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A popular method for generating micron-sized aerosols is to submerge ultrasonic (x ! MHz) piezo-
electric oscillators in a water bath. The submerged oscillator atomizes the fluid, creating droplets with
radii proportional to the wavelength of the standing wave at the fluid surface. Classical theory for the
Faraday instability predicts a parametric instability driving a capillary wave at the subharmonic
(x=2) frequency. For many applications it is desirable to reduce the size of the droplets; however,
using higher frequency oscillators becomes impractical beyond a few MHz. Observations are pre-
sented that demonstrate that smaller droplets may also be created by increasing the driving amplitude
of the oscillator, and that this effect becomes more pronounced for large driving frequencies. It is
shown that these observations are consistent with a transition from droplets associated with subhar-
monic (x=2) capillary waves to harmonic (x) capillary waves induced by larger driving frequencies
and amplitudes, as predicted by a stability analysis of the capillary waves.VC 2011 Acoustical Society
of America. [DOI: 10.1121/1.3643816]

PACS number(s): 43.35.Pt [AJS] Pages: 2694–2699

I. INTRODUCTION

Ultrasonic atomization is a versatile and popular technique
for generating micron-scale aerosols. Aerosols produced in this
manner have applications in industry, medicine, and nuclear
fusion research. In many of these techniques the size of the
ejected droplets is the key parameter. For example, the aero-
sols can be used to generate nanoparticles whose size depends
on that of the ejected droplets,1 and appropriately sized drop-
lets can be used as targets in laser-fusion experiments.2–5

The atomization technique involves submerging an ul-
trasonic piezoelectric transducer in a fluid bath. The trans-
ducer drives acoustic waves through the bath, which
generates a capillary wave pattern at the fluid surface. If the
ultrasonic waves are sufficiently intense, the capillary waves
at the surface rupture, ejecting droplets and ultimately pro-
ducing an aerosol.

Lang6 and others4,5,7 established that the rupture of cap-
illary waves at the fluid surface is responsible for the ejected
droplets. Due to this observation, the problem of predicting
the ejected droplet size is reduced to the determination of the
dominant capillary mode at the surface of the excited fluid.

The observation of the surface patterns of a fluid acous-
tically excited at a frequency x dates back to Faraday.8

While his experiments indicated a subharmonic (x=2) sur-
face pattern, later experiments performed by Matthiessen9,10

suggested the possibility of a harmonic (x) response. The
discrepancy led Lord Rayleigh to consider the problem,11,12

but his observations indicated the presence of only subhar-
monic excitations. The issue did not rest on a firmer theoreti-
cal ground until a treatment by Benjamin and Ursell showed

that, for an inviscid fluid at low excitation amplitude, the
subharmonic instability has a much larger growth rate than
the harmonic instability.13

More recent work has focused on the possibility of
exciting harmonic waves or solitary structures in a viscous
fluid.14–18 However, the possibility of observing harmonic
waves in the context originally considered by Benjamin and
Ursell has received little attention.

Here we consider in detail the large drive amplitude
structure of the theory developed by Benjamin and Ursell.
We then present measurements of ejected droplet sizes
which realize this structure. The measurements are well
described by Benjamin and Ursell’s original theory in the
large drive amplitude regime.

II. THEORY

A. Physics of atomization

As originally proposed by Lang,6 the radius r of a drop-
let ejected from an excited fluid surface should relate to the
wavelength k of the ruptured wave. Following this intuition,
the relation

r ¼ ck=2 (1)

is introduced, where c ¼ 0:34 is an empirically determined
constant. This relation has been experimentally verified over
several orders of magnitude in dimensionless frequency.4–6

The problem of predicting the ejected droplet radius is thus
reduced to determining the capillary wavelength k at the
fluid surface.

This is accomplished with a linearized stability analysis
of the fluid surface.4–6,13 The most unstable capillary wave
initially grows the fastest, and is therefore assumed to
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dominate the aerosol production. The stability analysis relies
on the results of Benjamin and Ursell,13 who considered the
periodic, vertical excitation of a fluid container. This excita-
tion is modeled as a parametric change in the gravitational
constant g. In adopting this analysis for our experiment we are
neglecting boundary and compressibility effects. This approx-
imation is justified because both the container size (100mm)
and the acoustic wavelength (!1mm) are much larger than
the capillary wavelength at the fluid surface (!1 lm).

