
LATEX Tips and Tricks

Claire M. Connelly
cmc@math.hmc.edu

Fall 

1 What is LATEX?

LATEX is a tool that allows you to concentrate on your writing while taking advantage
of the TEX typesetting system to produce high-quality typeset documents.

LATEX’s benefits include

. Standardized document classes

. Structural frameworks for organizing documents

. Automatic numbering and cross-referencing of structural elements

. “Floating” figures and tables

. High-level programming interface for accessing TEX’s typesetting capabilities

. Access to LATEX extensions through loading “packages”

2 Structured Writing

Like HTML,¹ LATEX is a markup language rather than a Wysiwyg² system. You write
plain text files that use special commands and environments that govern the appear-
ance and function of parts of your text in your final typeset document.

2.1 Document Classes

The general appearance of your document is determined by your choice of document
class. Document classes also load LATEX packages to provide additional functionality.

LATEX provides a number of basic classes, including article, letter, report, and book.
There are also a large number of other document classes available, including amsart
and amsbook, created by the American Mathematical Society and providing some ad-
ditional mathematically useful structures and commands; foils, prosper, and seminar,
which allow you to create “slides” for presentations; the math department’s thesis

1. HyperText Markup Language
2. What You See Is What You Get.



Command Notes

\part book & report only
\chapter book & report only
\section
\subsection
\subsubsection
\paragraph
\subparagraph

Table : Structural Commands in LATEX.

class, for formatting senior theses; and many journal- or company-specific classes
that format your document to match the “house style” of a particular periodical or
publisher.

2.2 Packages

LATEX packages, or style files, define additional commands and environments, or change
the way that previously defined commands and environments work. By loading pack-
ages, you can change the fonts used in your document, write your document in a
non-English language with a non-Ascii font encoding, include graphics, format pro-
gram listings, add custom headers and footers to your document, and much more.

A typical TEX installation includes hundreds of style files, and hundreds more
are available from the Comprehensive TEX Archive Network (CTAN), at <http://www.
ctan.org/>.

2.3 Structural Commands

LATEX provides a set of structural commands for defining sections of your document,
as shown in Table .

Sections are numbered automatically by LATEX during typesetting. If you change
your mind and decide that a subsection should be promoted to a section, or moved
to the end of your document, the sections will be renumbered so that the numbers
are consistent.

Sections can also be \labeled with a tag such as

\section{Our Complicated Equations}%
\label{sec:complicated-eqs}

and referred to with a \ref or \pageref command, as in

In Section~\ref{sec:complicated-eqs}, we pointed out...

or

On page~\pageref{fig:gordian-knot}, we illustrated...



LATEX substitutes the correct section number when typesetting your document.
The same commands can be used with numbered environments such as equation,

theorem, and so forth.

2.4 Commands

LATEX uses commands for changes that are very limited in scope (a few words) or are
unlimited in scope (the rest of a document). For example, the commands

\textbf{bold}
\emph{italic (emphasized)}
\textsf{sans serif}

produce the following output in a typeset document:

bold italic (emphasized) sans serif

These are “commands with arguments”—the command itself starts with a back-
slash (\), and its argument appears inside braces { }). Some commands may also
have optional arguments, which are typed inside brackets ([]).

There are also commands that take no arguments, such as \noindent, \raggedright,
and \pagebreak.

You can define your own commands, as discussed in Section ..

2.5 Environments

LATEX provides a number of environments that affect the appearance of text, and are
generally used for more structurally significant purposes. For example, the com-
mands listed above are typeset inside a verbatim environment typed inside a quote
environment. Their results were typeset inside a quote environment.

Environments use special commands to start and close—\begin and \end, fol-
lowed by the name of the environment in braces, as in

\begin{quote}
‘‘This is disgusting---I can’t eat this. That arugala is so
bitter\ldots{} It’s like my algebra teacher on bread.’’
\flushright -- Julia Roberts in \emph{Full Frontal}
\end{quote}

producing

“This is disgusting—I can’t eat this. That arugala is so bitter… It’s like
my algebra teacher on bread.”

– Julia Roberts in Full Frontal

Some environments may take additional arguments in braces (required) or brack-
ets (optional).

Note that the order in which environments nest is extremely important. If you
type an environment inside another environment, the inner environment must be
\ended before the second environment is closed. It’s also vitally important that you
have an \end line for each \begin line, or LATEX will complain.



