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When matter falls past the horizon of a large black hole, the expectation from string theory is that the

configuration thermalizes and the information in the probe is rather quickly scrambled away. The

traditional view of a classical unique spacetime near a black hole horizon conflicts with this picture.

The question then arises as to what spacetime does the probe actually see as it crosses a horizon, and how

does the background geometry imprint its signature onto the thermal properties of the probe. In this work,

we explore these questions through an extensive series of numerical simulations of D0 branes. We

determine that the D0 branes quickly settle into an incompressible symmetric state—thermalized within a

few oscillations through a process driven entirely by internal nonlinear dynamics. Surprisingly, thermal

background fluctuations play no role in this mechanism. Signatures of the background fields in this

thermal state arise either through fluxes, i.e. black hole hair; or if the probe expands to the size of the

horizon—which we see evidence of. We determine simple scaling relations for the D0 branes’ equilibrium

size, time to thermalize, lifetime, and temperature in terms of their number, initial energy, and the

background fields. Our results are consistent with the conjecture that black holes are the fastest scramblers

as seen by matrix theory.

DOI: 10.1103/PhysRevD.86.046005 PACS numbers: 11.25.�w

I. INTRODUCTION AND RESULTS

The correspondence between strongly coupled gauge
theories and quantum gravity [1–4] suggests that gravita-
tion and spacetime may be viewed as emergent struc-
tures—emergent from within the intricate nonlinear
interactions of nongravitational quantum field theories.
One aspect of this correspondence which remains particu-
larly challenging to understand has to do with a thermo-
dynamics theme which seems to underly gravitational
dynamics [2,5].

A representative illustration of this problem arises in the
following process. A stringy—possibly Planckian—probe
falls into a black hole. The expectation from the gravity-
gauge theory correspondence is that the probe gets ther-
malized as it flies through the spacetime region near the
horizon of the black hole [6]. What underlies this mecha-
nism of thermalization on the gravity side? More precisely,
what is the spacetime which the probe actually sees
as it crosses the horizon—if not the smooth, traditional,
no-hair region which ends with a pathological singularity.
Furthermore, there have been suggestions that this thermal-
ization process is an unusual one, characterized by a fast
scrambling of the information in the probe [7]. The situation
also ties in with the black hole information paradox which
attempts to account for such scrambled information [8–10].
In a slightly different language, wewant to find out why does
the traditional picture of the spacetime near a black hole
horizon fail to fully capture horizon physics—evenwhen the
curvature scales at the horizon are very small.

In this work, we investigate these questions using the
strongly coupled 0þ 1-dimensional gauge theory which
describes D0 brane dynamics [4,11,12]. We want to quan-
tify the thermalization process on the gauge theory side
using numerical simulations and identify the role played by
background fields that the D0 branes are immersed in. If a
spacetime—be it that of a traditional black hole or one of
the many fuzzball geometries [13,14]—is to thermalize a
probe, in what way does this spacetime fix the thermody-
namic attributes of this thermalization process? For
example, if a probe is to get scrambled into a configuration
of temperature determined by the size of a black hole hori-
zon, we want to find out how the geometrical information
about the size of the horizon gets eventually encoded into the
temperature attribute of the scrambled probe. Through this,
we can start addressing the difficult question as to how one
determines the emergent spacetimewhich an infalling probe
actually experiences—assuming the traditional no-hair
geometry somehow falters in the vicinity of a horizon.
The numerical simulation of 0þ 1-dimensional UðNÞ

super Yang-Mills theory at strong coupling is a difficult
one—even without the inclusion of supersymmetry—since
it is particularly computationally intensive [15–18]. Larger
values of N provide for numerical stability at the expense
of time. And a thermodynamic treatment requires a large
ensemble of simulations. We overcome these problems
by a series of efficient physical and technical tricks which
we develop and through the use of recent technological
advances in parallel processing. The result is a framework
of D0 brane dynamics exploration which can be done in
real time, pocking and tweaking the parameters as the
dynamics evolves so as to develop physical intuition about
this very rich system.
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We track the time evolution of a probe consisting of N
D0 branes in various background field configurations—in
their center-of-mass frame. The D0 brane coordinates are
represented by N � N Hermitian traceless matrices x�,
nine in total, one for every spatial direction. The eigenval-
ues of these matrices may be interpreted as the positions of
the individual D0 branes. We define the extent of the probe
in a subspace of the nine space directions as

�2
x� ¼ Trðx�x�Þ; (1)

where � is one representative index within the subspace of
interest (no sum over �). The actual size of the probe is
defined as [19]

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðx�x�Þ

N

s
(2)

for � summed over 1 . . . 9. In all cases, we start the D0
branes in a static two-sphere configuration in three of the
nine space directions

xi ¼ s�i; ½�i; �j� ¼ i"ijk�k for i; j; k ¼ 1; 2; 3;

(3)

where the �i’s are the Pauli matrices in an N � N
representation, and where s is a tunable parameter which
fixes the initial size. This initial size is then given by

R ¼ s
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 1

p
’ s

ffiffiffi
2

p
N (4)

for N � 1. Tuning s also corresponds to adjusting the
initial energy of the setup: smaller s corresponds to smaller
initial energy. We refer to the six directions transverse to
the initial spherical configuration as the transverse direc-
tions, and we refer to the remaining three as probe direc-
tions. Matrices in the three probe directions are denoted by
xi with i ¼ 1, 2, 3, while those in the transverse directions

are denoted by ya with a ¼ 1 . . . 6, initially set to zero. The
momenta matrices in the probe directions are denoted by
pi, while those in the transverse directions are labeled qa.
We also add small random Gaussian fluctuations to the
initial positions of the D0 branes—off the spherical shape
of the probe. This is to avoid starting on top of a saddle
point in the potential, ending up exploring nongeneric
regions of the phase space. This initial randomization of
the positions can be viewed as accounting for the effect of
initial quantum or thermal fluctuations [20].
In this work, we study over 500 simulations, all qualified

with a numerical error of the order of 10%. Figure 1 is a
stereotypical time evolution when the initial conditions are
perturbed slightly. Without initial perturbations, we find
oscillatory evolution with no thermalization. Throughout,
lengths are measured in units of ‘, and energies and
temperatures in units of 1=‘, where

‘ � ð2�Þ2=3 ls

g1=3s

� ls; (5)

with the string coupling gs � 1 and the string length given
by ls. The spherical configuration oscillates to a smaller
extent in the probe directions; at the same time, its initial
zero extent in the transverse directions expands to form a
uniform fuzzy ball in all nine space directions. In a short
time—within a few oscillations—the eigenvalue spectrum
becomes thermal. The effective Yang-Mills coupling is
mostly large—i.e. the thermalization phenomenon is a
strong coupling effect.1 There are various interesting at-
tributes of this process which we discover as we vary the

FIG. 1 (color online). The evolution of D0 branes in zero but fluctuating background fields. In this case, we have 15 D0 branes whose
initial energy is much larger than the energy in the fluctuating background fields. The horizontal axis is time � in all three graphs. The
smaller two graphs are plots of a selection of eigenvalues of the D0 branes: in one of the three probe directions on the left, and in one of
the six transverse directions on the right. In the middle, the graph shows the extent of the probe: in blue (dark) and red (lighter) for two
probe directions, and in green (lightest) for a transverse direction. All variables are dimensionless, as defined in the main text.

1By this, we mean that the nonlinear terms in the Hamiltonian
evolution equations play a central role. The dynamics is classical
chaotic only if these terms are initially large, and we find that, if
the initial energy is tuned such that the nonlinearities are weak,
there is no thermalization.
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background parameters. We explore three qualitatively
different scenarios. First, we consider zero but thermally
fluctuating background fields. This corresponds to explor-
ing the effects of a dilute gas of massless supergravity fields
onto the probe. In this analysis, we include the effects of
thermal backreaction—a central but delicate mechanism to
the process of thermalization in traditional thermodynamic
systems. We consider only a fluctuating background metric
and D2 brane flux for simplicity. Next, we consider nonzero
background fields with negligible fluctuations and study the
effects of nonzero gravity and D2 brane flux on D0 probe
thermalization. Finally, we model the problem of the probe
falling into a large Schwarzschild black hole and determine
the effect of the infall on the thermalization of the probe.We
summarize the results in the upcoming three sections.