According to this analysis, for large driving frequencies
in an inviscid fluid, the initial small-amplitude oscillations g
at the fluid surface are governed by the Mathieu equation

d2g
dT2

þ ðp% 2q cosð2TÞÞg ¼ 0; (2)

where q; p are nondimensional parameters and T ¼ xt=2.
For a deep water bath, the parameter p has the value
p ¼ 4x2

k=x
2 where

x2
k ¼ rk3=q (3)

is the frequency of a capillary surface wave, and r; q are the
surface tension and density of the fluid, respectively. Note
that in the limit of small forcing p¼ 1 for subharmonic (x/2)
excitation, while p¼ 4 for the harmonic (x) case. The param-
eter q takes the value q ¼ 2kA; where k ¼ 2p=k is the surface
wavenumber and A is the driving amplitude. It is important to
note that while this equation is valid only for small surface
wave amplitude (i.e., soon after the vibrations begin g ' 1),
it remains valid even for large driving amplitudes (A > 1).
Interestingly, increasing the drive amplitude does not increase
the surface wave amplitude because droplet ejection occurs at
wave amplitudes modestly beyond onset, thus limiting ampli-
tude growth19,20 (see Sec. III C).

Using Lang’s relation [Eq. (1)], one can obtain the ob-
served droplet radius in terms of the most unstable p value as

r ¼ pc
r
qp

! "1=3 2

x

! "2=3

: (4)

As shown by Benjamin and Ursell, for small drive amplitude
(small q), one finds the most unstable mode is p¼ 1. This
result inserted in Eq. (4) is consistent with previous atomiza-
tion work in the capillary regime.4–7 However, for larger
drive amplitude this is not necessarily the case.

Figure 1 shows the growth rates for the subharmonic
and harmonic modes as a function of the nondimensional-
ized drive amplitude a. The growth rate G is nondimension-
alized such that the wave amplitude grows in proportion to
eGT . Mathematically, G corresponds to the imaginary part of
the Mathieu characteristic exponent. The nondimensional-
ized drive amplitude is defined such that21

a3 ¼ 2qA3x2=r: (5)

For sufficiently large a, the harmonic mode has a larger
growth rate than the subharmonic. This corresponds to p¼ 4
in Eq. (4), and thus would produce a decrease in droplet size
by a factor of 41=3 ( 1:6.

For ultrasonic transducers in the MHz regime, wave-
lengths are on the order of 1lm and resonant transducer dis-
placements on the order of 1lm are typical.22 Thus, for
sufficiently large excitation frequencies, the possibility of
atomization in the large a (harmonic) regime is worth
considering.

B. Stability diagram

To understand the emergence of the harmonic Faraday
instability suggested by Fig. 1 in further detail, it is useful to
examine the stability diagram in Fig. 2. Each capillary wave
is associated with a ðp; qÞ pair, and thus a point in the dia-
gram. Waves with negative growth rate are shaded, and
those with positive growth are white. The two white areas
correspond to subharmonic and harmonic excitation, and the
curves of maximum growth show the most unstable modes
in each region.

Driving amplitude (a) enters into this picture through
the dispersion relation Eq. (3), which can be rewritten

p ¼ ðq=aÞ3: (6)

For small a one therefore obtains a dispersion curve which
intersects the maximum growth curves at p¼ 1 (subhar-
monic) and p¼ 4 (harmonic). In this regime the subharmonic
mode has the larger growth rate and is expected to dominate.
For example, one can read off from Fig. 1 that when a ¼ 0:2
the growth rate G for subharmonic waves is G ¼ 0:1 while
the growth rate for harmonic waves is G ¼ 0:005.

As a is increased the dispersion curve intersects the
growth curves in a detuned region, which leads to weaker
growth. For example, when a ( 4 the maximal subharmonic
growth is substantially detuned from p¼ 1 and the subhar-
monic mode begins to have a smaller growth rate than the
harmonic (see Fig. 1).

