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Two methods of quantifying the spatial resolution of a camera are described, performed, and

compared, with the objective of designing an imaging-system experiment for students in an

undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital

single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional

test-target contrast measurements and the technique of using Fourier analysis to obtain the

modulation transfer function (MTF). The advantages and drawbacks of each method are compared.

Finally, we explore the rich optical physics at work in the camera system by calculating the MTF

as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates

better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is

not diffraction-limited, being significantly affected by spherical aberration. The experiment and

data analysis routines described here can be built and written in an undergraduate optics lab setting.
VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4979539]

I. INTRODUCTION

What is meant when we say a camera is high quality? We
might mean that the camera can do justice to an unevenly lit
scene, or has a high dynamic range. Maybe the camera’s sen-
sor has many pixels and thus round objects do not appear
pixelated. Or perhaps we mean the camera responds consis-
tently to different colors of light, or has very little chromatic
aberration. Maybe we mean to say that the camera has good
spatial resolution, that it does a good job of reproducing
small objects, sharp edges, and fine detail.

Spatial resolution measurements are a standard way to test
the quality of an optical system. Having a resolution-
measurement testbed in an undergraduate optics lab is an
interesting and relevant way to learn about optics and
electro-optical systems. For the hobbyist, the curious student,
or anybody with a smartphone camera, it is interesting and
worthwhile to be able to quantitatively compare different
imaging options on the market. In particular, off-the-shelf
DSLR cameras, such as the Canon 40D, are compelling sys-
tems to study because they are ubiquitous, the technological
bang-for-the-buck is very high, and there is a great deal of
consumer interest in selecting appropriate cameras and
lenses. In this paper, we explore two ways in which a cam-
era’s spatial resolution can be measured and investigate the
dependence of the resolution on various parameters of the
camera. A widely accepted method for quantifying the per-
formance of imaging systems is through the use of a set of
resolution test targets. Another more sophisticated method
uses Fourier analysis and measures the camera’s response to
the different spatial-frequency components of a known sig-
nal. Using the modulation transfer function to quantify reso-
lution illustrates the power of using the discrete Fourier
transform as a robust tool to extract subtle patterns from spa-
tial data.

In the remainder of this paper, we first motivate the study
of spatial resolution by discussing scalar diffraction theory,
which predicts fundamental physical limits on the spatial res-
olution of any imaging system. Then, we introduce the
experimental setup we will use and present procedures and

the necessary mathematical formalism for making measure-
ments via both techniques. A set of measurements is made
via both of these methods. The data analysis procedures are
described in detail and the results are compared. Finally, as
an application of this work, we characterize the Canon 40D
and perform two tests that confirm that it is not diffraction
limited.

There is a vast literature on spatial resolution, Fourier
transforms,1 and methods of quantifying optical systems,
both in the peer-reviewed literature and in textbooks.2 The
importance of helping students to master the most relevant
pieces of this literature through an improved upper-division
undergraduate optics laboratory curriculum was highlighted
over two decades ago.3 However, with regard to treatments
of these topics that are appropriate for an upper-division
undergraduate laboratory, the previous work on the spatial
resolution measurement usually focuses on measuring the
modulation transfer function of a system. In most cases, the
literature assumes a strong background in Fourier optics and
signal processing.4 In other cases, the techniques described
are highly specialized5 or no longer applicable due to advan-
ces in computing power.6 To our knowledge, this manuscript
is the first self-contained treatment of spatial-resolution mea-
surement methods developed with the modern-day under-
graduate in mind. In particular, we are careful to discuss
experimental difficulties that specialists take for granted. An
undergraduate in an upper-division optics laboratory can
become fluent in the basic theory and practice of various
methods of spatial resolution measurement with the guidance
of this manuscript.

II. WHY SPATIAL RESOLUTION IS IMPORTANT

Spatial resolution is fundamentally limited by diffraction
in any optical system. This limit comes from the diffraction
of electromagnetic waves propagating through a finite aper-
ture. Traditional imaging cannot overcome the diffraction
limit, but optical engineering can design a system that balan-
ces cost and performance to get as close as possible to that
limit for a given camera setting. One way, therefore, to judge
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the quality of a camera is to see how closely it performs to
the diffraction limit.

The diffraction limit can be illustrated by studying the sys-
tem depicted in Fig. 1, consisting of a point source of mono-
chromatic light, a circular aperture of finite radius a, and an
image plane some distance D away. A well-known result of
diffraction theory is that small apertures act to blur sharp
edges and smear point sources. This means that the image of
the point source formed on the other side of the finite aper-
ture fundamentally cannot be a point.

In fact, in the limit that the point source is far away, the
intensity profile due to the diffraction of light can be analyti-
cally calculated. If the light has wavelength k, its image
formed on a faraway image plane takes the form

I hð Þ ¼ 4I0

J1 2pa sin h=kð Þ
2pa sin h=k

� �2

; (1)

where h (the independent angular variable) and a (the aper-
ture radius) are shown in Fig. 1, and J1 is the first-order
Bessel function of the first kind. This intensity distribution,
plotted in Fig. 2, was first calculated by George Airy7 and is
thus referred to as an “Airy disk.” From Eq. (1), it is evident
that shortening the wavelength of the light or increasing the
aperture size (increasing the ratio a=k) both make the result-
ing diffraction pattern resemble a point source more closely,
improving the resolution.

