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Abstract

This paper presents the Push-Swap-Wait algorithm, a decentralized and complete approach

for multi-robot motion planning in con�ned spaces. The algorithm builds upon a "push and

swap" paradigm that has been used e�ectively in centralized navigation. This push and

swap approach was expanded to apply to decentralized planning by adding a waiting mode

to handle situations in which communication between robots is lost.

A proof is presented that guarantees the completeness of the Push-Swap-Wait algorithm

in cases where the environment can be modeled as a tree T for which the number of leaf

nodes is greater than the number of robots navigating through it. The algorithm also relies

on the formation of ad-hoc communication networks among robots, such that robots can

share information with a subset of other robots in the tree.

Finally, the algorithm is implemented in Matlab to test its e�cacy in a simulated

environment populated with virtual robots. In systems of up to 30 robots navigating a

randomly generated 10x10 graph, each simulated robot performs on average only one to two

swaps before all robots reach their goal states. The algorithm was also found to have a time

complexity of O(R2), indicating that this algorithm is well suited for scaling to large systems

of robots.
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Chapter 1

Introduction

1.1 Background

Robotics holds the potential to solve many practical problems in everyday life that would

otherwise require intensive human e�ort, but in order to fully realize this goal, the robots

must be able to make decisions and move automatically without human intervention. Plan-

ning the motion of even a single robot can be quite complicated as movements become more

intricate, environments change over time, and measurement uncertainties become signi�cant

[1]. When multiple robots are involved in a system and must either avoid interfering with

one another or actively collaborate, the problem becomes harder still. The �eld of multi-

robot motion planning has many direct applications to real-world problems. If driverless

vehicles ever become common, for example, they will need to be able to interact and react

to a dynamically changing environment [2]. Unmanned aerial vehicles (UAVs) could likewise

bene�t by coordinating their actions to accomplish missions using less complicated and ex-

pensive systems than a vehicle performing the same task alone [3]. Farther in the future,

teams of rovers on other planets might need to work together to explore the surroundings,

collect data, or build structures as precursors to manned exploration [4].

In general, algorithms to plan the motion of groups of robots can be categorized as either

a centralized control architecture, in which a single computer controls all robotic agents, or

a decentralized architecture in which each robot calculates its own motions. Decentralized

control o�ers several advantages over a centralized algorithm[5]. First, it can be di�cult

for a central computer to control a robot when distance or obstacles limit communication.

Second, centralized controllers tend not to scale well as the number of robots increases

because a single computer must calculate the paths for a large number of robots.

One class of problem where decentralization o�ers signi�cant advantages is in the navi-

gation of con�ned spaces. Path planning in con�ned spaces such as tunnels or hallways is

1



1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

particularly challenging because the passageway can be so narrow that robots are unable to

pass one another. If two robots attempt to use the same narrow corridor, one may have to

move o� its planned path to let the other pass. This problem can arise for mining robots,

which must be able to navigate in small tunnels without colliding. Similarly, warehouse

management robots need to be able to navigate narrow aisles along prede�ned tracks [6].

In the �rst case, decentralization o�ers the advantage of avoiding a challenging and poten-

tially intermittent communication link to a central computer [7]. In the second case, large

numbers of warehouse robots could make centralized control computationally di�cult. A

decentralized algorithm for the navigation of con�ned spaces could therefore be extremely

bene�cial.

Several centralized algorithms for robot navigation in con�ned spaces already exist. Some

of these algorithms have the extremely desirable property of being complete - that is, they

guarantee that a solution will be found if it exists [8, 9, 10]. Centralized algorithms can

also be classi�ed as either optimal or non-optimal. Optimal algorithms, such as search

algorithms like A*, are capable of computing the shortest set of paths that solve the problem

(if a solution exists), but the computation is NP-complete [11]. Others, like the push-swap

algorithm proposed by Luna, are not guaranteed to �nd the shortest path, but are capable

of �nding a solution in much less time [10].

Unlike these centralized algorithms, decentralized architectures do not necessarily have

total information on all robots, so it is di�cult to guarantee that a solution is always found.

For this reason, all known decentralized algorithms to date are not complete and su�er from

the possibility of deadlocks [11]. This paper addresses this issue by proposing the Push-

Swap-Wait approach, a decentralized algorithm for navigating in con�ned spaces that is

guaranteed to be complete under certain conditions.