This suggests harmonic droplet ejecting waves for suffi-
ciently large a. For the sake of concreteness, we label Fig. 2
with arrows to indicate a physically plausible path the

FIG. 1. (Color online) Onset growth rates for most unstable subharmonic
and harmonic modes as a function of nondimensionalized driving amplitude
(a). For large a the harmonic mode has a larger growth rate, and is therefore
predicted to dominate the droplet ejection process.
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system could take to transition from the subharmonic to har-
monic modes. However, in the context of the linearized
theory it is not possible to comment on the nature of the tran-
sition from subharmonic to harmonic waves. Such a discus-
sion would require an analysis of the competition between
modes at the fluid surface, and thus the inclusion of nonlin-
ear terms in the equations of motion.

To allow for the competition of several modes in the neigh-
borhood of maximum growth we develop a conservative metric
for classifying waves associated with the subharmonic and har-
monic instabilities. We associate p values from p¼ 1 to
p ¼ 0:64 with subharmonic waves. This range corresponds to p
values from the small a limit up to the point where the harmonic
mode’s growth rate exceeds that of the subharmonic, respec-
tively. Similarly we associate 3:4 ) p ) 4:3 with harmonic
growth, where the lower and upper limits are the harmonic p
values for the two large a dispersion curves in Fig. 2. Using Eq.
(4) with the appropriate p value, harmonic and subharmonic
Faraday excitations may be distinguished by measuring the
droplet radius r produced by an oscillator driven at a frequency
x. For example, in an experiment with 2.5MHz excitation a
droplet radius measurement of r ¼ 1:1 would be associated
with subharmonic ejection whereas a measurement r ¼ 0:7
would be associated with harmonic ejection. We now describe
our experimental efforts to realize such measurements in order
to distinguish between subharmonic and harmonic ejection.

III. EXPERIMENT

A. Method

Examination of Eq. (5) reveals that a grows with both
drive amplitude and frequency. From an experimental point

of view, this suggests that the large a behavior we have
described can occur for large excitation frequencies.

Aerosols were generated using high-frequency, piezo-
electric oscillators submerged in the base of a 5 cm deep water
bath. The oscillators were circular in shape, with a diameter
of approximately 3 cm, and the fluid was held in an acrylic
cylinder with a d ¼ 10 cm diameter. The large size of the cyl-
inder (d * k) ensures that boundary effects may be ignored.
The piezoelectric was driven with a sinusoidal voltage signal
in the MHz range so that atomization occurred. Driving fre-
quencies of 1.7, 2.5, 6.6, and 11.5MHz were employed.

The ejected droplets were too small to be imaged
directly (!1 lm), so a technique known as Mie scattering
was used to accurately establish droplet size. In this
approach the experimenter measures an angular scattering
distribution using a monochromatic source and determines
the size of the scatterer. The basic physics which makes Mie
scattering a sensitive probe of droplet size in our experiment
is that smaller droplets are closer to the Rayleigh limit and
thus scatter more light into high angles.

A laser was directed into the aerosol, and the light scat-
tered by the constituent droplets was measured using a pho-
tomultiplier tube mounted on a moveable arm. The arm was
rotated through various angles h, generating an angular scat-
tering pattern. The measured angular scattering pattern was
normalized to the signal from a reference photomultiplier
tube mounted at a fixed position. This procedure takes into
account variations in laser intensity and aerosol density. The
normalized angular scattering pattern corresponds uniquely
to a droplet size distribution, which we determined using the
theory of Mie scattering and a v2 analysis.

Figure 3 shows the experimental setup. It is similar to
the experiments we have previously used to characterize
aerosols,4,5 with the exception that the new setup used a
1 kHz, 60 fs, 0.5 l J Ti:sapphire laser as a light source. We
found that the use of a pulsed laser system with a gated inte-
grator greatly increased the sensitivity of our measurements.