A. Results: Zero backgrounds

We start with zero background fields—with or without
thermal fluctuations of the supergravity fields. Even when
the background fluctuations are zero, we introduce a level
of randomization into the problem by perturbing the initial
spherical configuration of the D0 branes at around
10%–50% level. We can vary N, the number of D0 branes
in the probe, and the initial size of the probe sphere—
through the parameter s which also tunes the initial energy.
Figure 2 shows the data we collect from a simulation for

s ¼ 1 and N ¼ 15 D0 branes. In this case, we have no
background field fluctuations. These six plots are generated
for every simulation, and we use this example to outline the
typical analysis we perform for any simulation. The top
three plots in the figure show the eigenvalues and extent of
some of the position matrices. The lower three plots at-
tempt to quantify the thermalization phenomenon. The two
leftmost graphs on the bottom are histograms of the eigen-
values of momenta matrices, computed for the last half
of the simulation time line where the probe has settled into
a potentially thermal configuration. A semicircle pattern
is indicative of thermalization, with the radius of the
semicircle giving us a measure of the probe’s temperature
tp ¼ r2th [20]. The rightmost plot on the bottom is a graph

of the autocorrelation function

RehOyð0ÞOð�Þi (6)

as a function of time �; and theO operator is given byO ¼
TrðX1 þ iY1Þ2. This measures the autocorrelation of a
gauge invariant operator over time: for a thermalizing state,
the function should decay exponentially over time. We see
from the example depicted in the figure that the probe does
indeed thermalize. From these graphs, we extract the time
scale of thermalization �th and the probe temperature tp as

shown. Eventually, our simulation invariably breaks down.
We track this by looking at the constraint equation

FIG. 2 (color online). A sample simulation, along with a depiction of the output parameters: �th for the time to thermalize, �l for
lifetime, tp ¼ r2th for probe temperature, and Req ¼

ffiffiffi
9

p � �x�=
ffiffiffiffi
N

p
for final probe size. For this simulation, the input parameters were

N ¼ 15, s ¼ 1, with no background fluctuations. In the probe extent and distribution graphs, red represents the probe direction x1, blue
is for the probe direction x2, and green is for the transverse direction y1.

BLACK HOLE THERMALIZATION, D0 BRANE DYNAMICS, . . . PHYSICAL REVIEW D 86, 046005 (2012)

046005-3



½xi; pi� þ ½ya; qa� ¼ 0; (7)

which needs to be satisfied for a consistent dynamical
system. This breakdown is seen to occur often (but not
always) because the size of the probe suddenly explodes. It
signals the accumulation of significant numerical errors by
the evolution algorithm. For zero background fields, there
is a flat direction in the system when all nine matrices
become mutually commuting. Then, the configuration can
expand unbounded with no cost of energy—the larger in
size the better from entropic considerations. It is likely that
the numerical errors which we see in the simulations are
due to this instability some of the time. Hence, we asso-
ciate a lifetime with the probe, denoted by �l, the time it
takes for the probe to destabilize and fly apart, measured
from the start of the simulation as shown in Fig. 2.
We are uncertain whether this quantity �l is a physical
one, or a pathology of numerical simulations. Finally, from
a blowup of the size plot, we can read off the equilibrium
size of the probe Req.

Hence, each simulation gives us four outputs: �th, �l, tp,

and Req. We want to determine the dependence of these

quantities on three input parameters: the initial size of the
spherical probe tuned by s—equivalent to keeping track of
the energy; the number of D0 branes N; and when we turn

on thermal background field fluctuations, the temperature
t of the background gas.
Figure 3 shows a compilation of the results from a series

of simulations which fix all parameters and scan over s.
Figure 4 shows a compilation of the results from simula-
tions which fix all parameters and scan over N instead,
the number of D0 branes. For all of these simulations,
fluctuations of the background fields are turned off. If the
background fields are made to thermally fluctuate with
temperature t, there is no signature of this temperature in
the probe’s thermalization dynamics as depicted in Fig. 5.
We have scanned over several orders of magnitude of
background temperatures t within the regime of validity
of our formalism, and considered the delicate effect of
thermal backreaction—with no change in the conclusion.
Putting all these results together, we find the following
scaling relation for the equilibrium size Req:

Req / sN: (8)

For the thermalization time, we find

�th / 1

s
/ N

Req

: (9)

And for the temperature of the probe tp, we find

FIG. 3 (color online). Results from a collection of simulations showing the output parameters �th (thermalization time), �l (lifetime),
Req (final equilibrium size), and tp ¼ r2th (probe temperature) as a function of the input parameter s. For all simulations, N ¼ 15, and

there are no background fluctuations. All slopes are within the indicated nearest rational values which is allowed by the 10% error of
the simulations.
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r2th ¼ tp / s4N2 / R4
eq

N2
: (10)

As for the lifetime of the probe, we find

�l / 1

sN3=2
/ 1

Req

ffiffiffiffi
N

p : (11)

Irrespective of the details, the D0 brane probe seems to
eventually disintegrate in a time �l. The thermalization
time �th is of particular interest given the proposal of
Refs. [7,21] suggesting that black holes are highly efficient
scramblers—with their scrambling time scale proportional
to the logarithm of the number of degrees of freedom. We
will comment on the implications of our results with regard
to this proposal in the conclusion section at the end.

If the probe is too small and the background gas
temperature t is too large, the probe’s thermalization is
disrupted, and the evolution follows deterministic oscilla-
tions. We cannot determine whether this is a physical effect
or a numerical pathology since these simulations lie
at the edge of the regime of validity of our formalism.
We also consider ‘‘on-shell background fluctuations’’: that

is, background field fluctuations which satisfy the Laplace
equation at the center of mass of the probe. This corre-
sponds to a scenario where there is no matter sourcing the
background fields at the probe’s location. Once again,
thermalization is disrupted, and we are unable to determine
whether the effect is physical or numerical. Either way,
these scenarios are uninteresting since they do not lead to
thermalization.
All four of these relations (8) to (11) are insensitive to

the temperature of the background t! A thermal bath of
massless supergravity fields seems to play no role in the
thermalization of the probe.
The conclusive theme of the analysis can be summarized

as follows: the thermalization of a probe of D0 branes is an
internal process arising from the nonlinear D0 brane inter-
actions and strong Yang-Mills coupling. A quartic term in
the D0 brane matrix coordinates underlies this thermaliza-
tion phenomenon. The result depends on the number of D0
branes and their equilibrium size. Fluctuations in the back-
ground fields do not play a relevant role in this process, a
fact that is rather counterintuitive as compared to more
traditional statistical mechanical systems. There is, however,

FIG. 4 (color online). Results from a collection of simulations showing the output parameters �th (thermalization time), �l (lifetime),
Req (final equilibrium size), and tp ¼ r2th (probe temperature) as a function of the input parameter N, the number of D0 branes. For all

simulations except the ones used to gauge the lifetime �l, s ¼ 0:03, with no background fluctuations. For the graph of the lifetime
dependence on N, another set of simulations were used due to technical limitations with storing large matrices for long simulations.
For the latter case, s ¼ 0:5 with much shorter simulation times, with no background fluctuations, and larger statistical errors. All slopes
are within the indicated nearest rational values which is allowed by the 10% error of the simulations.
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a role played by the fluctuating fields in destabilizing the
configuration at high enough temperatures. This regime is,
however, at the edge of the regime of validity of our
analysis.

The size of the probe may be sensitive to large nonzero
background fields, as opposed to small fluctuating ones.
We will investigate this case next.

B. Results: Quasistatic nonzero backgrounds

We next consider nonzero background fields with neg-
ligible thermal fluctuations. We turn on the effect of the
background metric through tidal gravitational forces acting

on the probe in its center-of-mass frame, and we also turn
on background D2 brane flux. These fields may be arising
from a large number of background D branes which our
probe is inserted into. If the background is to represent a
black hole, we may expect D2 brane flux from previous
investigations of matrix black holes [22–24].
We track the dimensionless curvature scales in the three-

and six-dimensional subspaces through the two parameters
m1 andm2, respectively. As Fig. 6 shows, we find no effect
of m1 and m2 on lifetime, thermalization time, tempera-
ture, or the final size of the probe. That is, unless the length
scale associated with the m’s becomes small enough to

FIG. 5 (color online). The effect of background fluctuations. For all graphs, we have t ¼ 1, N ¼ 15, s ¼ 5, and gs ¼ 10�4. We see
that background fluctuations do not effect the thermal properties of the probe, except for its lifetime. The size of the fluctuations is
determined by the temperature t, as well as the string coupling gs, as described in detail in the main text.
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compete with the size of the probe. This is akin to the
gravitational Gregory-Laflamme phenomenon, and syncs
well with the gravitational analogue of this scenario pre-
sented in Ref. [25]. At this point, we get a ringing behavior
as shown in Fig. 7. Thermalization is disrupted, and we do
see a complex correlation between the background’s and
the probe’s thermal characteristics. Unfortunately, this re-
gime tests the bounds of validity of our simulation and
cannot be reliably quantified yet.

We track the dimensionless D2 brane flux through a
parameter labeled n. We do find a correlation between n
and the thermal properties of the probe as shown in Fig. 8.
We are able to identify the following scaling laws:

Req / n; �th / n�1=2; (12)

r2th ¼ tp / n2; �l / n�1: (13)

These results indicate a sensitivity of the thermal proper-
ties of the probe to black hole hair, if present. Larger D2
flux results in larger thermal equilibrium size of the probe,
which correlates with the proximity of a larger background
black hole. Larger D2 brane flux seems to also hasten
the thermalization. The probe’s equilibrium temperature
seems, however, to increase with the background flux, a
rather counterintuitive scaling relation from the perspec-
tive of the naive matrix black hole model [22–24].

