a separation of (a) 0.1 radii and (b)
1.47 radii, where 1.47 radii corresponds to the spread arrangement. Notice the difference in color scale between (a) and (b).
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the particles compared to the background medium, but because εp�εm, the dielectric constant factor
in the energy density balances the storage of the energy more than one might initially expect. For
example, for 64 particles at δp = 0.1, the relative amount of energy stored in particles is 4.2% in the
tight cubic arrangement and 0.3% in the spread cubic arrangement.

It is unlikely that real agglomerates of BTO nanoparticles are in sc packing; however, this
approximation is still quite useful and we found that the tight cubic arrangement sets an upper bound
on εc for a given number of particles and δp. While particles may be arranged more tightly in a
packing such as hexagonal close-packed (hcp), we have seen that particle interactions along the
direction of the applied field are most significant, and these are maximized in sc. We compared an
hcp arrangement of 64 particles (four close-packed planes) to a tight sc arrangement of 64 particles
for δp = 0.1. The composite dielectric constant was consistently about 10% lower in hcp than in sc,
even as both structures were rotated about a direction perpendicular to the applied field to account for
some variation in orientation. Previous studies found that sc gave a consistently higher εc than both
body-centered cubic and face-centered cubic (fcc).21,28 Sareni et al. did find hcp to yield a higher εc

than that of sc in some cases, though not dramatically so.21 We note that agglomerates may form in
fcc packing, which has the same packing efficiency as hcp. Both of these allow for a higher maximum
δp than sc (0.74 versus 0.52), however, we did not focus on agglomeration in the high δp regime.

Finite element computations with realistic numbers of particles would exceed the limits of most
computers, so we are interested in how the computed εc depends on the number of particles used in
the simulation. For the tight cubic arrangement, we fixed δp and varied the number of particles used.
This can be thought of as taking a single BTO particle and subdividing it into more and more particles
arranged in a tight cubic array. The results of this process for various δp are shown in Figure 10. In
each case, εc increases with increasing number of particles.

The increase in εc in going from a single particle to eight (2 × 2 × 2 array) is expected because
of the large magnitude of the electric field between particles, as in Figure 9. If we assume that εc

is scaled up by some constant multiplicative factor c each time the particles are subdivided, then
we would expect the scaling with the number of particles to follow a power law with exponent
log8c. The results in Figure 10 do appear to follow power laws for large number of particles, with
R2 > 0.95 for each value of δp if we ignore the first three points in our fit. For the first three agglomerate
sizes (1, 8, and 27), all or all but one of the particles are located at the edge of the agglomerate, so
we would expect the dielectric constant to be less than that predicted by this simple power law. In
contrast to the tight cubic arrangement, we found no dependence on number of particles in the spread
cubic arrangement, for reasons discussed below in Section III D.

D. Method of images

As mentioned in previous sections, the interaction between particles and the electrodes in our
model may be understood via the method of images, which is commonly used in electrostatics to find
the electric field near the surface of a conductor. If we consider a single BTO particle at the center

FIG. 10. Log-log plot of εc versus number of particles in a tight cubic arrangement for various δp fit to power laws (dotted
lines), ignoring the first three points. Fitted values of c range from 1.03 to 1.19.
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FIG. 11. z-component of the electric field in V/m (along the applied field) for a (a) single particle and (b) the equivalent
arrangement from the method of images. The slight decrease in field amplitude around the midplane in (b) may be an artifact
of the calculation.

of the cube, where the electrodes are held at 0 V and 10 V, we can remove the top electrode at 0 V
and electrostatically image the system about that plane. This results in a box that is twice as long in
the direction of the applied field with electrodes at -10 V (top) and 10 V (bottom), now containing
the original particle and a new image particle. The center plane remains at 0 V by symmetry, and the
field solution in the original region is also the same. The composite dielectric constant is unchanged
because both the applied potential and the electrode separation have doubled.

As shown in Figure 11, we indeed obtain the same solution in these two cases. This means that
the field between a particle and an electrode can be framed as the field between that particle and an
image particle in a box twice as large. In this sense, our model is effectively periodic in the direction
of the applied field as well as the two directions that are given explicit periodic boundary conditions.
However, the period in this direction is twice the height of the cubical region.