Clearly, diffraction poses a problem to scientists who
study increasingly small systems or increasingly distant sys-
tems with microscopes and telescopes. Lord Rayleigh
addressed the difficulties posed by diffraction by quantifying
the resolution limit of optical systems due to diffraction.8

The Rayleigh Criterion says that two point sources are “just
resolvable” if the Airy disk of one has a maximum at the first
minimum of the other. If the Airy disks are separated any
further than this, they are resolvable as two distinct point
sources. If the Airy disks are any closer together, they appear
as a single blur and are deemed not resolvable under the
Rayleigh Criterion.

III. TEST TARGETS (CONTRAST TRANSFER

FUNCTION)

Another experimentally straightforward way of quantify-
ing resolution involves imaging test targets, which are typi-
cally objects upon which are printed lines of well-defined
and varying sizes and separations, as shown in Fig. 3. An
optical system’s resolution can be measured by imaging the
alternating light and dark lines at successively finer spatial
scales, as displayed in Fig. 4. The spatial scale at which the
line pairs become indistinguishable defines a resolution cut-
off for a particular camera. The resolution cutoff can be
reported as a quantitative basis of comparison between dif-
ferent cameras.

The most direct way to report the resolution cutoff is by
measuring the line spacing of the test targets with a pair of
calipers, in line pairs per millimeter (lp/mm). However,
instead of directly reporting a spatial frequency, it is often
more convenient to report angular spatial frequencies,2 such
that the specified cutoff is defined independently of the target

Fig. 1. An aperture (left) diffracts light to produce an image on the screen

(right). If the screen is far away from the diffraction aperture, with D� a
and D� k, a Fraunhofer diffraction pattern will be visible on the screen.

The dark circles roughly indicate the relative sizes of the aperture and the

diffraction pattern but are not drawn to scale.

Fig. 2. The Airy disk is plotted for three point sources of different visible

wavelengths. An aperture diameter of 3.5 mm, which is typical of a commer-

cial DSLR camera and is achievable on the Canon 40D, is assumed. Note

that the intensity function does not monotonically diminish outwards from

the central maximum but rather oscillates as it vanishes.

Fig. 3. The 1951 US Air Force Resolution Test Chart (Ref. 17). The hori-

zontal/vertical line pairs are arranged in groups of six targets each. Each

group has a group number vertically above or below the target. The six tar-

gets within a group are numbered, with the element number being horizon-

tally adjacent to each target. This numbering scheme makes it possible to

quickly quantify the resolution limit of a camera out in the field without hav-

ing to worry about spatial or angular frequencies.

Fig. 4. An image of the test chart, taken at f/8.0. The data plotted in Fig. 5 is

taken by sampling a horizontally oriented row of pixels across vertically ori-

ented targets within this image.
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distance used during testing. While one may be tempted to
measure and report angular spatial frequencies in inverse
radians, it is more convenient to measure angular spatial fre-
quencies as a fraction of the total angle subtended by the
camera’s field of view. Hence, the units of angular spatial
frequency are “lines per picture width” (LPPW), where a
“picture width” is not a unit of distance but rather the angle
subtended by the camera’s full field of view. Calculating the
angular spatial frequency n of a set of lines in LPPW is
straightforward for digital images, which can be quantita-
tively manipulated as large matrices; we simply divide the
total number of pixels subtending the field of view by the
imaged width of the line (also measured in pixels).

For example, the camera sensor in the Canon 40D sub-
tends some angular field of view that spans 3888 pixels
measured from left to right. The intensity profile plotted in
Fig. 5, taken from a row of pixels in Fig. 4, cuts across three
dark and two bright lines in the image. We can see that for
this particular set of bright/dark lines, a “line pair” spans 110
pixels. Hence, the angular spatial frequency for this particu-
lar set of lines in the test target is

n ¼ 3; 888 pixels=picture width

110 pixels=2 lines
� 71 LPPW: (2)

In addition, with digital imaging and image-processing
software, we no longer have to rely on a resolution cutoff
beyond which we deem the lines blurry. Instead, we can take
a set of pixels such as those plotted in Fig. 5 and calculate a
measure of resolution called the contrast

C ¼ Imax � Imin

Imax þ Imin

; (3)

as a function of the spacing of the line pairs or the angular
spatial frequency. As the lines get more closely spaced and
our optical system has trouble resolving individual lines, Imax

and Imin tend towards each other and the contrast tends
towards zero. A contrast closer to 1 corresponds to well-
resolved line pairs, while a contrast of 0 implies that Imin ¼
Imax (or that there is absolutely no spatial variation in the
image intensity).

Measuring the contrast as a function of the spatial or angu-
lar frequency gives us an elegant and quantitative way to
represent the resolution of a system. In fact, the contrast as a
function of n defines the “contrast transfer function,” or
CTF,2 as plotted in Fig. 6.

A. Image acquisition and data analysis

To measure the contrast transfer function, we image a
printed version of the test target (shown in Fig. 3) using the
Canon 40D connected to an EF 28–135 mm f/3.5–5.6 lens.