2.5.1 The document Environment and the Preamble

The most important environment is the document environment, which encloses the
body of your document. The code before the \begin {document} line is called the
preamble, and includes the all-powerful \documentclass command, which loads
a particular document class (see Section .); optional \usepackage commands,
which load in additional LATEX packages (see Section .); and other setup commands,
such as user-defined commands and environments, counter settings, and so forth.

I generally also include the commands defining the title, author, and date in my
preambles, but other people include them just after \begin {document}, before the
\maketitle command, which creates the title block of your document.

2.5.2 Math Environments

One of the major hallmarks of TEX is its ability to typeset mathematical equations.
The two primary ways of doing so are with the use of inline and display math envi-

ronments. These environments are used so often that there are shorthands provided
for typing them. Inline math environments, such as a2 + b2 = c2, can be typed as

\begin{math}
a^{2} + b^{2} = c^{2}
\end{math}

or

$a^{2} + b^{2} = c^{2}$.

Display math environments set your equation apart from your running text.
They’re generally used for more complicated expressions, such as

f(x) =
∫ (

x2 + x3

1

)
dx

which can be typed as

\begin{displaymath}
f(x) = \int \left(\frac{x^2 + x^3}{1} \right)dx
\end{displaymath}

or

\[
f(x) = \int \left(\frac{x^2 + x^3}{1} \right)dx
\]

Generally, you’ll want to use the $ delimited form for inline math, and the \[\]
form for display math environments. [Besides being easy to type, these forms are
robust, which means that they can be used in moving arguments, elements that TEX
may need to typeset in more than one place (such as a table of contents) or adjust
(such as footnotes).]



The equation Environment You’ll probably want to use the equation environ-
ment for any formula you plan to refer to. LATEX not only typesets the contents of an
equation environment in display mode, it also numbers it, as in

f(x) =
∫ (

x2 + x3

1

)
dx ()

written as

\begin{equation}
\label{eq:myequation}
f(x) = \int \left(\frac{x^2 + x^3}{1} \right)dx
\end{equation}

Note that you can refer to this formula as Equation  with

\ref{eq:myequation}.

2.6 Customization

The main advantage of using commands and environments is that they allow you to
organize your writing. A useful side-effect is that you can change your mind about
the way an element is typeset, and change all the appearances of that element in
document by editing one piece of code. For example, in this document the names of
environments have been set in “typewriter text”, using a command I created called
\env, which is defined as

\newcommand{\env}[1]{\texttt{#1}\xspace}

All I have to do to make the names of all the environments in the document
appear in sans-serif type instead is to change that one line to

\newcommand{\env}[1]{\textsf{#1}\xspace}

3 Typesetting

So you’ve got a LATEX source document. How do you get a typeset document that you
can print or put on the web?

Typesetting a document is referred to as “TEXing”, “compiling”, or “typesetting”.
Generally, you want to create a PostScript file (for printing) or a PDF file (for printing
or placing on the web). There are multiple ways to do both tasks.

3.1 Getting to Paper

Starting with a LATEX document, foo.tex, you can create a PostScript file by running
the following commands:

unix% latex foo
unix% dvips -o foo.ps foo
unix% lpr foo.ps



(On some systems, dvips automatically prints your document to the default printer.
You need to specify the -o flag to get a PostScript file on such systems.)

3.2 PDF for the Web

Starting with foo.tex, you can create a PostScript file by typing

unix% pdflatex foo

or with the following sequence of commands:

unix% latex foo
unix% dvips -Ppdf foo -o foo.ps
unix% ps2pdf foo.ps foo.pdf

(The last step can be replaced by running the PostScript file through Adobe Acrobat
Distiller.)

3.3 General Comments

LATEX does its numbering (and some other functions) by writing information to an
auxiliary file. It then reads that information in on the next pass, and uses it to typeset
references. Thus you have to run latex or pdflatex at least twice whenever you
make a change that affects the numbering of elements or the flow of text across
pages. It’s generally good practice to run LATEX three times, or until it stops warning
you about possible changes.

3.4 Additional Programs

There are some additional functions, such as indexing and bibliographies, that use
external programs to read auxiliary files and produce LATEX code for inclusion on later
runs. We won’t cover those programs in this document.

4 Tips and Tricks

LATEX is a very complicated and powerful language. As a result, there are many sneaky
aspects to it that will cause you problems if you don’t know about them. Here are a
few.