The method of images accounts for the symmetric behavior observed in the two-particle arrange-
ment, as discussed in Section III B. It also explains why we find that εc in the spread cubic arrangement
does not depend on the number of particles. Since every particle in the spread cubic arrangement is
the same distance from its nearest real particle as it is from its nearest image particle in each direction,
one particle is mathematically equivalent to eight, 27, and so on.

E. Randomized arrangement with agglomerates

To capture the effects of varying size and number of agglomerates as well as disordered particle
positions, we modeled composites with particles randomly interspersed between agglomerates. Let
Np denote the total number of particles in a given simulation. The agglomerates were treated as n × n
× n tight cubic arrays of particles. We first placed the desired number of agglomerates Na in an evenly
spaced cubic array and randomly displaced their positions by up to half of the agglomerate separation
in each direction using a uniform random distribution. Then we placed randomly dispersed particles
between the agglomerates with equal probability over the remaining space of the cube, excluding
the volume of the agglomerates. Examples of the resulting configurations are shown in Figure 12
for Np = 125 particles. For each FE calculation, we consider 10 random configurations to obtain a
reasonable average and uncertainty.

We first used this model to examine Np = 512 randomly dispersed particles with no cubic
agglomerates (Na = 0). These results are summarized in Table III and compared to EMAs. The average
εc was 2% and 5% higher than the spread cubic arrangement (and the Maxwell-Garnett EMA) for
δp = 0.1 and 0.2, respectively. This difference is because any random deviation of all particles from the
spread cubic arrangement will result in a decrease in the separation between some particles parallel
to the applied field, increasing εc. For both the Bruggeman and Jayasundere-Smith EMAs, however,
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FIG. 12. Randomized arrangements of Np = 125 particles at a degree of agglomeration of f a = 0.512 (64/125) with (a)
Na = 1 agglomerate and (b) Na = 8 agglomerates. δp = 0.1.

there is better agreement than in the spread cubic case from Section III A. The perfectly uniform
spacing of particles in the spread cubic arrangement is extremely unlikely in practice, so the degree
of particle interactions is more realistic in the randomized case.

TABLE III. Average εc and standard deviation from randomized FE model for Np = 512 with Na = 0, compared to EMAs.
Parentheses indicate percent difference from FE result.

δp FE Max.-Garn. Brugg. Jaya.-Smith

0.1 6.09 ± 0.01 5.99 (-2) 6.15 (1) 6.43 (6)
0.2 8.28 ± 0.04 7.84 (-5) 8.72 (5) 9.84 (19)
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We also separately verified that changing the number of randomly dispersed particles at a fixed
δp does not change εc significantly, at least up to Np = 1000, though the uncertainty tends to decrease
with increasing number of particles. Therefore our model for randomly dispersed particles could
reasonably be compared to measured εc, assuming spherical particles and no agglomeration in the
samples.

We define the degree of agglomeration as the fraction of the total particles in agglomerates (as
opposed to dispersed). For Na n × n × n agglomerates out of Np total particles, this is given by

fa =
Nan3

Np
(8)

For example, eight 2 × 2 × 2 agglomerates out of 512 total particles corresponds to

fa =
8 ∗ 23

512
=

64
512
= 0.125 (9)

Fixing Np = 512, we considered each possible degree of agglomeration f a, as well as each
possible number of agglomerates Na to achieve that degree (with the restriction that an agglomerate
can be no smaller than n = 2). The results of these calculations are shown in Figure 13 for δp = 0.1
and 0.2. The composite dielectric constant increases roughly linearly with f a for both δp = 0.1 and
0.2. This can be understood in terms of the number of regions of enhanced electric field between
nearest-neighbor particles along the direction of the applied field in an agglomerate (as in Figure 9a).
For an n × n × n agglomerate, there are n2(n − 1) such regions, which scales roughly as n3, the size of
the agglomerate. Assuming that each region causes a constant increase in εc, then we would expect
εc to increase linearly with the agglomerate size.