The primary experimental difficulty with test targets is
ensuring that all areas of the test target are evenly illumi-
nated. A higher background illumination increases Imin and
decreases the contrast artificially due to glare. Since the line
pairs are arranged on the test target in a spiral fashion, spatial
variations in the illumination of the test target can make it
seem like the CTF repeatedly increases and decreases. Thus,
to eliminate spatial variation in the lighting of the test target
due to glare, the entire setup is illuminated with ambient
light rather than the camera’s built-in flash.

In addition, mechanical vibrations can degrade the mea-
sured resolution of the camera, especially for long exposures.
Mounting the camera on a tripod or breadboard and using a
remote trigger reduces any resolution degradation due to
mechanical vibrations as to be negligible compared to the
contributions from optical aberrations, diffraction, etc., of
which we are interested. In our setup, the camera is mounted
on a breadboard at a fixed distance of about 0.5 m from the
test targets. Great care should be taken to ensure that at least
the smallest line pairs are in the center of the camera’s field
of view so that we can compare the test target method to
other methods of resolution measurement in the high-
frequency limit. There exist open-source software packages
that facilitate computerized control of the Canon 40D over a
USB transfer cable. Having a live stream from the camera
sensor displayed on the computer facilitates alignment and
ideal focusing of the optics.9

Once the setup is constructed and the camera aligned and
focused, it is important to choose the camera settings well.
For example, high ISO increases shot noise on the sensor,
while long exposure times coupled with mechanical vibra-
tions can degrade the image resolution.2 Since these two
parameters both affect the exposure of the image in a well-
understood way, it is possible to experiment with a good
combination of ISO and shutter speed that balance electronic
noise and mechanical noise. For the best signal-to-noise
ratio, we adjust the ISO and shutter speed to maximize the
intensity throughout the image without saturating the sensor.

The camera’s aperture size, often described in terms of its
f-number, can affect a camera’s resolution limit in a number

Fig. 5. A horizontal row of pixels is sampled from Fig. 4. The pixel intensity

values are plotted as a function of the pixel index. The contrast is measured

by estimating the maximum and minimum intensity levels as indicated by

the horizontal lines. In this example, C¼ 0.74.

Fig. 6. The contrast is plotted as a function of the angular spatial frequency

(bottom axis), which is linearly proportional to the spatial frequency of the

targets on the screen, and which can be measured easily with the use of cali-

pers. As one would expect, the contrast decreases as the angular frequency

grows large, in correspondence with the observation that real cameras blur

fine details.
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of ways. By decreasing the f-number, one opens the aperture
wider. This lets in light from a wider range of angles than
only near the center of the lens, where lenses typically per-
form best. In addition, light incident on the detector at an
oblique angle increases the probability of pixel cross-talk,
which worsens the resolution. On the other hand, the diffrac-
tion limit increases as the aperture radius a is increased, as
seen earlier in Fig. 2. We fix the aperture diameter to
2a¼ 3.5 mm when using test targets.

When the shutter button is pressed, light incident on the
camera’s sensor is captured and stored in a raw format.
Then, a slew of (potentially proprietary) algorithms are
applied to the raw sensor output to denoise and enhance the
image, which then is converted to a JPG image. While it can
be interesting to analyze the sensor output in the minimally
processed raw format, it is equally meaningful to simply
study the final JPG such as that in Fig. 4, taking into account
all of the processing done by the camera.

MATLAB is used to process the image as a large matrix of
pixel intensities, and the resolution of the camera-lens com-
bination is measured by making CTF measurements. First,
the pixel intensities over a contiguous row of pixels are plot-
ted as a function of the pixel indices. Here, Imax and Imin are
taken as shown in Fig. 5, allowing the contrast to be calcu-
lated according to Eq. (3). For wider lines, the frequency n,
can be computed as discussed in Eq. (2), but precise determi-
nation of the frequency is more difficult as the lines become
only a few pixels wide. However, since the frequency of any
target is 21=6 � 1:12 times the previous one, it is possible to
precisely measure a wider target as in Fig. 5 and extrapolate
the frequencies of smaller ones.

Repeating this procedure over many frequencies allows us
to plot the CTF, as in Fig. 6. As a general rule of thumb, a
system’s resolution is considered poor if C � 0:2. Knowing
the CTF can inform us as to what spatial frequency corre-
sponds to poor resolution.

IV. ILLUMINATED SLIT (MODULATION

TRANSFER FUNCTION)

While test targets offer a straightforward method for mea-
suring the spatial resolution of an optical system, the meas-
urements can be time-consuming and tedious. This begs the
question: Is there a more efficient way to measure the spatial
resolution of an optical system?