FIG. 6 (color online). The effect of scanning over the gravitational tidal force parameters m1 and m2. A selection of simulation is
shown, but many more were analyzed with similar qualitative conclusions. For all simulations in this figure, s ¼ 0:5, N ¼ 15, with no
background fluctuations. At around jm1j ¼ jm2j ¼ 2, we see the start of the probe size competing with the length scale associated with
the background.

FIG. 7 (color online). When the probe size becomes bigger than the length scale characterizing the background metric, we see a
ringing effect and the breakdown of thermalization. The validity of our simulations is also breaking down in this region of the
parameter space. For this simulation, we have m1 ¼ m2 ¼ , n ¼ �0:05, s ¼ 0:5, N ¼ 15, with no background fluctuations.
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C. Results: The infall problem

In the third and last scenario, we drop the probe D0
branes from rest near the vicinity of the Schwarzschild
black hole. We start at an initial radial distance r0 from the
horizon rh such that r0=rh ¼ 10, and we track the evolu-
tion as a function of local Fermi normal coordinate time, as
the probe crosses the horizon and is sucked into the black
hole singularity. We consider a large black hole to assure
that our simulations are reliable near the horizon. In units
of 1=‘, we choose the temperature of the hole as t ¼ 0:004.
In units of ‘, the flight time to the singularity is �fl ’ 336,
while the time to reach the horizon is �hor ’ 325. And �hor
is well within the regime of validity of our simulation.
Figure 9 summarizes the results for a collection of N ¼ 15
D0 branes. We find that the probe thermalizes due to
internal dynamics as seen earlier, when it is away from
the horizon. We find surprisingly that this thermalization is
insensitive to the black hole temperature! The thermaliza-
tion time and the equilibrium probe temperature and size
do not depend on the black hole parameters. As the probe
approaches the horizon, we do, however, see the probe

explode in size. But our formalism breaks down before
the probe can reach the size of the horizon. The trend is
consistent with a probe expanding violently in size as it
nears the horizon, as proposed in Ref. [25].
We leave the conclusions of these results to the conclu-

sion and outlook section at the end, Sec. VI. Before that,
however, we present the details progressively. In Sec. II,
we develop the problem and lay out the parameter space we
want to explore. In Sec. III, the Langevin problem is
formulated for our matrix theory system, including a deli-
cate thermal backreaction mechanism. In Sec. IV, the
regime of validity of the three cases we study is elaborated
in detail. And in Sec. V, some of the technical numerical
considerations are presented.

II. THE SETUP

Consider N D0 branes in arbitrary supergravity back-
ground fields. The non-Abelian action is given in terms of
the coordinates of the D0 branes—represented by N � N
UðNÞ matrices �� with � ¼ 1 � � � 9,

S¼� 1

gsls

Z
dtSTr

�
e��ð�ðP½E00þE0�ðQ�1��Þ��E�0�ÞÞ1=2ðDetQÞ1=2þ 1

gsls

Z
STr

�
P

�
ei	i�i�

�X
CðnÞeB

����
; (14)

FIG. 8 (color online). Results from a collection of simulations showing the output parameters �th (thermalization time), �l (lifetime),
Req (final equilibrium size), and tp ¼ r2th (probe temperature) as a function of the input parameter n, the D2 brane flux. For all

simulations, N ¼ 15, and there are no background fluctuations.
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where 	 ¼ 2�l2s ,Q
�
� ¼ ��

� þ i	½��;���E��, and E�� ¼
G�� þ B��—all given in the notation used in Ref. [19].
This action is derived using T-duality symmetry. As
an expansion in powers of 	, it is known to agree with
direct open string computations to order 	3 [26]. Our goal
is to study dynamics of D0 branes in a certain restricted
class of backgrounds to order 	2. Our assumptions are
as follows:

(i) We focus on a nontrivial background metric G��

and 3-form Ramond-Ramond (RR) potential Cð3Þ, a
constant dilaton e� ¼ gs, and set all other supergravity
fields to zero. We want to analyze the evolution of a
probe consisting of N D0 branes falling through back-
ground fields which may represent a Schwarzschild
black hole. Hence, we need to at least keep track of the
background metric seen by the probe. In the matrix
blackhole picture, there arehints of aD2brane structure
stretched at the would-be black hole horizon [23].

Hence, we also consider a nonzero flux from Cð3Þ. For
simplicity, we eliminate all other fields.

(ii) We consider an expansion of this action to order 	2.
This results in restrictions on the size of the probe,
its speed of evolution, and the background metric.
We will list these restrictions later.

(iii) At order 	2, it is easy to check that the Uð1Þ sector
of the coordinates ��—corresponding to the

center of mass of the probe—decouples from the

SUðNÞ sector. We focus on the relative dynamics of

the probe D0 branes and drop the Uð1Þ center-

of-mass dynamics. Put differently, we will track

the evolution of the probe D0 branes in their center-

of-mass frame.
(iv) In the center-of-mass frame of the probe, we adopt

Fermi normal coordinates. This means that the

metric at the origin is Minkowskian, its first deriva-

tives are zero, and the second derivatives of the

metric—the tidal forces—provide the leading

gravitational effects. We also assume that the probe

does not backreact onto the background, except

thermally—as we will explain in detail later.

FIG. 9 (color online). The probe’s evolution as it falls into a Schwarzschild black hole. The black hole temperature is tbh ¼ 0:004,
corresponding to tidal force parameter m1 ¼ 6� 10�7 as defined in the main text. The other parameters of the simulation are
N ¼ 15 for number of D0 branes, gs ¼ 10�6 for the string coupling, and r0=rh ¼ 10. In the top two graphs, we plot the probe’s size
and the probe’s radial coordinate distance from the black hole as a function of time. In the lower left figure, we see the eigenvalue
evolution and the thermalization prior to reaching the horizon. Finally, in the lower right graph, we plot the 
 parameter, defined later
on in the main text: this parameter tracks the adiabatic regime of validity of the Fermi normal coordinates. If 
� 1, the simulation
results cannot be trusted. As we can see, the parameter remains well within the reliable range as the probe crosses the horizon, but not
much beyond.
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Under these conditions, we are then left with the
Hamiltonian [25]

H ¼ ð2�l2sÞ2
gsls

Tr

�ð _��Þ2
2

þM���
���

þ iN��½��;���� � 1

4
½��;���2

�
; (15)

where the ��’s are N � N Hermitian traceless matrices
representing the noncommutative coordinates of N probe
D0 branes. Having chosen the static gauge for the gauge
field on the worldline, we also need to supplement the
equations of motion with the constraint

½��; _��� ¼ 0: (16)

The physical position coordinates of the D0 branes in nine
space directions are given by

X� ¼ 2�l2s�
�: (17)

The background metric appears through2

M�� ¼ � 1

4
Gtt;��; (18)

while the D2 brane flux appears through

N�� ¼ 1

2
Cð3Þ
t½��;�: (19)

See Ref. [27] for a more general and detailed derivation of
these relations.

It is convenient to use dimensionless variables instead—
labeled as ��, m��, n��, and �—defined as follows:

�� ¼ 1

‘
��; M�� ¼ m��

‘2
;

N�� ¼ n��
‘

; t ¼ �‘; (20)

where ‘ has dimension of length. This leads to the
Hamiltonian

H ¼ ð2�l2sÞ2
gsls

1

‘4
Tr

�
1

2
ð _��Þ2 þm���

���

þ in��½��;���� � 1

4
½��;���2

�
; (21)

where derivatives are now with respect to dimensionless
time �. We will choose ‘ so that the scale of the energy is
given by 1=‘,

ð2�l2sÞ2
gsls

1

‘4
� 1

‘
; (22)

which implies

‘ ¼ ð2�Þ2=3 ls

g1=3s

: (23)

Hence, all lengths/times are measured in units of ‘ and
energies in 1=‘. We then can write3

H ¼ 1

‘



¼ 1

‘
Tr

�ð _��Þ2
2

þm���
��� þ in��½��;����

� 1

4
½��;���2

�
; (25)

where 
 is dimensionless energy. Denoting by ½s� the
numerical scale in the dimensionless matrices ��,

scale of matrix entries in �� � ½s� ) probe size / ½s�‘:
(26)

Since we will need gs � 1, this means that ‘ � ls. Hence,
we are looking at large probes and small energies com-
pared to the string scale.
We define the effective dimensionless coupling in the

theory as

g2eff �
g2Y
H3

¼ ð2�Þ�2gsl
�3
s

H3
¼ 1


3
: (27)

This is the parameter which tunes the strength of the
quartic and cubic terms in the Hamiltonian. For strong
coupling effects, we would expect g2eff � 1. For large

N � 1, we may encounter an effective coupling given by
N=
3. The simulations presented in this work with clear
thermalization effects correspond to g2eff > 1. As a rule of
thumb, when the dimensionless scale of the size of the
probe goes below s < 0:3, we get into the strong coupling
regime. Note that classically this strong coupling regime is
meant as a statement about the relative importance of the
nonlinear (cubic and quartic) terms in the Hamiltonian.