1.2 Problem Formulation

Consider a set of nodes N and a set of bi-directional connecting edges between them E

which form a graph G(N,E). Occupying G is a set of autonomous robotic agents R. At

each timestep t, there is an assignment A that maps each robot r ∈ R to its location in G,

such that A(r, t) ∈ N. All agents have knowledge of G(N,E) and each has a unique assigned

goal g(r) ∈ N such that g(ri) 6= g(rj) if i 6= j. Each node can contain only one robot at

a time, meaning that ∀ri, rj ∈ R, if i 6= j, then A(ri, t) 6= A(rj, t). Between timesteps,

robots may move from node no to node np provided that ∃ e ∈ E : e = (no, np). However,

two robots cannot traverse the same edge between the same timesteps, so ∀ri, rj ∈ R, if

A(ri, t+ 1) = A(rj, t), then A(rj, t+ 1) 6= A(ri, t). The change from one assignment A(R, t)

2



1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

(a) Two separate networks (b) One uni�ed network

Figure 1.2.1: Formation of networks among robots. Here, the radius of communication ρ
equals 2. As robot r4 moves in the tree, it enters the communication range of r2, thus
enabling communication between all �ve robots.

to another A(R, t+ 1) is determined by the individual position change made my each robot,

π(r, t). At each timestep t, every robot r computes which move π(r, t) to make, which may

take the robot along an edge e to a new node n (provided the conditions given above hold)

or keep the robot at its current node. The goal is to rearrange the robots from an initial

assignment A(R, 0) to a �nal assignment A(R, tfinal) where ∀r ∈ R,A(r, tfinal) = g(r).

In order to make informed decisions about where to go, robots are able to detect and

communicate with other robots within a certain radius ρ, measured in the number of edges

between agents. All robots ri within ρ nodes of r are considered to be in direction commu-

nication with r, such that r ∈ c(r). Robots will transmit information about themselves and

any other robots of which they are aware. In this way, two robots well outside of individ-

ual communication may still be aware of one another thanks to the formation of an ad-hoc

communication network among a larger group of robots (see Figure 1.2.1). The set C(r)

includes all robots in communication with r, whether direct or indirect.

For the algorithm presented here, robotic motion is restricted to a spanning tree T of G,

such that T = T (N, ε), where ε ⊆ E. With this tree framework, three special kinds of nodes

can be identi�ed: leafs, branch nodes, and twigs.

De�nition. Leaf Node: A leaf is de�ned as a node l such that ∃!n : (l, n) ∈ ε, or in other

words, a node connected to only one other node.

The set of nodes L contains the leaf nodes of T , such that L ⊆ N .

De�nition. Branch Node: Branch nodes are those nodes b for which the number of nodes

n satisfying (b, n) ∈ ε is greater than or equal to three, and they correspond to nodes which

are connected to three or more edges.

3



1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

Figure 1.2.2: Special types of nodes. This �gure shows leaf and branch nodes highlighted for
a typical tree structure. For one particular branch node, arrows are drawn pointing from it to
its twig nodes. Note that branch nodes, leaf nodes, and regular nodes can all be categorized
as twig nodes.

As with leaf nodes, branch nodes of T are contained in a set B : B ⊂ N .

De�nition. Twig Node: A node γ is considered to be a twig of branch node b if node γ is

adjacent to b such that ∃e ∈ ε : e = (b, γ) .

Each individual branch node b has an associated set Γ(b) which contains all twig nodes

γ of b. Figure 1.2.2 illustrates examples of where leaf, branch, and twig nodes appear

graphically.

The completeness guarantee of this algorithm is restricted to those cases where |R| ≤
|L| − 1 and ρ ≥ 2.

4



Chapter 2

Push-Swap-Wait Algorithm

2.1 Overview

The Push-Swap-Wait (PSW) algorithm presented here draws inspiration from the push-swap

algorithm presented by Luna and Bekris [10]. A third mode, waiting, is added to guarantee

completeness for the decentralized problem. This mode is used to ensure that a solution can

be found even in cases where communication is lost between swapping robots and pushed

robots. Like the push-swap algorithm, robots use two di�erent modes to reach their goal

positions. In swap mode, two robots decide to switch positions and move through the tree

T to �nd a branch node at which they can complete the swap. In pushed mode, all robots

move out of the path of a swapping pair to allow the swap to take place. The PSW algorithm

assigns a priority value to each robot, and then allows the robot with the highest priority

to perform any swaps necessary until it reaches its goal. At this point, the robot with the

next highest priority receives these same privileges and proceeds towards its goal in the same

manner. In this way, PSW successively solves one robot at a time until the overall problem

is solved.