Fortunately, the answer to this question is yes. Another
method, using the formalism of the “modulation transfer
function,” trades off simplicity and straightforward calcula-
tion for greater precision, speed, and lower sensitivity to
noise. As in the test target method, a quantity called the mod-
ulation is defined. Like the contrast, the modulation is
another way to quantify the resolution at a certain spatial fre-
quency. Furthermore, in the same way that contrast measure-
ments define the CTF, measuring the modulation as a
function of frequency defines the modulation transfer func-
tion, or the MTF. To understand what the modulation is, con-
sider a test target that contains not a set of solid black and
white bars, but a sinusoidal intensity profile that sweeps
from the left to the right of the field of view as a function of
the azimuthal angle h, as shown in Fig. 7. Suppose this sinu-
soidal intensity profile projects onto the camera’s field of
view a sinusoid of a certain angular frequency n with some
positive amplitude Ain and background offset Bin, as
described by

InputðhÞ ¼ Ain sinð2pnhþ /inÞ þ Bin: (4)

To a very good approximation, the output intensity
profile captured by the camera will also look like a sinu-
soid. However, the output sinusoid will likely have a dif-
ferent amplitude, offset, and phase (Aout;Bout, and /out), as
given by

OutputðhÞ ¼ Aout sinð2pnhþ /outÞ þ Bout: (5)

The modulation at that frequency n can be defined as
AoutðnÞ=AinðnÞ. Note that the modulation is always positive
and does not specify any information about the phase; thus,
even though the modulation turns out to be a very useful
quantity, in this sense it is an incomplete description of the
camera. If our camera is perfect, then the imaged profile will
be exactly the same as the input, and we would have Aout=Ain

¼ 1 for all frequencies n. If our camera is imperfect, oscilla-
tions will not be resolved fully, especially as n increases.
Mathematically stated, we will always have Aout < Ain, and
as n increases we will have Aout=Ain ! 0. In a manner very
similar to the CTF, the MTF (modulation transfer function)
is defined by making measurements at various angular
spatial frequencies n, with the important restriction that
MTFðn ¼ 0Þ � 1.

The choice of using a sinusoidal pattern to define the mod-
ulation may seem arbitrary. Why is the modulation defined
in terms of sinusoidal inputs and outputs? After all, smoothly
varying sinusoidal test targets are more difficult to manufac-
ture than alternating black and white bars. The answer lies in
Fourier synthesis—by considering a linear combination of
sinusoids of different spatial frequencies, we can construct
intensity profiles that are experimentally convenient to real-
ize and whose frequency content is known. Taking a picture
of such a target contains spatially superimposed information
at each spatial frequency in the linear combination. This
information can be separated by taking a discrete Fourier
transform.

The advantages of this method are manifold. First, instead
of isolating smaller and smaller line pairs for contrast meas-
urements at only one spatial frequency, using the Fourier
transform gives us data over many frequency components in
a single measurement. Second, because a Fourier transform

Fig. 7. Simulated responses to a sinusoidal target filling a camera’s field of

view are shown here. The 25 bright and 25 dark lines spanning the picture

width means our frequency is n ¼ 50 LPPW. The top third of the image is the

response of an ideal camera, with MTFðn ¼ 50 LPPWÞ ¼ 1. The middle third

is the simulated response of a camera with MTFðn ¼ 50 LPPWÞ ¼ 0:70, and

the bottom third is a camera with MTFðn ¼ 50 LPPWÞ ¼ 0:30. Among the

many advantages of using the MTF is the fact that it is straightforward to simu-

late the response of cameras to arbitrary input signals.
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takes into account the information distributed over the entire
spatial domain, our measurement is robust against spatially
localized defects such as dead pixels, dust on the detector,
etc. This is very different from using test targets, where the
information about the camera is localized in spatial fre-
quency and in space to a small region of the test target that is
easily susceptible to experimental imperfections (such as
uneven illumination). Finally, knowing the MTF of a camera
allows users to simulate output images for arbitrary input
signals.10

A. Selecting an intensity profile

To measure the (one-dimensional) modulation transfer
function, it remains to select an intensity profile to image
and find out what its frequency components are as a function
of spatial frequency. In principle, most signals will have spa-
tial frequency content over a wide range of frequencies, but
in the presence of noise, we want to maximize the signal-to-
noise ratio at high frequencies. That is, we want AinðnÞ to
drop off as slowly as possible as n increases. The ideal inten-
sity profile would have spatial frequency content distributed
evenly over all frequencies. Such an intensity profile exists:
it is the well-known Dirac delta function, which can be mod-
eled as

Input hð Þ ¼ I0

L

D
d hð Þ ¼ 1 h ¼ 0

0 h 6¼ 0;

�
(6)

where I0L=D is a scaling constant describing the “strength”
of the input signal. This profile is infinitely localized in space
and contains information at all spatial frequencies. Thus, by
imaging an intensity profile that is a Dirac delta function, or
a close approximation to it, our output signal will also con-
tain a wide range of spatial frequencies, and thereby allow us
to sample over a wide frequency spectrum with a single
image.

This idea can be represented more quantitatively by taking
a continuous Fourier transform of the Dirac delta function to
see how the total input intensity is distributed as a function
of the frequency n. This calculation is analogous to measur-
ing the input amplitude Ain as a function of n. Denoting this
function XdðnÞ, we have

Xd nð Þ ¼
ð1
�1

I0L

D
d hð Þe�inh dh ¼ I0L

D
e�in 0ð Þ ¼ I0

L

D
: (7)

We can make sense of the fact that XdðnÞ is constant over
all angular frequencies in the sense that the signal present in
the Dirac delta function is uniformly distributed over all
angular frequencies. Then I0 can be interpreted as the power
per 2p radians per unit angular frequency emitted by the
source, and I0L=D is the power coming through an arc that
subtends an angle of L/D radians.