Regime of validity

The expansion of the original Dirac-Born-Infeld (DBI)
action (14) is valid under the conditions

2M�� also depends on D0 brane flux F
ð2Þ ¼ dCð1Þ, as shown in

Ref. [27]. Hence, our analysis throughout can be thought of
including the effects of D0 brane flux in the background through
the consideration of the M��. The existence of nonzero Cð1Þ,
however, also introduces a magnetic, velocity dependent term in
the Hamiltonian which we have dropped. This implies that our
analysis does include the leading effect of RR Fð2Þ flux for small
D0 brane speeds.

3An alternative scaling used in the literature is given by the
choice of ‘ such that

ð2�l2sÞ2
gsls

1

‘4
� 1

gsls
; (24)

i.e. the D0 brane mass, which implies ‘ ¼ ð2�Þ1=2ls, the string
scale.

PAUL RIGGINS AND VATCHE SAHAKIAN PHYSICAL REVIEW D 86, 046005 (2012)

046005-10



½s�g1=3s � 1; ½s�2½m�g4=3s � 1; ½ _s�g2=3s � 1;

(28)

where the square brackets signify ‘‘numerical scale of,’’
½m� denotes the typical scale of the background fieldsm��,

and ½n� denotes that of n��. These three statements follow

from the convergence of the expansion of the DBI. In
addition, if the probe size is small relative to the length
scales in the background fields

½s�2½m� � 1; ½s�2½n�2 � 1; (29)

we then expect that the background fields will evolve
slowly compared to the evolution of the probe degrees of
freedom. We do not impose this last restriction when
studying background fluctuations, but we will need it for
the remaining analysis.

As for the background fields, first the string coupling
must be small so that the leading supergravity regime
is valid,

gs � 1: (30)

We also need weak curvature scales in the background to
protect from excited string states

½M� � l�2
s ) ½m�g2=3s � 1 (31)

and similarly weak fluxes for the background field n

½n�g1=3s � 1: (32)

The energy of a configuration will have the following
scaling structure:

½
� � ð½m�½s�2 þ ½n�½s�3 þ ½s�4Þ � N; (33)

where we have written

½Tr½�2�� � N (34)

with  being typically a number between one and three and
N being the number of D0 branes [for example,  ¼ 3 for
the highly ordered spherical D0 brane configuration sat-
isfying the SUð2Þ algebra]. As the system evolves through
the classical equations of motion, we expect the configu-
ration will be attracted toward a state where all three terms
in the energy expression (33) are of the same order

½m�½s�2 � ½n�½s�3 � ½s�4 ) ½s�2 � ½m�; ½s� � ½n�:
(35)

In summary, we have a parameter space consisting of the
string coupling gs, the background fields m�� and n��,

the D0 initial size scale s, and the number N of D0 branes.
When we consider background thermal fluctuations, the
scales of m�� and n�� get set through the input tempera-

ture t of the heat bath as described later. The following
conditions delineate this parameter space:

(i) Small string coupling

gs � 1: (36)

(ii) Weak supergravity fields

½m�g2=3s � 1; ½n�g1=3s � 1: (37)

(iii) Valid DBI expansion

½s�g1=3s � 1; ½s�2½m�g4=3s � 1;

½ _s�g2=3s � 1:
(38)

(iv) Small probe (for nonfluctuating backgrounds)

½s�2½m� � 1; ½s�2½n�2 � 1: (39)

To simplify the problem further, we will look at back-
ground fields with a lot of symmetry. Even with back-
ground fluctuations, we expect that the most symmetric
scenario is the closest to equilibrium. Hence, restricting
from the outset to symmetric setups should not miss the
final equilibrium states we are interested in. We divide the
nine-dimensional space in two subspaces,

�i ! xi; �a ! ya (40)

with i; j; . . . ¼ 1 � � � 3, a; b; . . . ¼ 4 � � � 9. The momentum
canonical to xi is labeled pi, and that to ya is labeled qa.
We then consider backgrounds with SOð3Þ � SOð6Þ sym-
metry. This means we have two background fields in m��,

m�� ¼

8>><
>>:
0 � � �

m1 � ¼ � ¼ 1; 2; 3

m2 � ¼ � ¼ 3; � � � ; 9
(41)

which we call m1 and m2, and one field in n��,

n�� ¼
�
n
�� �; �;  ¼ 1; 2; 3

0 otherwise
(42)

which we simply call n. In part of the discussion, we will
freeze the six-dimensional subspace and consider probe
dynamics in 3þ 1 dimensions only. In this setting, we split
m1 into m0 and m1 as follows:

m�� ¼
8><
>:
m0 � ¼ � ¼ 1

m1 � ¼ � ¼ 2; 3

1 otherwise ðdynamics frozen by handÞ
(43)

for SOð2Þ cylindrical symmetry in three dimensions. This
is to capture the scenario of a probe falling into a black
hole: the 1 direction is the infalling radial direction, while
2 and 3 are transverse to it.
For the Berenstein-Maldacena-Nastase (BMN) model

[28], we note the special background field values in our
notation:
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m1 ¼ m2 ¼ 1

2
; n ¼ 1

2
: (44)

Our system, however, encompasses a much larger class of
dynamics which we will next explore.

III. FLUCTUATING BACKGROUNDS

Part of our program is to determine the role of fluctuat-
ing background fields on the process of thermalizing probe
D0 branes. These fluctuations can be quantum mechanical
in nature or due to a thermal bath. Either way, the problem
involves a separation of time scales: one slow time scale
characterizing the probe evolution, and another fast one
characterizing the background fluctuations. A key ingre-
dient in determining the correct evolution of the probe is
the effect of backreaction: the probe changes the back-
ground fluctuations, which in turn modifies the probe’s
dynamics. This is a delicate mechanism which can be
studied for quantum fluctuations, as well as thermal fluc-
tuations. We focus in this work on fluctuations of thermal
nature and will come to the quantum fluctuation case in a
future work. To model the effect of thermal backreaction
for our system of D0 branes, we start with a simpler toy
example which shares similarities to our case and expand
from there.

A. A toy example

The process of thermalization in general relies on an
interesting backreaction mechanism. In short, a system
undergoing thermalization by being in contact with a ther-
mal reservoir is associated with two time scales, one much
shorter than the other one (see, for example, Ref. [29]). The
shorter time scale comes from the fluctuations in the
thermal bath. The longer time scale is emergent from
thermalization and characterizes the evolution of the sys-
tem towards thermalization. The fluctuations of the ther-
mal bath kick the system by exchanging energy with it in
such a way that the system’s energy is not conserved over
the longer time scales. This shifts the energy balance in the
thermal bath by a relatively small amount, which, however,
in turn can affect the bath’s fluctuations significantly
enough to react back on the system differently. This deli-
cate mechanism is at the heart of thermalization in numer-
ous physical systems and underlies, for example, Brownian
motion dynamics. To illustrate it concretely, and in par-
ticular as it is relevant to our problem of D0 brane dynam-
ics, consider a system consisting of a single particle of
mass m subject to a spring force with energy

E ¼ 1

2
mv2 þ 1

2
kr2: (45)

In this setup, however, the spring constant k is not constant
and is fluctuating ergodically around an average value �k

k ¼ hkith þ �0k ¼ �kþ �0k; (46)

where the th subscript on the averaging indicates a ther-
modynamic ensemble average in the heat bath system. The
thermal fluctuations �0k are due to the thermal reservoir
having a fixed temperature T and occur on a short time
scale �0t� 1=T. Note that the thermal average is then,
according to the ergodic theorem of thermodynamics, the
same as the time average over time scales much larger than
�0t. These are attributes of thermodynamic equilibrium in
heat baths.
Wewant to understand how the system evolves under the

influence of these fluctuations in k and hence how the
system may thermalize. Denote the longer time scale
associated with the evolution of the system by �t, and
�t � �0t by assumption. We define a time averaging
scheme for observables based on this longer time scale as

hfðtÞi� �¼
Z tþ�t

t
dt0fðt0Þ (47)

for any function of time fðtÞ. The equations of motion will
then naively become

mhai� ¼ �hkri� ’ �hkithhri� ’ � �khri�; (48)

where the ergodic theorem and �t � �0t were used. This
would be the end of the story if backreaction were not
taken into account: we say the reservoir is so big that it is
unaffected by our system, and the spring constant is inde-
pendently maintained at its average value �k. Our system
then oscillates harmonically with average spring constant
�k. This treatment would miss the interesting effect of
thermalization that, depending on the circumstances, may
affect the dynamics significantly. Instead, we need to keep
track of the effect of the evolution of the system on the heat
bath which then backreacts on the system.
The fluctuations �0k occur over the short time scale �0t

and have a prescribed distribution determined by the nature
of the thermal ensemble. For example, for high enough
temperatures and low enough densities, we may take the
fluctuations in k to obey the classical Maxwellian distribu-
tion at equilibrium