B. Analysis and discussion

Sample angular scattering intensity profiles measured
using the apparatus in Fig. 3 are presented in Fig. 4. The

FIG. 2. (Color online) Stability chart for the Mathieu equation, Eq. (2).
Points corresponding to negative growth rate are shaded, whereas the white
tongues correspond to growth via subharmonic or harmonic excitation. For a
fixed driving amplitude a the growth curves mark the most unstable modes
in a particular regime. The curves increasing from the origin are the disper-
sion curves for the fixed alpha values a ¼ 0:2, a ¼ 4, and a ¼ 6:25, and
mark which modes may possibly be excited at the given drive amplitude a.
Thus the intersection of the growth and dispersion curves gives the most
unstable mode in each regime. a ¼ 4 is approximately where the harmonic
growth rate is larger than the subharmonic, and a ¼ 6:25 is where the origi-
nal subharmonic (p¼ 1) mode is no longer stable.

FIG. 3. Experimental setup. An aerosol was produced via ultrasonic atom-
ization, and the constituent droplet size was then determined via Mie scatter-
ing. The aerosol scattered light from a Ti:sapphire laser, and an angular
scattering pattern was measured using a photomultiplier tube mounted on a
rotation arm. The signal is normalized to a reference detector to take into
account variations in aerosol density and laser intensity.
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data shown in Fig. 4 were taken with a 2.5MHz oscillator at
low (22.5V), and high (30V) driving amplitudes. The angu-
lar scattering patterns show a qualitative difference based on
drive amplitude.

To analyze these angular scattering distributions, we
model our experiment as the scattering of monochromatic
plane waves due to a collection of Mie scatterers whose size
follows a log-normal distribution. This size distribution allows
for an asymmetric spread to take into account coalescence
and evaporation, and is widely assumed in aerosol science.23

Allowing the mean and spread of the droplet distribution to
vary, we determine the droplet size distribution which mini-
mizes v2 for the angular scattering data. As is shown in Fig. 4,
this procedure yields good agreement with our observations.

The droplet distributions corresponding to the data in
Fig. 4 are presented in Fig. 5. The mean value is 1:1 lm
(0:6 lm) for 22.5V (30V) driving.

The full data set is obtained by measuring ejected drop-
let radius for each oscillator at several drive amplitudes. Be-
ginning with the 2.5MHz oscillator, we measured a range of
driving voltages from 21 to 30V. At less than 21V very little
aerosol is generated, and above 30V the piezoelectric may
be damaged. The voltage was scanned by alternating
between low and high drive voltages to eliminate the possi-
bility of any long-term systematic errors. We then proceeded
with the higher frequency measurements, returning at the
end to a relatively low frequency 1.7MHz oscillator.

A compilation of all droplet sizes measured in this man-
ner is presented in Fig. 6. The data are shown with the theo-
retical predictions of Eq. (4). The bands are derived from the
ranges of p values discussed in Sec. II B. The droplet sizes
measured at 1.7MHz are associated with subharmonic
waves, as has been found in other experiments.4,5 At a driv-
ing frequency of 2.5MHz, as one would expect for a system
at the boundary of the subharmonic and harmonic regimes,
droplets consistent with both subharmonic and harmonic
waves are observed depending on the drive amplitude. At
6.6MHz and above, only droplets consistent with harmonic
waves are observed. These observations agree with a transi-
tion to harmonic droplet ejecting modes at large a.

The basic structure of these observations can be inter-
preted in the growth rate picture of Fig. 1 by recalling that a
grows both with drive amplitude A and excitation frequency
x. The 1.7MHz oscillator has sufficiently small x such that
it is in the subharmonic regime for all feasible driving ampli-
tudes A. The 2.5MHz oscillator has an intermediate x,
which allows the system to be in either the subharmonic or
harmonic dominated region of Fig. 1 depending on the drive
amplitude A. The 6.6 and 11.5MHz oscillators have such
large x that the threshold drive amplitude for atomization
occurs after the subharmonic and harmonic growth curves
intersect.

Figure 7 more fully demonstrates the dependence of
droplet size on driving voltage at the 2.5MHz excitation fre-
quency. With the standard assumptions that our piezoelectrics

FIG. 4. (Color online) Typical Mie scattering curves from aerosols gener-
ated with a 2.5MHz oscillator at different drive amplitudes. Normalized in-
tensity was measured using a photomultiplier tube as diagrammed in Fig. 3.
The lines are calculated from a fit of the data using a v2 analysis. Error bars
are shown.