In practice, arbitrarily thin and bright intensity profiles are
impossible to realize. To circumvent this problem, we will
consider a thin slit of finite width, which is a rectangular pro-
file of small, finite width L illuminated by a bright light of
finite power I0 per unit angular frequency per 2p radians.
This profile can be modeled by

Input hð Þ ¼ I0 H h� L

2D

� �
�H hþ L

2D

� �� �
; (8)

where H is the unit step function. The spatial frequency con-
tent theoretically present in the input signal is given by tak-
ing the Fourier transform11 of InputðhÞ. We compute

XL nð Þ ¼ F Input hð Þ
� �

¼
ðL=2D

�L=2D

I0e�inh dh

¼ I0L

D
sinc

nL

2D

� �
; (9)

and observe that the input signal vanishes at high frequencies
(n!1), a direct consequence of InputðhÞ having finite
width.

OutputðhÞ is then measured by taking a picture of
InputðhÞ. Taking the discrete Fourier transform of OutputðhÞ
gives YLðnÞ, the spatial content present in the output signal;
this is analogous to finding the output amplitude Aout at all
frequencies simultaneously. A more sophisticated definition
of the modulation transfer function, therefore, is the Fourier
transform of the output signal divided by its corresponding
input signal, with absolute value bars inserted to keep the
modulation positive

MTF nð Þ ¼
				 Y nð Þ
X nð Þ

				: (10)

B. Diffraction theory and the MTF

We can revisit some of the results from diffraction theory
using the MTF formalism. Since diffraction through aper-
tures smears point sources (Dirac delta functions), we can
think of apertures as filters that remove some of the high spa-
tial frequency information from the system. This property is
exploited, for example, when a laser’s spatial profile is
smoothed by spatial filtering.1 In particular, we can derive a
limit on the MTF from the Rayleigh criterion. We estimate
the spatial frequency and the modulation corresponding to
the just resolvable condition by arranging many identical
Airy disks next to each other in a periodic fashion such that
they are just resolvable, as shown in Fig. 8. The separation
distance defines the corresponding spatial frequency. The
modulation corresponding to this cutoff frequency can be
estimated by dividing the peak-to-peak amplitude of the

Fig. 8. A sequence of point sources are placed such that they are just resolv-

able as defined by the Rayleigh Criterion. The angular spacing of the point

sources and the camera’s angular field of view define a particular angular

spatial frequency in LPPW. The summed intensities, plotted in bold, can be

used to estimate the maximum contrast/modulation allowable by diffraction

theory at Rayleigh’s cutoff wavelength, which turns out to be �7800 LPPW.
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summed intensities by the height of each individual Airy
disk.

To estimate the Airy disk size, we write down some typi-
cal parameters used in our setup. We fix the aperture size of
the Canon 40D to 2a¼ 3.5 mm. We assume the light is green
on average, with k¼ 550 nm, and take the object to be at a
distance D¼ 70 cm away. The angular separation implied by
the Rayleigh criterion corresponds to a spatial frequency of
�7800 LPPW. This can be estimated using the angle sub-
tended by the field of view, which is roughly 0.76 rad from
left to right at a focal length f¼ 28 mm, according to online
sources including the Canon 40D manual.12 As shown in
Fig. 8, the contrast at that spatial frequency can be estimated
to be C¼ 0.14. As we will discuss later, the contrast is a
good approximation to the modulation in the high-frequency
limit, so we write MTFð7800 LPPWÞ � 0:14.

C. Image acquisition

To measure the modulation transfer function, it is neces-
sary to precisely realize the illuminated slit of width L as
described in Eq. (8), and then to acquire an image. To pre-
cisely realize a slit of width L, a pair of razor blades placed
on an adjustable micrometer drive and a black cardboard
screen together obscure all but a thin slit. The razor blades
are aligned by eye to be parallel and oriented such that the
sharp edges face each other. Assuming the lens is symmetric
about the lens axis, rotating the slit about the lens axis simply
rotates the image formed on the sensor, providing no new
information about the optics. However, choosing to orient
the slit along one of the axes of the pixel array maximizes
the Nyquist frequency attained without resorting to sophisti-
cated supersampling methods.13 An incandescent lamp is
placed about 2 m behind the razor blades to provide colli-
mated, spatially uniform light at the slit. The camera is
placed about half a meter away from the razor blades, and
mounted to the breadboard to ensure repeatability. A sche-
matic of the entire setup can be seen in Fig. 9, and a closeup
of our slit is shown in Fig. 10.

To compare the results from the illuminated slit with the
results from the test targets, camera parameters that signifi-
cantly affect the camera’s resolution must be held constant
from before. The intensity profile of interest, in this case the
illuminated slit, should be in the center of the field of view,
just as the test targets were. Measurements should be made
at similar distances so the camera’s focus is similar. The

camera’s aperture size should be held constant. We use
2a¼ 3.5 mm, which corresponds to f/8.0, to begin with. The
ISO and shutter speed are selected as discussed previously.
After the camera is aligned, focused, and set to the desired
settings, an image of the illuminated slit is taken. As
described earlier, a JPG image consisting of 2592� 3888
pixels is produced, which can be treated as a 2592� 3888
� 3 matrix, where the three layers represent the intensity in
each of the red, green, and blue color bands.