Prob eqð�0kÞ ¼ e�ðð�0kÞ2=2�2
k
Þffiffiffiffiffiffiffiffiffiffiffiffi

2��2
k

q ; (49)

where the standard deviation �k can be related to the
details of the heat reservoir such as its temperature. The
fluctuations in �0k must not be correlated over time scales
greater than �0t. We would expect the correlation function
to decay fast as in

h�0kðtÞ�0kðtþ �tÞith � e��t=�0t: (50)

Focus on an instant in time t0, with t < t0 < tþ �t,
the interval over which the position of the particle
changes appreciably. To leading order, the thermal average
would be

h�0kðt0Þith ’ 0 (51)

PAUL RIGGINS AND VATCHE SAHAKIAN PHYSICAL REVIEW D 86, 046005 (2012)

046005-12



if we were to ignore backreaction effects. Over the time
interval �0t ¼ t0 � t, the system’s parameters have
changed by

v ! vþ �0v ) E ! Eþ �0E: (52)

In particular, �0E is not zero since the energy exchange of
our system with the heat bath would change the system’s
energy. In the process, the heat bath’s energy changes also
by an amount ��0E. Hence, we may write immediately

Probðt0; �0kÞ
Probðt; �0kÞ

¼ e���0E; (53)

where � ¼ 1=T and Probðt; �0kÞ ¼ Probeqð�0kÞ is the

equilibrium probability given by Eq. (49). This implies that

h�0kðt0Þith ’ h�0kðtÞe���0Eith
’ h�0kðtÞð1� ��0EÞith
¼ ��h�0kðtÞ�0Eith (54)

for small ��0E. We can easily compute �0E as

�0E ¼
Z t0

t
dt00�0kðt00Þrðt00Þ � �rðt

00Þ
�t00

¼
Z t0

t
dt00�0kðt00Þrðt00Þ � vðt00Þ; (55)

i.e. energy is conserved if �0kðt00Þ ¼ 0. Putting things
together, one then gets

h�0kðt0Þith ’ ��
Z t0

t
dt00rðt00Þ � vðt00Þh�0kðtÞ�0kðt00Þith

’ ��rðtÞ � vðtÞh�0kð0Þ2ith�0t

¼ ��rðtÞ � vðtÞ�2
k�0t; (56)

where in the last steps, we used the fact that
h�0kðtÞ�0kðt00Þith is significant only over the range �0t,
and that rðtÞ and vðtÞ change little during this interval.
Note that this expression is now nonzero and leads to a
velocity dependent correction to the force law, i.e. leads to
a dissipation mechanism. To see this, we look back at the
equation of motion (48), and now write

mhai� ’ �hkithhri� �
Z tþ�t

t
dt00�0kðt00Þrðt00Þ

’ � �khri� � h�0kðtÞithhri�
¼ � �khri� þ ��2

k�0thri�hri� � hvi�
¼ � �khri� þ � � hvi� (57)

with the tensor

� � ��2
k�0thri�hri�: (58)

This is the Langevin equation for the system, and � is the
dissipation tensor. The effect of� is crucial in thermalizing
the spring system. The time scale for thermalization is then
easily identified as

�t� j�j
m

� �0t: (59)

This hierarchy between time scales, fast fluctuations driv-
ing a thermalization mechanism on a slower time scale, is
the subtlety underlying the approach to equilibrium for
most systems.
There is a quicker way to reach at this conclusion which

will be useful for us in simulating matrix black hole
dynamics later on. We may have directly jumped through
the sequence of approximation by proposing that the
probability distribution of the fluctuations �0k is modified
by the presence of the ensemble to

Probðt; �0kÞ ¼ Probeqð�0kÞ � e���0E

¼ Probeqð�0kÞe���0kr��r; (60)

where Probeqð�0kÞ is the equilibrium probability distribu-

tion at temperature 1=�. For the classical limit of fluctua-
tions which this problem is valid for, this leads to

Prob ðt; �0kÞ / e�ð�0k
2=2�2

k
Þe���0kr��r: (61)

Or equivalently, the average value of the fluctuations to
leading-order shifts from zero to

h�0kith ! ��r � �r�2
k (62)

with the effect of the thermal bath backreacting onto the
spring system included. This means that the fluctuating
force on the spring is

� h�0kithr ! �r � �r�2
kr ¼ ��2

k�0trðr � vÞ (63)

since the fluctuations occur over a time scale �0t. This is
again what we obtained earlier in Eq. (57). The difference
is that we have folded the backreaction effect as a
leading-order contribution by changing the distribution of
fluctuations according to the energetics of the heat bath.
The advantage of using this method, as given by Eq. (60),
will become apparent when we attempt to implement this
effect in our numerical simulation. Otherwise, it would be
hopelessly computationally time intensive to simulate this
dynamics with large enough matrix theory matrices.

B. Thermal bath and matrix theory

For the case of our matrix theory Hamiltonian given by
Eq. (25), we will track fluctuations in m�� and n��.

Adopting the prescription in Eq. (60), we then write

Probðt; �0m��Þ ¼ Probeqð�0m��Þ
� expð���m���0½Tr�����Þ (64)

for the fluctuation distribution of m��. Here, �0½Tr�����
measures then the change in the D0 brane matrix coordi-
nates under an evolutionary time step of �0t. Note that � is
the inverse of the dimensionless temperature; i.e. we are
writing energies and temperatures in units 1=‘. For n��,

we then have
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Probðt; �0n��Þ ¼ Probeqð�0n��Þ
� expð���n���0½STri½��;�����Þ:

(65)

The question remains as to how to determine the equilib-
rium distributions Probeqð�0m��Þ and Probeqð�0n��Þ of
the background fields. From Eqs. (18) and (19), we know
that these fluctuations correspond to massless excitations
in the supergravity fields of thermal origin. We then need to
look at the supergravity background to determine the en-
ergy content of a disturbance �m�� and �n��. We look at

the energy content in the supergravity part of the combined
D0 branes-background system because we expect that the
energy is overwhelmingly stored in the background fields.
That is, we assume the probe is small enough that it can be
treated as a probe of the background field configuration.

In our conventions, the supergravity action is given by

S ¼ 1

2�2

Z
d10x

ffiffiffiffiffiffiffiffi�G
p �

e�2�R� 1

4
ðFð2ÞÞ2

� 1

12
e�2�ðHð3ÞÞ2 � 1

48
ðFð4ÞÞ2

�
; (66)

where the RR field strengths are Fð2Þ ¼ dCð1Þ and Fð4Þ ¼
dCð3Þ, while the Neveu-Schwarz-Neveu-Schwarz (NSNS)

field strength is Hð3Þ ¼ dBð2Þ. The dilaton background is
taken constant as discussed earlier. We are interested in
general scaling behavior of the fluctuations with respect to
temperature and string coupling. The eventual goal is to
simulate the fluctuations and study the response of the
system as a function of temperature and string cou-
pling—as opposed to actually according physical numeri-
cal importance to, for example, the temperature value.
We are hence looking for extracting the qualitative fea-
tures of the distribution functions Probeqð�0m��Þ and

Probeqð�0n��Þ from supergravity. We can read off the

energy content of a fluctuation by looking at the time-
time component of the energy momentum tensor in the
Einstein frame, which is still given by

Ttt ¼ 1

�2
ðRab � ð1=2ÞGabRÞ (67)

since the Einstein tensor is unchanged under frame change
involving a constant dilaton, and where 2�2 ¼ ð2�Þ7l8s .
From the equations of motion, this gives, for example,

Ttt ¼ 1

ð2�Þ7l8s
1

2
F2
ti þ � � � (68)

for the term coming from the electric field part of the
2-form field strength. Writing the field strengths in
Taylor expansion about the center of mass of the D0
branes, we would get contributions of the form

Fti ’ Ct;ij0 þ Ct;ijj0xj ! Ct;ijj0xj; (69)

where the linear term is irrelevant except for the center-of-
mass motion of the configuration: this is in theUð1Þ part of
the D0 matrices, which entirely decouples from the SUðNÞ
as can be checked from the form of our action. The term

M�� in the DBI includes contributions fromCð1Þ
t;�� as shown

in Ref. [27]. Hence, we have Fti � �M� L, where this
relation is to be read as relating the scale of Fti to typical
scale of our background fields �Mij and the length scale L

over which the background fields vary.
For the energy content of graviton fluctuations, we use

Wald’s prescription [30] for identifying energy with the
graviton field

Ttt ¼ 1

�2
ðRf2g

ab � ð1=2ÞGf2g
abR

f2gÞ; (70)

where the f2g superscript indicates expansion of the corre-
sponding quantity to second order in metric perturbations
h�� about the local flat metric

Rf2g
ab � ð1=2ÞGf2g

abR
f2g ’ htt;ihtt;i þ � � � : (71)