2.2 Description

Before any motion planning or movement occurs at time t0, each robot must analyze the

graph G of their environment and calculate the spanning tree T . Each robot r will perform

this operation in the same manner, such that each robot has an identical copy of tree T

o� of which to base decisions. Once the tree T has been formed, every node n ∈ N will

be assigned a priority value Φ(n) based on a postorder traversal of the tree. This priority

ordering assures that no two nodes are given the same priority, such that ∀ni, nj ∈ N , if

5
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Figure 2.2.1: Tree formation and priority assignment. An arbitrary graph G can be trans-
formed into a tree T by choosing a root node and selecting edges according to a breadth-�rst
search. The nodes n of T can then each be assigned a priority Φ(n) by following a postorder
traversal of the tree, as shown in the �gure. Note that lower-numbered nodes are considered
to be higher-priority.

i 6= j, then Φ(ni) 6= Φ(nj). Figure 2.2.1 illustrates the formation of a tree and the assignment

of priority to nodes on that tree. By assigning priority in this way, each robot r ∈ R can

also be given a priority equal to the priority of its goal g(r), such that Φ(r) = Φ(g(r)). The

ordering of robots by priority is central to the guarantee of completeness (see Section 2.4)

De�nition. Priority: In reference to nodes, the priority Φ(n) of node n is the position

of node n in a postorder traversal of the tree T . In reference to robots, the priority Φ(r) of

robot r is equal to the priority Φ(g(r)) of its goal and places it in an order relative to all

other robots.

The algorithm dictates that robots behave in such a way that they become solved in

order of their priority.

De�nition. Ancestors: The set of ancestors of a node n ∈ N is the set of nodes P (n) ∈ N
such that P (n) = parent(n) + P (parent(n)) and is empty for n = root(T ).

De�nition. Solved: A robot r is solved at time t when the following conditions are met:

1. for some time t1 < t, A(r, t1) = g(r)

2. ∀rL ∈ R such that Φ(rL) < Φ(r) and ∀t′ : t1 ≤ t′ ≤ t it holds that A(r, t′) 6∈ P (A(rL, t
′))

3. and ∀rH ∈ R such that Φ(rH) > Φ(r), robot rH is also solved.

6



2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Status Description

normal Robot is heading towards goal
paused Robot is temporarily not moving
waiting Robot is awaiting the return of r∗

pushed Robot is being pushed by another robot
stuck Robot was pushed, but could not move

swap_set Robot is initializing a swap
swap_continue Robot is continuing a swap
swap_finish Robot is �nishing a swap
swapping Robot is swapping (whether set, continue, or �nish)

Table 2.1: List of possible robot statuses

At each time t, all robots r ∈ R decide which move π(r, t) to make by executing the

Plan(r, t) algorithm. By performing logical checks based on robot r's knowledge of itself and

of all other robots ri ∈ C(r), Plan(r, t) will determine A(r, t + 1) by setting π(r, t) as well

as set the status of robot r (see table 2.1).

As time progresses, robots will become solved in order of their priority, until some

time tfinal when all robots r ∈ R have been solved, and by the de�nition of being solved,

A(r, tfinal) = g(r) ∀r ∈ R, meaning that a solution to the problem has been found.

In describing the logic of the algorithm, two de�nitions related to movement on the tree

structure will prove useful: �up� the tree and �down� the tree.

De�nition. Up the Tree: A node n2 ∈ N is up the tree from node n1 ∈ N if there exists

n′ ∈ N on the path S1,2 ⊂ ε from n1 to n2 such that n′ ∈ P (n1)

De�nition. Down the Tree: A node n2 ∈ N is down the tree from node n1 ∈ N if there

exists n′ ∈ N on the path S1,2 ⊂ ε from n1 to n2 such that n ∈ P (n′)

2.2.1 Plan

At each time t, each robot r ∈ R calls the Plan() function to decide on its next move based

on its knowledge of other robots in the local communication network C(r). Algorithm 2.1

�rst checks if r or any robot ri ∈ C(r) is waiting for a swapping robot r∗ ∈ R : r∗ 6∈ C(r).

If r is the one waiting for r∗, status(r) gets set to waiting so that r does not move and all

other robots in C(r) will remain motionless. If another robot ri is the one waiting for r∗, r

remains motionless to allow r∗ to return, but does not set status(r) to waiting to avoid a

loop where other robots remain frozen even after r∗ returns because status(r) = waiting

and vice versa.