Because modulation measurements are faster to make than
contrast measurements, it is straightforward to quickly mea-
sure the MTF at different aperture diameters to characterize
the camera. In addition to measuring the MTF at
2a¼ 3.5 mm, we open up the aperture to 2a¼ 8.6 mm corre-
sponding to f/3.5. Measuring the MTF at two different aper-
ture sizes allows us to observe the opposing effects of lens
nonideality and the diffraction limit on the camera’s resolu-
tion. As the lens is opened up, the diffraction limit increases.
At the same time, spherical aberration is increased because
the curvature of the lens is no longer negligible as the aper-
ture is opened up. In addition, by separating the image into
its constituent red/green/blue channels, we may investigate
the MTF as a function of color band.

D. Data analysis

This section describes how the JPG image of a slit of
width L is used to determine the MTF. The input and output
spectra, XLðnÞ and YLðnÞ, can both be fully determined from
the image.

Given a JPG image, a small rectangular region of interest
(ROI) consisting of ðM � NÞ � 3 pixels is selected. Cropping
the image only affects the frequency resolution, leaving the
upper limit of the angular frequency (or the Nyquist fre-
quency), unchanged. Increasing the number of points in the
ROI is a tradeoff between increasing the frequency resolution
and increasing the noise, since the signal is localized near the
bright slit and pixel readings sufficiently far away from the
bright slit contain less information about the camera’s
response. We experimented with different ROI sizes and
found that M � N ¼ 79� 779 gave good frequency resolu-
tion and low noise for a variety of different slit widths, as

Fig. 9. A schematic of the setup used to realize and image a uniformly illumi-

nated slit is shown. An idealization of the camera optics and aperture are shown,

with the camera’s CMOS sensor represented by the dark bar at the far right.

Fig. 10. The slit setup as seen from the source side (i.e., the left side of Fig.

9). The arrows (green online) indicate the razor blades that define the slit.

The blade to the left is mounted on a micrometer drive while the right blade

remains fixed. The black cardboard and the pieces of tape on the razor blade

block stray light from the source.

434 Am. J. Phys., Vol. 85, No. 6, June 2017 C. Leung and T. D. Donnelly 434



shown in Fig. 11. The color bands can either be analyzed sep-
arately or aggregated with a weighted average

Igrayscale ¼ crIred þ cgIgreen þ cbIblue; (11)

where ðcr; cg; cbÞ are weights whose exact values depend on
different conversions to grayscale taking into account the dif-
ferent energies of photons in the different bands, the response
of the human eye, the efficiency of the detectors, etc. By
default, MATLAB has a built in function that implements this
conversion, taking ðcr; cg; cbÞ ¼ ð0:2989; 0:5870; 0:1140Þ.14

Regardless of whether color is separated or combined into a
single intensity value according to Eq. (11), we can now dis-
cuss how to obtain XLðnÞ and YLðnÞ from a matrix of pixel
intensities with M rows and N columns in which the same spa-
tial information is encoded in each of the M rows, correspond-
ing to Fig. 11.

In the case of the input spectrum, the functional form of
XLðnÞ is known from Eq. (9). Since the zeros of XLðnÞ will
show up as dips in YLðnÞ, we can fit the first zero of the func-
tional form of XLðnÞ experimentally, as shown in Fig. 12.
The intensity scale of XLðnÞ is set by XLð0Þ ¼ YLð0Þ, since
MTFð0Þ ¼ 1 by definition. The remainder of this section will
focus on how to obtain smooth estimates of YLðnÞ.

Taking the discrete Fourier transform of each of M rows in
the ROI yields M estimates of the frequency content of the
output signal YLðnÞ. These estimates, labeled Y1;LðnÞ;…;
YM;LðnÞ, are in general complex-valued to reflect the phase
offset of each frequency component. However, since the MTF
does not encode phase information and is a real, positive
quantity, we ignore the phase factor and average the magni-
tudes over the M estimates to provide a smoother estimate of
the real, positive output spectrum YLðnÞ, or

YL nð Þ ¼ 1

M

XM rows

i¼1

jYi;L nð Þj: (12)

The same procedure repeated with the lamp turned off
provides an estimate of the (real and positive) noise floor due
to electronic cross-talk, stray light, etc. To a very good
approximation, this noise floor NðnÞ is independent of the
slit width, so we do not denote it with a subscript L. The
three spectra XLðnÞ; YLðnÞ;NðnÞ are plotted in Fig. 12. The
resulting MTF estimate MTFLðnÞ ¼ YLðnÞ=XLðnÞ is plotted
in Fig. 13.