Once again, Taylor expanding about the center of mass of
the D0 branes, we have the identification of scales

htt;i’htt;cj0þhtt;ijj0xj ���!htt;ijj0xj��M�L (72)

using Eq. (18). One then repeats this scale analysis for
every supergravity field. Putting things together, one then
gets for any RR field fluctuations a relation to the associ-
ated typically energy scale �E

�E� l1�D
s LDþ2�M2 � l1�D

s LD�N2; (73)

while for NSNS fields, we get an additional factor of g2s

�E� 1

g2s
l1�D
s LDþ2�M2 � 1

g2s
l1�D
s LD�N2: (74)

�M and �N denote the scales of the background fields in
Eqs. (18) and (19); L is the spatial size of the excitation;
and D is the number of noncompact dimensions, taken as
nine or three. The rest of the directions of space are
assumed to be compact of size set by the string scale ls,
most simply through toroidal compactification.
First, note that for fixed energy scale �E, the size of

fluctuations �M and �N is dominated by the RR fields
since we also need gs � 1. Hence, we need to consider
only Eq. (73). The background fields all consist of massless
degrees of freedom. In a thermal state, we then expect a
black body spectrum. The modes �M and �N are in
general functions of frequency !, but they are peaked
around the peak of the black body spectrum !pk � T,

with a width in frequency of the order of the temperature
as well �!� T. The length scale L is the characteristic
scale over which our classical background fields vary. In
general, an estimate of the number n of massless particles

in a box of size L is given by

n � TDLD ) L� n1=D
1

T
; (75)
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where 1=T is the thermal wavelength at temperature T. We
also know that �E� n!pk � nT. One may think that

perhaps we need n � 1 to have a reliable description of

the background spectrum through classical fields. This is
not necessarily true. For example, one can easily describe a
coherent state with less than unity occupancy using clas-
sical fields. However, in our case, we will want n � 1: as

we shall see, we will adopt a distribution of fluctuations
that does not capture black body physics for low occupancy
numbers; this is done for computational efficiency. In
terms of dimensionless parameters, including temperature
t written in units of 1=‘, we then end up with estimates of
the fluctuation sizes for the background fields as

�m� gðD�1Þ=6
s tðDþ3Þ=2n�1=D

 ; �n� gðD�1Þ=6
s tðDþ1Þ=2:

(76)

For example, the size of the fluctuations of the electric field
in a gas of photons in a black body thermal configuration in
three space dimensions would scale as T3. This is one
power of temperature more than the standard �E2 � T4

scaling (where E is the electric field) because our probe is
sensitive to the gradient of the electric field about its center
of mass. Hence, we get an additional power of the thermal
wavelength which goes as 1=T. In the same way, the
gravitational effects on the probe D0 branes are tidal in
nature and do not involve the net gravitational force on its
center of mass. The end result is summarized with the
simple scaling relations shown in Eq. (76).

We take the equilibrium distribution function for the
thermal background of massless fields as Gaussian,

Probeqð�mÞ ¼
exp

h
� �m2

2�2
m

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

m

p

Probeqð�nÞ ¼
exp

h
� �n2

2�2
n

i
ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

p ;

(77)

for each mode �m�� and �n��, with the standard devia-

tions �2
m and �2

n given by Eq. (76),

�m ¼ gðD�1Þ=6
s tðDþ3Þ=2n�1=2D

 ; �n ¼ gðD�1Þ=6
s tðDþ1Þ=2:

(78)

We now use equality signs by absorbing any order unity
numerical coefficients in our estimates into the definition
of our temperature parameter t and coupling gs. There is,
however, one additional point we need to be particularly
careful about. Given that this is a fluctuation near the peak
frequency !pk � T, we need to apply the fluctuation at

every time interval 1=T in our simulation. Hence, we can
use this distribution as long as we perturb the system at a
frequency near the peak of the black body spectrum.

Note that this distribution does not capture all quantum
aspects of the black body distribution. To see this, the
energy in, say, a background massless field �mð!Þ at

frequency ! scales as �mð!Þ2; and this is related to the
average number nð!Þ of massless particles of type �m by

�m2ð!Þd! ¼ �ð!Þnð!Þd! ¼ �ð!Þ 1

exp½�!� � 1
d!;

(79)

where �ð!Þ is some proportionality factor scaling as
!D�1 �!. Hence, the square of the classical field mea-
sures the number of massless particles at a given frequency.
The hallmark of the black body spectrum is that the fluc-
tuations in the number of photons are not small even for
nð!Þ � 1, unlike the ideal gas distribution. This can be

expressed as

�n2

�n2
¼ 1

�n
þ 1 (80)

for the black body spectrum. Contrast this with classical
Maxwellian distribution fluctuations which obey

�N2

�N2
¼ 1

�N
(81)

which goes to zero for large N � 1. Hence, to capture the
correct quantum statistics, we need to have

ð�m2 � �m2Þ2 ¼ �2�n2 ¼ �2 �nð1þ �nÞ
¼ �m2ð1þ �m2Þ (82)

for every !, and, in particular, for the peak !pk � T. The

Gaussian distribution (77) gives instead

ð�m2 � �m2Þ2 ¼ 2ð�m2Þ2: (83)

Thus, our fluctuations do remain important for large
�n � 1—as needed from a black body spectrum—but

not for �n of order one or less. In short, treating the

background fields classically, we need to assume a large
condensate of massless particles within a size given clas-
sical field profiles. Our distribution, however, will fail to
capture the statistics for low particle occupancy. This
regime also corresponds to fluctuations which have a para-
metrically small effect on the probe D0 branes. Hence, for
the purposes of tracing the thermalization evolution of our
probe, the normal distribution we use is very much ade-
quate. This trick is needed to improve the computational
efficiency of our simulations. It will translate into a lower
bound on temperature which we need to restrict our simu-
lations to, as we shall see.

IV. PARAMETER SPACE

In this section, we combine the general validity bounds
determined in Sec. II A with the three particular cases we
want to focus on. For each case, we want to determine the
regime of the available input parameters gs, t, m, n, s, and
t we can trust. The three cases are:
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Case I: D0 probe in background fields which average to
zero, but otherwise fluctuate thermally. This scenario cor-
responds to the probe embedded in a dilute gas of massless
supergravity fluctuations.

Case II: D0 probe in background fields which average to
nonzero values, with negligible thermal fluctuations. This
scenario will attempt to explore correlations of quasistatic
background fields with the thermal properties of the probe.

Case III: D0 probe falling into a Schwarzschild black
hole with no thermal fluctuations. This scenario aims at
determining whether the approach of the probe to a black
hole horizon has a special role in thermalizing the probe. In
particular, we would want to see whether the probe is
prevented to reach the center of the black hole through
fast thermalization.

We next proceed in analyzing the ‘‘interesting’’ regimes
in the parameter space for each of these cases: a little
qualitative analytical control over the dynamics will help
in zeroing onto the highlights of the numerical simulations
without exploring uninteresting deserts of parameter val-
ues or physically invalid regimes.

A. Case I: Zero fields with thermal fluctuations

We take the background fields m1 and m2 (henceforth
collectively referred to asm for simplicity) and n averaging
to zero with Gaussian distribution given by Eq. (77). The
scale of the background fields is set by the standard devia-
tions (78) and/or the average backreaction shifts obtained
from Eqs. (64) and (65)

½�backm� � �m

½t� ½s�
2N; ½�backn� � �n

½t� ½s�
3N: (84)

Given that�m and�n are determined by the temperature of
the background gas, we are thus trading the scale of ½m�
and ½n� for the scale of the temperature ½t�. Hence, our
parameter space in this case consists of gs, s, t, and N.

The interesting mechanism to explore in this scenario
has to do with the effect of thermal backreaction. This
becomes important when

�m < �thm; �n < �thn: (85)

We would like to identify the relevant values of gs, s, t, and
N for which (i) thermal backreaction is important and
(ii) the validity conditions outlined in Sec. II A are satis-
fied. For these purposes, we can focus on fluctuations in m
or n since they lead to the same conclusions. We know that

�m � gD�1=6
s tDþ3=2; (86)

�backm� Ns2gD�1=3
s tDþ2: (87)

Equation (85) then becomes

1 � gs > N�ð6=D�1Þs�ð12=D�1Þt�3ðDþ1=D�1Þ; (88)

where we combined the statement with the weak string
coupling condition gs � 1 from Eq. (36). The condition of
weak background fields from Eq. (37) translates to

m � g�2=3
s ) t � g�ðD�1=3ðDþ2ÞÞ

s s�ð2=Dþ2ÞN�ð=Dþ2Þ:
(89)

While the DBI expansion gives us the conditions from
Eq. (38)

½s�g1=3s � 1; ½s�2½m�g4=3s � 1: (90)

Finally, since our statistical distribution does not capture
the case of fluctuations of a small number of quanta, we get
from Eq. (75) and n � 1

ts � 1: (91)

These four curves are depicted in Fig. 10. We then restrict
our input parameters gs, s, t, and N such that we are within
the depicted shaded region in this figure.