7
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Algorithm 2.1 Plan(r, t)

1 i f [∃ri ∈ [r, C(r)] : status(ri) = waiting ] and r∗ 6∈ C(r)
2 i f status(r) = waiting

3 status(r)← waiting

4 else

5 status(r)← paused

6 end

7 π(r, t)← A(r, t)
8 e l s e i f r ∈ [r∗, r∗]← CheckSwap(r, t)
9 i f ∃r∗
10 Swap(r, t)
11 else

12 π(r, t)← s(A(r, t), g(r))
13 status(r)← normal

14 end

15 e l s e i f r∗ ∈ C(r)
16 Pushed(r, t)
17 e l s e i f ∃ri ∈ C(r) : Φ(A(ri, t)) > Φ(A(r, t)) and π̂(r, t) ∈ path(ri)
18 status← paused

19 else

20 π(r, t)← s(A(r, t), g(r))
21 status← normal

22 end

Algorithm 2.1 next checks if robot r should be swapping. The algorithm calls the Check-

Swap() function (algorithm 2.2), which returns the two robots that should be swapping, or

just the highest priority unsolved robot if it does not need to swap, or null if there are

no valid swaps. If r is one of the two robots that should be swapping, the algorithm calls

the Swap() function (algorithm 2.3) to handle the details of the swap. If r is the only robot

returned by CheckSwap() (i.e. it is the highest priority unsolved robot and does not need to

swap), r sets its path to g(r) and status(r) to normal so that it pushes other robots out

of its way as it moves to its goal. If CheckSwap() does not return any robots, the algorithm

moves on.

Next (line 15) the Swap() function checks for a swapping robot r∗ ∈ C(r). r∗ can be

either of the swapping robots r∗ or r∗, or it can be the highest priority unsolved robot that

is moving towards its goal without needing to swap. If r sees a robot r∗, the algorithm calls

the Pushed() function (algorithm 2.8) which makes sure that r moves out of the way of r∗.

Finally, the algorithm handles the case where the robot is moving without swapping or

being pushed. Since the movement of the highest priority unsolved robot is handled earlier

8
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with the call to CheckSwap() and all other robots are stationary unless swapping or being

pushed, this section handles the movement when all robots in C(r) are solved. The algorithm

checks if there is a robot ri ∈ C(r) on a higher priority branch than r, and r pauses if π̂(r, t),

the planned next node for r, is on the path of ri.

De�nition. Planned next node: if π(r, t− 1)← s(A(r, t− 1), n), the planned next node

of r ∈ R at time t, π̂(r, t), is the next node after π(r, t− 1) on the path S(A(r, t− 1), n).

Since robots always choose the lowest priority branch available when getting pushed, this

ensures that a robot that got pushed down a higher priority branch moves back up �rst,

preserving the order of solved robots. If there are no robots meeting this criterion, r moves

towards its goal with status(r) set to normal.

2.2.2 CheckSwap

Algorithm 2.2 CheckSwap(r, t) returns [r∗, r∗]

1 r∗ ← ri ∈ [r, C(r)] : Φ(ri) ≥ Φ(rj)∀rj ∈ [r, C(r)]
2
3 i f status(r∗) = swapping

4 return [r∗, r∗]
5 e l s e i f r∗, rL ∈ [r, C(r)] should swap and r∗, rL are adjacent
6 i f ∃rs ∈ R : g(rs) ∈ P (A(r∗, t)) and rs i s so lved
7 return [null,null]
8 else

9 r∗ ← rL
10 status(r∗), status(r∗)← swap_set

11 return [r∗, r∗]
12 end

13 else

14 return [r∗,null]
15 end

The CheckSwap() algorithm determines which robots in a communication network should

be swapping, if any. The function �rst �nds the highest priority unsolved robot r∗ in the

set [r, C(r)]. If r∗ is already swapping with a robot r∗, the pair of robots [r∗, r∗] is returned

to allow the swap to �nish. Otherwise, the algorithm checks for a robot on a node adjacent

to r∗ that needs to swap with r∗. Since ρ ≥ 2, the adjacency condition ensures that the two

swapping robots will not loose communication with one another. The CheckSwap() algorithm

calls a function ShouldSwap() to determine if two robots need to swap. The four possible

conditions for two robots r∗ and r∗ needing to swap are:

9
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(a) (b)

(c) (d)

Figure 2.2.2: Four swapping conditions. Figures (a), (b), (c), and (d) each demonstrate
one of the four conditions which two robots must satisfy in order to need to swap with one
another. In (a), r∗ is on the path from r∗ to g(r∗) and r∗ is on the path from r∗ to g(r∗).
In (b), r∗ and g(r∗) are on the path from r∗ to g(r∗), and vice versa for (c). Figure (d)
demonstrates the case where r∗ is stuck and blocking the path from r∗ and g(r∗).