The obvious problem with Fig. 13 is that it features a spu-
rious peak which is clearly unphysical in nature. This behav-
ior is a result of our measurements having YLðnÞ > 0
everywhere due to the finite noise floor, whereas XðnÞ ¼
I0L=DjsincðnL=2DÞj has zeros at n ¼ 2npD=L; n ¼ 1; 2;…,
one of which is seen in Fig. 12. One solution is to use values
of L that are so narrow that the finite pixels cannot distin-
guish the slit from an infinitely thin impulse. This approach
runs into difficulties because as the slit gets narrower, there
is not enough light incident on the detector to maintain a
good signal-to-noise ratio, as discussed in Eq. (9). On the
other hand, as the slit gets wider, the spurious peaks in the
MTF estimates are shifted to lower and lower frequencies.

A robust solution is to take a weighted average of multiple
MTF estimates over several slit widths chosen to be not too
narrow and not too wide. In our experiment, six such widths
ranging from 0.21 to 1.06 mm are used and are listed in
Table I. The “weights” in the weighted average are taken to
be the relative signal-to-noise ratio at each frequency. For a
particular slit width L, we can define the signal-to-noise ratio
as a function SNRLðnÞ of the angular frequency n as

SNRL nð Þ ¼ XL nð Þ
N nð Þ ; (13)

Fig. 12. Assuming an input spectrum of the form XðnÞ ¼ ðI0L=DÞ
jsincðnL=2DÞj, we fit the first zero of the input spectrum by estimating the

minimum of the experimental data.

Fig. 13. Plotting YLðnÞ=XLðnÞ from the data shown in Fig. 12 reveals a spuri-

ous peak in the MTF estimate, a result of the fact that the analytically

defined input spectrum XLðnÞ vanishes for certain values of n while the

experimentally measured output spectrum YLðnÞ contains noise.

Fig. 11. The region of interest shown is cropped from a larger JPG image of

the slit. The dimensions of the region of interest are chosen to strike a balance

between frequency resolution and increased noise. Discrete Fourier transforms

are taken along the horizontal axis to obtain a number of different output spec-

trum estimates. This particular image was taken at a slit width of 1.06 mm.

Table I. Angular spatial frequencies n for different slit widths. The slit

widths were measured to a precision of 1 lm with a micrometer drive on the

translation stage. The first few frequency values were measured experimen-

tally, and since the first zero of XLðnÞ scales as 1=L, the higher values are

extrapolated to some extent (the extrapolated values are indicated with an

asterisk).

Slit width [mm] n of first zero [LPPW]

1.060 1013

0.860 1273

0.660 1812

0.460 2670

0.260 4480*

0.210 5546*
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with the relative signal-to-noise ratio defined as

RSNRLi
nð Þ ¼ SNRLi

nð ÞX
all L

SNRL nð Þ
: (14)

As we would like the weight RSNRLðnÞ on a particular mea-
surement YLðnÞ vanishes at the frequencies where the input
signal XLðnÞ vanishes, the sum of the RSNR weights is 1.
Hence, the spurious peaks, such as the one seen in Fig. 13,
do not end up affecting the MTF estimate significantly.

We form a weighted average of MTF estimates over the
values of L tabulated in Table I, which turns out to be equiv-
alent to measuring the sum of the output signals divided by
the sum of the input signals. The individual MTF estimates
at six different slit widths and their weighted average are

MTF nð Þ ¼
X
all L

RSNRL nð ÞMTFL nð Þ ¼

X
all L

YL nð Þ
X
all L

XL nð Þ
; (15)

and are plotted (for grayscale) in Fig. 14. Meanwhile, Fig. 15
shows the results when the color bands are analyzed sepa-
rately, for both f/3.5 and f/8.0.

V. RESULTS

In summary, we have measured the grayscale CTF of the
Canon 40D at f/8.0, and the MTF of the camera at f/3.5 and
f/8.0 in each color band. Because the measurements were
performed under similar conditions, we can now answer two
interesting questions. First, what is the relationship between
the MTF and the CTF? Second, what are the limiting factors
on our camera’s resolution?

A. Comparison between MTF and CTF

The first of these questions can be answered mathemati-
cally and confirmed experimentally. Given a set of contrast
measurements, there exists a series expansion

MTF nð Þ ¼ p
4

CTF nð Þ þ CTF 3nð Þ
3

� 	 	 	
� �

; (16)

which gives the MTF in terms of the corresponding CTF.15

By converting the CTF measurements made with the test tar-
gets into MTF values using the approximation in Eq. (16),
we can compare the results from the test target method
against the Fourier analysis method, keeping in mind that the
approximation we make underestimates the MTF at low

Fig. 14. A collection of MTF estimates made at six different slit widths as listed in Table I. The weighted average of the six estimates does not feature any of

the spurious features present in each individual measurement.

Fig. 15. The MTF of a Canon 40D is measured as a function of color band (from left to right: red, green, and blue band) and as a function of aperture size

(f/3.5 in thick traces and f/8.0 in thin traces). Note that shortening the light’s wavelength improves resolution, but increasing the aperture size does not. This

shows that the camera is not diffraction-limited in this regime.
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angular frequencies. Interestingly, since both the MTF and
CTF tend toward zero in the high-frequency limit, the
higher-order terms in Eq. (16) vanish faster than the CTFðnÞ
term. That is, the CTF converges to the MTF up to a constant
as n gets large, so that

MTF nð Þ � p
4

CTF nð Þ: (17)

Experimentally, this agreement is seen at high frequencies as
expected (see Fig. 16).