4.1 Special Characters

TEX and LATEX have a number of “special” characters that are reserved for use by the
language. Using these characters in your writing requires you to do a bit of extra
work, as shown in Table .



Character Function To Typeset

octothorp Macro parameter character \#
 dollar sign Start/end inline math mode \$
% percent sign Comment character \%
& ampersand Column separator \&
_ underscore Subscripts, as in x2 _
{, } braces Parameters \{, \}
˜ tilde Nonbreaking space \~{}
ˆ caret Superscripts, as in x2 \^{}
\ backslash Starts commands \verb |\|

Table : Special Characters in LATEX.

4.2 Comments and Spacing

You can add comments to your source file that won’t appear in your typeset docu-
ment by starting them with a %. Any line that starts with a % will be “commented
out”, and won’t be interpreted. You can also add a % at the end of a line, with or
without text, and it will make the end of the line disappear.

For example,

% This is a comment line.
This is not a comment line.

This line has a comment at the end%
% This line should be invisible.
of the line.

will typeset as

This is not a comment line.

This line has a comment at the endof the line.

Notice the lack of a space in “endof” on the last line of the typeset output. TEX
expects a carriage-return character at the end of a line, and interprets that carriage
return as an interword space. If you comment out the end of a line, you also com-
ment out the carriage return on that line, and you’ll have words run into one another
unless you have a space before the %.

TEX collapses multiple spaces into one, and ignores whitespace at the beginning
of a line. Thus

No spaces.

Five spaces.

A tab.



typesets as

No spaces.

Five spaces.

A tab.

(The lines are indented because they are at the start of a paragraph. You can
suppress paragraph indentation with \noindent.)

Paragraphs are delimited by two carriage returns (with or without whitespace
between them).

4.3 Quotes and Dashes

Because TEX was designed to do high-quality typesetting, it cares about which quota-
tion mark and dash you’re using, and requires you to specify the correct punctuation
(although most text editors with special TEX modes will do the substitution for you).

Open and close double quotes—“ and ”—are created by typing ‘‘ and ’’, re-
spectively. The double-quote mark, ", is typeset as " (and is useful for abbreviating
“inches”, as in ").

Single-quotes, ‘ and ’, are typed with ‘ and ’.
There are three basic forms of dashes:

. The hyphen, -, is typed as a single dash, -

. The en dash, –, is typed as two dashes, --

. The em dash, —, is typed as three dashes, ---

Hyphens are used in hyphenated words, as in “complex-typesetting mechanism”.
En dashes are used to indicate ranges, as in “there are – of them”. Em dashes are
used to separate independent phrases, as in “John believed—honestly believed—
that he was right.”

Note that you shouldn’t type spaces around any of these dashes—they run di-
rectly against the words on either side, as in 35--50.

4.4 Using Graphics with pdfTEX

pdfTEX supports PDF and JPEG as native graphic file formats. EPS is not directly
supported—to use EPS figures with pdfTEX, you must first convert your EPS files to
PDF.

If you’re using a graphics program such as Adobe Illustrator to prepare your fig-
ures, just save them as PDF instead of (or in addition to) EPS.

If you don’t have access to the tool you used to create your images, but you still
need to convert them, you can use the program epstopdf.

The old version of epstopdf would write to standard output by default, so you
had to redirect the output to a file, as in

unix% epstopdf foo.eps > foo.pdf



Current versions, however, will create a PDF file with the same basename as the
original (but with the extension replaced). Thus,

unix% epstopdf foo.eps

does exactly the same thing as the previous example, and is easier to type, as well.
To convert a whole slew of files, you could use a command such as the following

(with the csh):

unix% foreach f (‘find . -type f -name ’*.eps’‘)
foreach? epstopdf $f
foreach? end

For bash, you could do

unix$ for f in ‘find . -type f -name ’*.eps’; do epstopdf $f; done

These commands work by \find ing all files in or below the current directory (.)
that have names that end in eps, and then operate on them.

4.5 Fonts Look Fuzzy in PostScript or PDF Files

When Knuth wrote TEX, typesetting was done by trained typesetters using expensive
equipment to cast molten lead into runs of type. Knuth created his own font family,
Computer Modern, by writing a tool called METAFONT. METAFONT reads in pro-
grams that define various aspects of every character in a font, and generates bitmap
representations of those characters at a particular resolution, ready for printing.