1. if r∗ is on the path from r∗ to g(r∗) and r∗ is on the path from r∗ to g(r∗)

2. if both r∗ and g(r∗) are on the path from r∗ to g(r∗)

3. if both r∗ and g(r∗) are on the path from r∗ to g(r∗)

4. if r∗ is heading to its goal without swapping and status(r∗) is stuck (see �gure 2.2.2).

The list of robots ri ∈ [r, C(r)] is sorted by decreasing priority, so if r∗ is not already swapping

it will choose to swap with the next highest priority robot satisfying the above conditions.

After identifying the swapping robots, the algorithm checks if the swapping robot is at

a child node of the goal of a solved robot rs ∈ R. Note that rs is in R rather than C(r),

meaning that each robot must maintain a list of all solved robots it has seen at any time. If

g(rs) ∈ P (A(r∗, t)), the new swap is suppressed to ensure that any robots that were pushed

down the tree past the goal of a solved robot will return to C(rs) before starting a swap (see

Figure 2.2.3). If g(rs) 6∈ P (A(r∗, t)) the algorithm returns the two swapping robots r∗, r∗.

10
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(a)

(b) (c)

Figure 2.2.3: Swap suppression at child of g(rs). In Figure (a), two robots, r∗ and r∗, initiate
a swap that will take them to the other side of the tree, where they will push two unsolved
robots, r4 and r5, and one solved robot rs. In Figure (b), rs is waiting for the return of the
swappers before returning to its goal gs, preventing it from becoming unsolved. Figure (c)
shows a hypothetical situation in which the swappers have moved up the tree from rs, but
unsolved robots remain below. Swap suppression ensures that all robots will move up the
tree together, so no robots will be stuck under rs.

Finally, if the highest priority unsolved robot r∗ does not need to swap with any other robots,

the function returns only r∗ so it can drive straight to its goal.

2.2.3 Swap

Based on the swapping robot's status, Swap() decides which phase of the swap it is in, and

calls the appropriate function (Algorithms 2.4, 2.5, 2.6, and 2.7).

StartSwap

StartSwap() is called to initialize a new swap or to pick a new branch point once a pair of

swapping robots realize that their original branch point is unavailable. The algorithm �rst

selects the branch node b ∈ B that is closest to the higher priority robot r∗ and has not

yet been visited by the swapping pair. b is then added to the list of visited nodes, and all

11
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Algorithm 2.3 Swap(r, t)

1 i f status(r) = swap_set

2 StartSwap(r, t)
3 e l s e i f status(r) = swap_continue

4 ContinueSwap(r, t)
5 e l s e i f status(r) = swap_finish

6 i f r = rleader
7 FinishSwapLeader(r, t)
8 else

9 FinishSwapFollower(r, t)
10 end

11 end

Algorithm 2.4 StartSwap(r, t)

1 b∗ ← bi ∈ B : bi 6∈ visited(r) and bi i s c l o s e s t branch node to r∗

2 visited(r)← b∗, n ∀n ∈ visited(r) : n 6∈ P (b∗)
3
4 i f A(r∗, t) = s(r∗, b∗)
5 rleader ← r∗

6 rfollow ← r∗

7 else

8 rleader ← r∗

9 rfollow ← r∗

10 end

11 γend ← γi ∈ Γ(b∗) : γi = s(b∗, A(rfollow, t))
12 [γ1, γ2]← [γi, γj] ∈ Γ(b∗) : γi, γj 6= γend
13
14 i f r = rleader
15 γr ← γ1
16 π(r, t)← s(A(r, t), γ1)
17 e l s e i f r = rfollower

18 γr ← γ2
19 π(r, t)← s(A(r, t), γ2)
20 end

21
22 status(r)← swap_continue

12
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Algorithm 2.5 ContinueSwap(r, t)