B. Case II: Quasistatic backgrounds

In the second scenario, we consider classical nonzero
background field condensates, on top of which we may add
small thermal fluctuations. That is, the equilibrium distri-
butions become

Probeqð�mÞ ¼
exp

h
� ð�m�mcÞ2

2�2
m

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

m

p

Probeqð�nÞ ¼
exp

h
� ð�n�ncÞ2

2�2
n

i
ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

p ; (92)

wheremc and nc are classical background field values fixed
by hand. For simplicity, we also make sure that the thermal
fluctuations do not overwhelm the average values of the

FIG. 10 (color online). The parameter space delineating the
regime where the simulations can be trusted for case I. For this
plot, we have taken gs ¼ 10�4,  ¼ 2, N ¼ 15, D ¼ 9, and
n ¼ 102. There are three thick lines which bound the relevant

shaded region in between: a bound arising from requiring small
background curvatures (blue curve), another from convergence
of the DBI action expansion (red curve), and another arising
from statistical considerations (black curve, with n � 100). The

thin orange line bounds the region where thermal backreaction
starts becoming important. All other bounds are weaker than the
ones depicted in the input parameter range we consider.
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background fields. In this case, our parameter space is
given by gs, s, m, n, and N. Temperature t will then be
inconsequential.

To assure that we are within the regime of validity of the
simulations, we will need to bound ourselves to certain
conditions. We need small string coupling [Eq. (36)]

gs � 1 (93)

and small background fields [Eq. (37)]

½m�g2=3s � 1; ½n�g1=3s 1: (94)

To assure that the probe motion is slow enough, we need it
to be much smaller in size than the length scales set by the
background fields [Eq. (39)]

½s�2½m� � 1; ½s�2½n�2 � 1: (95)

Finally, to assure that the expansion of the DBI action is
convergent, we need [Eq. (38)]

½s�g1=3s � 1; ½s�2½m�g4=3s � 1: (96)

The result of all these conditions is a region depicted in
Fig. 11. We hence restrict again our simulations to the
relevant parameter space.

C. Case III: Falling into a black hole

In this scenario, we would like to determine the time
evolution of the probe D0 branes as they approach the
horizon of a four-dimensional Schwarzschild black hole.
For simplicity, we turn off background fluctuations. In the
center-of-mass frame of the probe, themetric looks like [31]

ds2 ¼ �
�
1þGM

r3
ðy2 þ z2 � 2x2Þ

�
d�2

‘2
þ � � � (97)

in Fermi normal coordinates. The x direction is the infall
direction, while y and z are transverse. The remaining six
directions of space are compactified—that is, the probe’s
evolution is frozen in these directions. r is the location of the
center of mass of the probe away from the black hole
center (i.e. it is the Schwarzschild radial coordinate), and
� is the time as measured by the infalling probe. Hence, the
dynamics is 3þ 1 dimensional. As the probe approaches
the horizon, the metric evolves slowly compared to time
scales associated with interprobe dynamics. This is known
as the adiabatic regime of the Fermi normal coordinates.
The time dependence of r is given by

r ¼ r0
2
ð1þ cos!Þ; (98)

where r0 is the initial radial position of the center of mass,
and ! is related to the local Fermi time � via

d�2 ¼ ‘2
r0

2GM
r2d!2: (99)

Or

� ¼ ‘
r0
2

ffiffiffiffiffiffiffiffiffiffiffi
r0

2GM

r
ð!þ sin!Þ: (100)

We assume the infall starts with zero velocity. We then
identify the background field parameters of our DBI
action as

� 1

4
Gtt;xx ¼ �GM

r3
¼ M0;

� 1

4
Gtt;yy ¼ � 1

4
Gtt;zz ¼ 1

2

GM

r3
¼ M1 ¼ �M0

2
; (101)

wherewe have divided the three-dimensional subspace into
two subspaces as defined in Eq. (43).
The temperature of the black hole is given by

T ¼ 1

8�GM
� 1

4�rh
(102)

with rh being the location of the black hole horizon.
In dimensionless variables, we then have

m1 ¼ �m0

2
¼ 4�2

�
rh
r

�
3
t2; (103)

where t is the black hole temperature T in units of
1=‘. To find r as a function of time �, we start from
Eqs. (99) and (100):

FIG. 11 (color online). The region of the parameter space for
which our simulations can be trusted for case II. Three planes
bound it: one arising from convergence of the DBI expansion,
another from requiring small background curvatures, and
another from requiring a small probe size with respect to the
background length scale to assure quasistatic evolution in the
center-of-mass frame of the probe. All other bounds are weaker
than the ones depicted in the input parameter range we consider.
This is a semi-infinite region, with no bounds on the smaller ends
of all three axes.
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8�t�

�
rh
r0

�
3=2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

r0

�
1� r

r0

�s
þ arccos

�
2r

r0
� 1

�
(104)

with

r < r0: (105)

Expanding in small r=r0, we get

r

r0
’
�
1� 6�t�

�
rh
r0

�
3=2

�
2=3

: (106)

The time of flight, before the probe reaches the central
singularity, is given by

�fl ’
�
r0
rh

�
3=2 1

6�t
: (107)

We can write the background fields more conveniently as

m1ð�Þ ¼ m1ð0Þ
ð1� 3

ffiffiffiffiffiffiffiffiffiffiffiffi
m1ð0Þ

p
�Þ2 (108)

with the time of flight as

�fl ’ 1

3
ffiffiffiffiffiffiffiffiffiffiffiffi
m1ð0Þ

p ; (109)

where m1ð0Þ is the initial tidal force felt by the probe at
time equal to zero, away from the horizon at r ¼ r0; and a
similar expression with m1 ! �m0=2. The time to reach
the horizon is then

�hor ¼ 1

6�t

�
2�tffiffiffiffiffiffiffiffiffiffiffiffi
m1ð0Þ

p � 1

�
: (110)

As input parameter, we get to specify the string coupling
gs, the initial size of the probe (through s), m1ð0Þ, the back
hole mass or, equivalently, horizon rh, and the initial
position of the probe r0. For the analysis to be reliable,
we need to satisfy the following conditions.

We need small string coupling (36)

gs � 1: (111)

And weak background fields (37)

½m�g2=3s � 1: (112)

This condition needs to be satisfied at all times. This means
that, given a choice of valid m1ð0Þ, the simulation is still to
break down as the probe approaches the black hole singu-
larity. Hence, we need to keep track of this condition as a
function of time to know when to stop the simulation.
A proper DBI approximation requires (38)

½s�g2=3s � 1: (113)

This latter condition is now trickier to handle: in
cases I and II, the probe invariably collapsed to smaller
sizes, hence assuring that it is small enough at time zero. In
this case, we may see s grow in size as a function of time,

as the probe approaches the black hole. Hence, we need to
check that this condition is satisfied throughout time.
Finally, these Fermi normal coordinates are reliable in
the adiabatic regime. This requires the condition [31]


 � R2

r2
rh
r
� 1: (114)

R is the size of the probe as defined in Eq. (2). Once the
probe becomes large enough to violate this condition, we
need to stop the simulation.
Our strategy goes as follows. Having experimented with

the previous two cases, we know that we need a time of
flight of the order of �flight � 500 with �� ¼ 0:01 to

maintain control over the numerics of the simulations at
the level of 10% error. This fixes m1ð0Þ � 10�6. Hence,
choosing any gs � 1 is enough to handle the first two
conditions, Eqs. (111) and (112). The third condition
(113) is inconsequential since we can always adjust gs to
be smaller (which makes the Planck length smaller) for
given s. The fourth condition (114) is, however, one we
need to keep a close eye on. It says that as the probe
approaches the horizon, we need to make sure that the
probe size R is much less than the horizon size. This may
be a problem, since one school of thought is that the probe
may spread to the size of the black hole as it crosses the
horizon. If this is the case, the adiabatic approximation of
the Fermi coordinates breaks down and we may need to
revise the setup.