Unfortunately, bitmaps with resolutions suited for printing look terrible on screen.
The solution is to use Type  PostScript fonts instead of bitmaps. If you’re using
pdfTEX (or pdfLATEX), you get Type  fonts without having to do anything special
(but see Section .).

If you’re using dvips to get PostScript as an intermediate step (using ps2pdf or
Acrobat Distiller to get PDF), you can force dvips to use Type  fonts by specifying
the -Ppdf flag, as in

unix% dvips -Ppdf foo.dvi -o foo.ps

4.6 Debugging

One of the trickiest things about using LATEX is interpreting LATEX’s sometimes cryptic
error messages.

In particular, the line numbers that LATEX reports are often not the line numbers
where the problem is, but the line numbers where LATEX noticed there was a problem.

One useful way of getting a bit more context to help you understand the problem
is to put the line

\setcounter{errorcontextlines}{1000}

in the preamble of your document, which will provide you with a (perhaps excessive)
amount of context for an error.

The most common errors are probably



• Using one of the special characters (see Section .)

• Leaving off or mismatching a brace or bracket

• Leaving out or swapping arguments to a command or environment

If you’ve tried everything and you can’t find the source of an error message, try
the following procedure:

. Create a new file, copying your preamble into it

. Try typesetting it—if you have an error, the problem is in your preamble

. If it typesets, copy half of your document’s body into the new file, and typeset
that

. If you see your error, then continue halving the document until you narrow it
down to the problem section

. If you don’t see your error, try the other half

5 Resources

There are lots of great resources available for using TEX and LATEX. Here are a few
(there are also links available online at <http://www.math.hmc.edu/computing/support/
tex/>).

5.1 Online Documentation

Much of the documentation for TEX and LATEX is available online, as part of the TEX
system. teTEX, the TEX system installed on the math lab computers, includes a script
called texdoc to access this documentation. All you have to do is type texdoc fol-
lowed by a string that you believe is the name of the document you’re looking for.
For example, texdoc booktabs will give you the documentation for the booktabs
package that I used to create the tables in this document.

Unfortunately, texdoc only works for documentation that is sensibly named.
The authors of the graphics package, for instance, called their manual grfguide.
Still others decided that manual was a good name for their manual (after all, it’s the
only manual in their distribution).

Sometimes you can find documentation using the locate command, which lists
all the files on your system that match a string that you provide. For example, you
could find grfguide by trying locate graphics and grep ping out the results with
texmf in them, and passing that list to another grep for the string doc:

unix% locate graphics | grep texmf | grep doc



5.2 UK-TUG FAQ

The primary list of frequently asked questions in the TEX world is the UK TUG FAQ,
available at <http://www.tex.ac.uk/cgi-bin/texfaqhtml>. If you’re not sure how to do
something, or you’ve got a problem that you’re pretty sure isn’t being caused by a
typo, check here first.

5.3 comp.text.tex

If you can’t find an answer in the UK-TUG FAQ, then your next step is to check
comp.text.tex, the Usenet newsgroup devoted to TEX and LATEX. Chances are, what-
ever your problem is, someone else already had it, asked about it on c.t.t, and got
an answer. Thanks to Google, Usenet’s past is preserved in an easily searchable for-
mat. Go to Google Groups (<http://groups.google.com/>), type in some search terms,
and check out the answers. (If you specify group:comp.text.tex at the end of your
search terms, you’ll only see results from comp.text.tex.)

6 Books

<http://www.math.hmc.edu/computing/support/tex/> has some brief reviews of a num-
ber of significant books about TEX and LATEX.

My pick for the best introductory/reference book is the third edition of George
Grätzer’s Math into LATEX.³ It’s the only book I’m aware of that discusses the latest
version of AMSLATEX in depth. It also has excellent reference tables and a thorough
index.

Another book I highly recommend is Lyn Dupré’s BUGS in Writing. Dupré is one
of Addison Wesley’s senior editors, and has edited many of the most significant
books published by Addison Wesley. BUGS is an accessible guide to writing clearly
and effectively. It’s the kind of book you leave in the bathroom so you’ll always have
something interesting and amusing to read. Learning how to write better is almost
a byproduct!

If you get serious about typesetting, and want to start doing some fancy page
design or want to be sure you’re using the right kind of type, Robert Bringhurst’s
The Elements of Typographic Style will show you the way.

7 Acknowledgments

Thanks to Darryl Yong, who wrote a similar document in November, , from
which I borrowed some ideas.

3. Which I edited.