The tradeoffs of using contrast versus modulation to quan-
tify a system’s optical quality are clear from Fig. 16. On the
one hand, measuring the contrast is much more intuitive and
straightforward than measuring the modulation and does not
require the same amount of averaging to obtain meaningful
results. On the other hand, measuring the contrast at many
points is much more tedious. Naturally, choosing between
one quantification method or another depends on what infor-
mation is relevant. If the falloff rate of the spatial resolution
as a function of frequency is not of interest, it is more practi-
cal to specify a contrast threshold and measure the frequency
corresponding to that threshold. In many situations, however,
the MTF is more valuable to have. For example, astronomers
routinely measure the MTF of telescopes and imaging cam-
eras in order to estimate the size of astronomical objects
from telescope images.16

B. Limits on resolution

We know that for even the most ideal camera, diffraction
is the ultimate downfall of resolution. But how close to ideal
is our Canon 40D? In this section, we discuss possible limit-
ing factors on the resolution and conclude that spherical
aberration, rather than pixelation, chromatic effects, or dif-
fraction, is the most likely culprit.

Recall that we derived theoretically that MTFð7800 LPPWÞ
� 0:14 corresponds to an angular separation implied by the
Rayleigh criterion. Since this spatial frequency corresponds to
an angular size smaller than a pixel (whose angular size corre-
sponds to 3888 LPPW), we determine that our consumer-
grade imaging system is not operating near the Rayleigh limit.

Pixelation is another concern. The fact that pixelation
causes the image of a point source to instead look like a

square the size of a pixel allows us to infer the functional
form of the MTF contribution due to pixelation. If pixelation
were the limiting factor on the resolution, the resolution
should fall off like sincðn=3888 LPPWÞ. However, as seen in
Fig. 15, the resolution falls off far more rapidly and has a
strong dependence on the aperture size, leading us to rule out
this hypothesis.

From the same set of data, Fig. 15, we can rule out chro-
matic, or color-dependent, aberration as the dominant contri-
bution to our resolution. The data show that the qualitative
wavelength dependence is as predicted by scalar diffraction
theory for both large and small aperture sizes—the resolution
improves as the wavelength is decreased. We conclude that
chromatic aberration is not the limiting factor on the Canon
40D’s resolution.

Finally, we consider spherical abberation, an effect that
occurs in imaging systems where the thin-lens approximation
breaks down. This effect becomes more pronounced as the
aperture is opened wider.1 Our data show that when the aper-
ture size is increased to 2a¼ 8.6 mm, the resolution
decreases. We conclude that spherical aberration is likely the
limiting factor on the resolution.

It is plausible that the camera’s designers have carefully
optimized the resolution limits of all of the components in
the body of the camera—the pixel array, electronics, etc.—to
minimize the cost of the camera. At the same time, photogra-
phy connoiseurs have the option to improve the system’s
performance by replacing the stock lens with a specialized
lens to suit their imaging needs. In this way, the Canon 40D
can cater to a wide range of consumers at minimal base cost.
This sensible design choice is a direct reflection of the rich
science and engineering that goes into making a camera.

VI. CONCLUSION

We have demonstrated a number of ways to quantify the
resolution of a camera with a relatively simple experimental
setup, including using the Rayleigh Criterion, the contrast
transfer function (CTF), and finally the modulation transfer
function (MTF). Our measurements suggest that the resolu-
tion of a typical DSLR such as the Canon 40D is limited by
its optical subsystem, namely, spherical aberration. This
experiment provides a concrete introduction to cornerstone
concepts of modern optics, including Fourier analysis, dif-
fraction theory, and analysis techniques to resolve informa-
tion in spatial data. The emphasis placed on overcoming
practical problems dealt with in the MTF measurement (i.e.,
making measurements that are robust against noise) makes
the experiment described well-suited for the undergraduate
laboratory and for students going on in the optics/photonics
industry.3
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APPENDIX A: SUGGESTED BILL OF MATERIALS

Included in Table II is a suggested bill of materials to use
in building this experiment. We did not have an adjustable
mechanical slit and built our own without much difficulty
out of translation stages, right angle brackets, and two

Fig. 16. Contrast measurements made from the test targets at f/8.0 shown in

Fig. 4 are converted to modulation using Eq. (16). These values are com-

pared to our MTF measurements made under similar conditions with the

illuminated slit. As expected, the test-target measurement underestimates

the modulation at low frequencies, and the two measurements converge as n
increases.
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commercially available razor blades. Though our setup was
mounted to a breadboard, mechanical vibrations were not
found to be the limiting factor in our ability to make robust
measurements.
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Table II. A suggested bill of materials to be used in building this experi-

ment. Standard hardware like an optical breadboard and bolts are not

included.

Item Cost

Digital camera, e.g., Canon EOS 40D (used) $300

Lens, e.g., Canon EF 28–135 mm f/3.5–5.6 IS USM $300

Camera remote trigger $10

Mini-USB transfer cable $5

Thorlabs adjustable mechanical slit VA100 $248

1951 Air force resolution test targets $10

Table lamp $10

Black cardboard for stray light blockage $5

Total $890
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