V. NUMERICAL TECHNIQUES

The simulations were implemented as a first-order
coupled Hamiltonian system using a fourth-order Runge-
Kutta algorithm with a typical time increment of
�� ¼ 0:01—except when the thermal fluctuation time
scale is smaller t > 100, where we reduce the size
of the time step accordingly ��� 1=t. The equations of
motion are

_xi ¼ pi

_ya ¼ qa

_pi ¼ ½xj; ½xi; xj�� þ ½ya; ½xi; ya�� � 2m1x
i � 3in
ijk½xj; xk�

_qa ¼ ½yb; ½ya; yb�� þ ½xi; ½ya; xi�� � 2m2y
a (115)

with the constraint

½xi; pi� þ ½ya; qa� ¼ 0: (116)

The initial conditions are set up with all the pi’s, ya’s, and
qa’s equal to zero, while the xi’s satisfying the SUð2Þ
algebra

xi ¼ s�i; ½�i; �j� ¼ i"ijk�k (117)

in an N � N representation. In addition, small fluctuations
were added to the xi matrix entries at the level of about

PAUL RIGGINS AND VATCHE SAHAKIAN PHYSICAL REVIEW D 86, 046005 (2012)

046005-18



10%–50%. Without these fluctuations, the evolution is
found to be deterministic and oscillatory, as shown in
Fig. 12. Indeed, we use this to test the stability of our
algorithm. We checked for both energy conservation and
the constraint violation. This happens invariably as
numerical errors accumulate over time, or when the probe
starts exploding in size introducing large numbers in the
simulation code which are more susceptible to computa-
tional errors. The simulation code was first implemented in
MATHEMATICA; and then, for efficiency purposes, recoded

independently in objective C. The two independent codes
running on several different platforms, from Linux to Mac,
were tested against each other and verified to yield the
same results. Then the computation-intensive work was
delegated to the objective-C version with the addition of
thermal fluctuations. Single-precision floating numbers
were used using the BLAS and LAPACK open source
linear algebra libraries which take advantage of parallel
processing with multicore CPUs. A typical simulation for
N ¼ 15 takes about five minutes to complete on 2–4 cores.
At larger values of N, we ran into memory limitations and
hence an associated disk-writing time penalty. Eventually,
the code will be ported to GPU systems and is expected to
run up to 100 times faster. For now, we restricted our
simulations to N < 100.

With the fluctuations added, the constraint (117) is
satisfied at the initial time. The system’s evolution then

assures that the constraint remains satisfied. We use the
violation of the constraint to track numerical error and stop
the simulation when the errors reach the 10% level.
The results shown in this work involved over 500 simu-

lations with varied parameters. MATHEMATICA was used to
analyze the results and generate the plots. All code is
available upon request. We also have developed a visual
interface front end to the code which allows realtime
exploration of D0 brane dynamics.

VI. CONCLUSION AND OUTLOOK

We have found that D0 brane probes have an internal
mechanism, at strong coupling, for thermalizing and scram-
bling their initial conditions. The quartic term in the
Hamiltonian is at the heart of this process. This was already
determined for the BMN case in Ref. [20]. Our results
extend this conclusion to a large class of backgrounds.
This process of thermalization is a quick one: the con-

figuration reaches an equilibrium size and temperature
after a few natural oscillations. The final temperature and
size, as well as the time scale of thermalization, are inde-
pendent of thermal background field fluctuations—a sur-
prising outcome given that in most traditional statistical
mechanical systems, this process is intimately tied with the
dynamics of the background thermal bath. Furthermore,
background metric geometry on its own is not obviously

FIG. 12 (color online). The time evolution of the probe when no initial fluctuations are added. We see that energy conservation and
the constraint get violated by accumulated numerical errors after 40–50 natural oscillations of the system. For the constraint, we plot
the average of the norms of the matrix entries in the constraint equation.
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correlated with this thermalization mechanism if the probe
size is much smaller than the curvature length scale of the
background; but some background RR fluxes do play a
critical role. These observations suggest that, if a black
hole geometry is to imprint its attributes onto the thermal-
ization process of an infalling probe, it can do so in one of
two ways: (i) Have hair, perhaps along the line of the
fuzzball proposal [13]. In our language, this corresponds
to the effect of the D2 brane flux on the thermal attributes
of the probe; or (ii) by expanding the infalling probe to
the order of the size of the horizon, a phenomenon we
see a signature of in this work on the gauge theory side, and
in previous work [25] on the gravity side. It is most likely
that both mechanisms are concurrently at work in higher
dimensions.

Looking more specifically at the many scaling relations
we extracted from the simulations, we found that the
equilibrium size of the thermalized D0 brane probe scales
linearly with the number of D0 branes N: the more D0
branes, the bigger the equilibrium configuration, suggest-
ing an incompressibility bound that these Planckian build-
ing blocks seem to be saturating. Furthermore, the larger
this equilibrium size, the quicker the thermalization. And
the equilibrium temperature of the probe increases with its
equilibrium size, suggesting that perhaps we are not seeing
the probe collapsing into an individual black hole—which
would have an inverse relation between its temperature
and its size. Instead, the probe may be merging with a
large background black hole. We see a correlation between
the size of the probe and background D2 flux akin to the
dielectric effect of Ref. [19], but now in this more general
dynamical scenario. The matrix black hole picture of
Refs. [22–24] has reinforced the idea that the black hole
must have some order or structure, perhaps in the form of a
fuzzy D brane stretched at the horizon. While the effect of
the D2 flux on the thermal properties of the probe such as its
temperature is in tune with such a picture, we fail to see a
signature of this order emerging within the D0 brane probe
itself. Perhaps this requires a delicate phase transition within
the probe [25] which can be captured when more back-
ground fluxes are turned on; in particular, D0 brane flux,
which we did not consider, would give a magnetic velocity
dependent force which may play a crucial role.

Intuitively, we can summarize the thermalization
phenomenon we observe throughout our simulations as
follows. At strong coupling, the D0 brane probe collapses
in size but maintains a coherent, dense, seemingly incom-
pressible configuration of finite smaller size. And when
the system is maintained in such a confined space long
enough—a few natural oscillations of the probe—the non-
linear quartic term in the Hamiltonian scrambles the infor-
mation in the probe into a thermal distribution. The process
is characterized by internal attributes of the probe, or
external attributes of the background which effect the
equilibrium size of the probe. This latter mechanism can

arise from either background fluxes, or from the probe
becoming large enough to experience the IR cutoff set by
the background metric curvature.
Through the works of Refs. [7,21], it was proposed that

black holes are the fastest scramblers in the Universe. The
associated scrambling time �th is conjectured to scale as

�thtp � logN; (118)

where we have written the expression in terms of our
notation (tp being the probe temperature). This is to be

contrasted with normal matter scramblers associated with a
time scale

�thtp � N�; (119)

where � is a dimension-dependent number. We will
now argue that our results are indeed consistent with the
conjectures of Refs. [7,21]. To see this, we start from
Eqs. (9) and (10) and get

�thtp � s3N2: (120)

s tunes the energy of the system, and hence is related to the
dimensionless coupling defined in Eq. (27). Given we are
probing a large N regime, we expect that the effective
coupling would instead scale as

g2eff ¼
N


3
(121)

instead of 
�3. 
 is the energy of the probe, and, at equilib-
rium, scales as 
� s4N as argued in Eqs. (33)–(35).  is
close to 2 for a structure which is truly random. However, if
there is SUð2Þ order at equilibrium—that is, a membrane-
like structure to the D0 branes—it would be close to 3 as
seen earlier for the perfectly spherical initial configuration.
Looking back at Eq. (8),we see that, at equilibrium,we have

R2
eq ¼ Trðx�x�Þ

N
� s2N2; (122)

which indeed implies that the equilibrium configuration
is closer to one forming D2 branes, with  ¼ 3. Putting
things together with  ¼ 3, we can express s in terms of
g2eff ¼ N=
3 in Eq. (120)

�thtp � 1ffiffiffiffiffiffiffiffi
geff

p (123)

with no N dependence left! The stronger the effective
coupling, the shorter the thermalization or scrambling
time, which makes sense. And we do not have a power
law dependence on the degrees of freedom N. The conjec-
ture of Refs. [7,21] suggests a logN dependence.We believe
that to capture this leading behavior in N, we need a full
quantum treatment of the problem. That all powers of N
cancel in this expression at the classical level is consistent
with the conjecture. This also syncs well with our observa-
tion that D2 brane background flux affects the size of the
configuration: if the background fields are to arise from
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other matrix black hole D0 branes interacting with the
probe, a D2 brane order in the background matrix black
hole would be seeding this flux which is needed to correlate
thermalization properties of the probe with those of the
background black hole.

For all of our simulations, a numerical instability devel-
oped after enough time had elapsed. It cannot be deter-
mined conclusively and with certainty whether this
phenomenon is a real physical one or a pathology of the
numerical evolution of the Hamiltonian system. For zero
background fields, the system does have a flat direction
which drives the system to larger entropically favored
configurations—which in turn increases numerical insta-
bility. However, we see this numerical instability even
when there is no flat direction in the system. While we
determined scaling relations for the lifetime of the probe,
we do not hence know whether to accord any physical
significance to these.

Our technique did eventually run against computational
limitations, and the truly large N behavior of the dynamics
could not be extensively developed. Fortunately, this can
easily be remedied given that our simulation code is paral-

lelized and can be adopted relatively easily onto high
performance GPU architecture. This would take us from
4 cores to around 400 cores; that is, a factor of 100 decrease
in computation time. We plan to implement these technical
improvements in the near future.
Another direction for further exploration involves

determining the effects of quantum backreaction from the
background fields onto D0 brane dynamics. It has been
suggested in the fuzzball proposal context that the many
fuzzball geometries are in a quantum superposition [32];
hence, a probe would be sensitive to quantum fluctuations
of the background geometry instead of the thermal ones
investigated in this work. This topic may be accessible
analytically using adiabacity techniques developed in the
context of the study of Berry phases. We hope to report on
this in the near future.
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