FIG. 5. (Color online) Droplet size distributions, calculated from a v2 analy-
sis of the data in Fig. 4.

FIG. 6. (Color online) Droplet measurements with predictions from the modi-
fied linear theory. The bands are derived from the large a curves in Fig. 2. The
error bars are derived from the standard deviation of the mean of multiple
measurements. The theoretical curves have no free parameters.
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obey a Hooke’s law proportionality V / A one can consider
the driving voltage a proxy for the driving amplitude. The
data therefore indicate a transition near a driving amplitude of
22.5V. We do not observe intermediate droplet sizes or a bi-
modal distribution during the transition. Also, the distribu-
tions show the same width before and after the transition.
Thus, the data indicate a rather sharp shift in the mean droplet
size. This is a striking qualitative feature, as the standard sub-
harmonic theory of ultrasonic atomization predicts no depend-
ence on drive amplitude.

It should be noted that the dispersion of the data in
Figs. 6 and 7 is significantly larger than the uncertainties
generated via v2 analysis of the data in Fig. 4. The origin of
this dispersion could be physical, such as mode competition
at the fluid surface. Therefore we use the mean of several
droplet measurements and the standard deviation of the
mean as the uncertainty.

C. Validity of assumptions

While we expect that nonlinear effects could weakly
detune the resonant wavelength and the observed droplet
size, droplet ejection occurs at wave amplitudes modestly
beyond onset.19,20 Surprisingly, our use of large driving
amplitudes and frequencies serves to reinforce this point.
This is because droplets tend to be ejected when h ! k,19

where h is the height of the droplet ejecting wave. The wave
height is therefore limited by the ejection process even as
drive amplitude is increased. Additionally, the critical accel-
eration ac scales as ac / x4=3.19 The droplet ejection height
hc therefore scales as hc ! x%2=3. As we use large x, this
implies smaller surface amplitudes in our experiments than
in previous ultrasonic atomization studies which are known
to occur in a linear regime.4–6

Other mechanisms that could explain the driving ampli-
tude dependence of droplet size, such as fluid heating and vis-
cous effects, are unlikely. The temperature dependence of r

and q (Ref. 4) in Eq. (4), can change droplet radii by at most
0.05 lm (!0.5%). We have studied in detail the possibility of
viscous effects in the droplet ejection process both numeri-
cally and experimentally,5 and have found that the parameters
of this experiment are well within the inviscid regime. This is
quantified through the computation of a nondimensional fre-
quency X ¼ xg3=qr2 ( 10%3, where g is the kinematic vis-
cosity. Our numerical and experimental work shows that for
0 < X < 0:2 the inviscid approximation is valid.

IV. CONCLUSIONS

We have presented our experimental finding of drive-
amplitude dependent droplet sizes in ultrasonic atomization
experiments. These findings are explained in the context of
the usual theory, which relates the ejected droplet size to the
most unstable Faraday wave. The predicted transition in
droplet sizes is observed—low frequency oscillators gener-
ate droplets associated with subharmonic Faraday waves
while high-frequency oscillators generate droplet sizes con-
sistent with a harmonic response. Intermediate frequency
oscillators may excite either response based on their driving
amplitude.

It would be interesting to gain more insight into the pro-
posed transition from subharmonic to harmonic waves.
Experimentally, one would like to probe this phenomenon in
a lower frequency (kHz) regime so that the surface waves
might be directly imaged with a camera. In this regime pie-
zoelectrics would likely no longer be appropriate due to their
limited drive amplitudes. Theoretically, it would be interest-
ing to examine in further detail the growth and mode selec-
tion mechanisms near the harmonic transition. Since for
these experiments a > g the Rayleigh–Taylor instability
may play an important role.24 The inclusion of nonlinear
terms in the equations of motion could also yield insights.
From the point of view of applications, our observations
open up new technical possibilities for the generation of
small fluid droplets.
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