Furthermore, we can plot the same εc data from Figure 13 versus the total number of enhanced
field regions Ne in each arrangement, which is given by

Ne =Nan2(n − 1) (10)

for Na n × n × n agglomerates. This relationship is shown in Figure 14. The composite dielectric
constant does depend approximately linearly on Ne, as suspected. The deviations from linearity seem
to be related to the number of agglomerates in each case. For example, for both δp values there is a
dip between Ne = 180 (Na = 1, n = 6) and Ne = 294 (Na = 1, n = 7) at Ne = 256 (Na = 64, n = 2). This
implies that there is an additional increase in εc when more of the enhanced field regions are directly
adjacent to one another, as they are for a single agglomerate. Though our results for two particles
suggest that interactions between lateral nearest-neighbor particles would cause a slight decrease
in εc, this may be overshadowed by interactions between next-nearest-neighbor particles displaced
partially along the applied field.

FIG. 13. Composite dielectric constant εc versus degree of agglomeration f a for Np = 512 particles and varying number of
agglomerates Na at δp = 0.1 and 0.2. Each point is the average of 10 random configurations. Error bars indicate ± one standard
deviation.
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FIG. 14. Composite dielectric constant εc versus number of enhanced electric field regions Ne for Np = 512 and varying size
and number of agglomerates at δp = 0.1 and 0.2. Each point is the average of 10 random configurations. Error bars indicate ±
one standard deviation. Dotted lines indicate linear fits with R2 values of 0.99 and 0.96 for δp = 0.1 and 0.2, respectively.

We also observe from Figure 13 that increasing Na for the same f a causes a decrease in εc, as
the agglomerate is divided and the number of regions of enhanced field is reduced. Therefore a single
agglomerate surrounded by dispersed particles provides an upper bound on εc for a given δp and f a.
This model cannot be compared to measured values as easily as the zero agglomeration case due
to the assumptions about agglomerate shape and particle number, but it could be useful in checking
the validity of measured εc. For example, a measured dielectric value that greatly exceeds the model
value for a single agglomerate might indicate an anomaly with the sample beyond the presence of
nanoparticle agglomerates.

IV. CONCLUSIONS

In this study we used a finite element model to investigate the effects of BTO particle agglomera-
tion in BTO-epoxy composites. Our results for dispersed particles tend to agree with the Jayasundere-
Smith, Bruggeman, and Maxwell-Garnett EMAs, and the discrepancies are reasonable given the
assumptions made by each EMA. However, our results suggest the composite method for extracting
useful values of the BTO particle dielectric constant may not be effective for high-permittivity par-
ticles at low volume fractions due to the asymptotic behavior of the composite dielectric constant.
For interacting particles, we found that bringing particles together generally increases the composite
dielectric constant due to an increase in the electric field between particles in the direction of the
applied field.

At a fixed volume fraction, the composite dielectric constant due to a simple cubic agglomerate
increases as a power law of the number of particles. This result suggests that, in addition to the sim-
plified geometry, the small number of particles in our model makes direct comparison to experiment
difficult, unless the power law relationship extends to realistic numbers of particles. We also observed
that particles in close proximity to electrodes have the same effect as particles in close proximity to
other particles, which was explained using the method of images. Modeling varying size and num-
ber of agglomerates surrounded by dispersed particles showed that the composite dielectric constant
increases roughly linearly with the number of regions of enhanced electric field between particles
and that the composite dielectric constant at a given degree of agglomeration was maximized for a
single agglomerate.

This study highlights some challenges to extracting the dielectric constant of discrete ferroelectric
nanoparticles within composites. Most notably, the plateau effect for high particle dielectric constant
indicates that even if the composite dielectric constant is measured with reasonable precision, the
corresponding uncertainty in the particle dielectric constant from modeling may be too large to be
informative. Estimates made using this method should therefore be met with some caution. While
this technique may be more challenging to apply to high permittivity ferroelectrics like BTO, it could
be more easily applied to lower permittivity materials. Also, the plateau is pushed to larger particle
dielectric constants for larger volume fractions, so it would be desirable to examine composites with
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higher volume fractions. However these can be difficult to synthesize while maintaining dispersed
particles. A natural extension of our work would be modeling more realistic agglomerates based
on experimentally observed packings of nanoparticles. This may allow for an alternative procedure
for extracting single particle dielectric constants where some agglomeration is accounted for, thus
enabling measurements at higher volume fractions of particles. We also note that agglomeration
may be preferable for capacitor applications, as long as electrical breakdown can be avoided, due
to the enhanced energy storage within the agglomerates. We expect these results will be useful for
understanding and modeling the performance of dielectric composite materials.
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