1 i f status(r′) = swap_set

2 StartSwap(r)
3 e l s e i f A(r, t) = γr
4 π(r, t)← A(r, t)
5 status(r)← swap_finish

6 e l s e i f ∃ri ∈ C(r) : A(ri, t) = γr and status(ri) = stuck or swap_finish

7 i f ∃γnew ∈ Γ(b) : γnew 6= γend, γr
8 π(r, t)← s(A(r, t), γnew)
9 status(r)← swap_continue

10 else

11 π(r, t)← A(r, t)
12 status(r)← swap_set

13 end

14 end

parents of b are removed so that the swapping robots will check these nodes again on their

way back up the tree. This behavior is necessary to guarantee that the swapping robots will

be able to �nd an available branch node even if they lose communication with robots they

pushed out of the way.

The algorithm next determines which robot is the leader in the swap, that is, which

of r∗, r∗ is closer to b. The twig that the robots must pass to reach b, γend, is set to be

the �rst node on the path from b to the farther robot rfollow so that it is de�ned even if

A(rleader, t) = b. The robot r then �nds two additional twigs γ1, γ2 6= γend and sets its path

to one of them (see �gure 2.2.4). Finally, status(r) is set to swap_continue so that on

the next iteration r will move to the twig it selected.

ContinueSwap

ContinueSwap() handles the movement of swapping robots after they choose a branch node

and until they reach their destination twig γr. If robot r sees that its swap partner r′ has

reset its status to swap_set, r′ must have realized that the branch node b is no longer

valid because not enough twigs are available. Therefore r′ will pick a di�erent branch node,

so r calls StartSwap() to also pick a di�erent branch node. StartSwap() must be called

immediately rather than on the next iteration so that r′ does not misinterpret a change in

status(r) to mean that another new branch node is needed. Otherwise, the algorithm checks

if r has reached its twig, in which case its path is set to its current location so it does not

move and status(r) is set to swap_finish so it calls FinishSwap() on the next iteration.
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The algorithm �nally checks if the current destination of r is still available. This is

done by checking for a robot ri ∈ C(r) with A(ri, t) = γr and whose status is stuck or

swap_finish. If there are any more twigs of b available (other than γr and γend), r sets its

path to this new twig γnew and calls ContinueSwap() again on the next iteration. Note that

this could cause γnew = γr′ , but this would only occur if r = rleader because StartSwap() sets

γleader = γ1. In this case rleader would reach γleader and set status(rleader) to swap_finish,

and on the next iteration rfollow would realize its twig was occupied and pick a new twig. In

this way the swapping robots iterate through all twigs of b, and only pick a new branch point

if there are not enough available twigs of b. When robot r realizes that there are insu�cient

twigs it sets status(r) to swap_set, and on the next iteration both swapping robots pick

a new branch node.

FinishSwap

The FinishSwap() function handles the details of a swap once the robots have reached an

available branch node. The algorithm ensures that robots leave their twigs in the proper

order to complete swapping. There are two di�erent functions depending on the order of

the robots as they arrive at the branch node: FinishSwapLeader() is called if robot r is the

�rst to reach the branch node, and FinishSwapFollower() is called if r is the second robot.

Figure 2.2.4 demonstrates the steps involved in completing a swap.

FinishSwapLeader If robot r = rleader, there are three possible states to consider: r could

be at its twig γr, or r could be at the end position γend, or r could be on the branch node

b (see �gure 2.2.4). In the �rst case, where A(r, t) = γr, the algorithm checks if r sees that

its swap partner robot r′ was unable to reach an available twig and needs to use a di�erent

branch node. If this is the case, r immediately calls StartSwap() to pick a new branch node.

Next the algorithm checks if the swap partner r′ has reached its twig γr′ , in which case r

sets its path to move to the end twig γend. Finally, if neither condition holds r assumes that

r′ is on b moving towards γr, so r does not move.

In the second case, where A(r, t) = γend, r has reached the end twig γend so it is waiting

for the swap partner r′ to reach the branch node b before the swap is complete. r therefore

checks if A(r′, t) = b, and if so sets its path to g(r) and status(r) to normal. Otherwise, r

assumes that r′ is still moving towards b and does not move.

Finally, if robot r is heading towards γend it simply continues moving.

FinishSwapFollower If r = rfollower there are two possible states: it can be at its twig

γr, or it can be at the branch node b. If A(r, t) = γr, r �rst checks if its swap partner r′

14
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(a) (b)

(c) (d)

Figure 2.2.4: Process of �nishing a swap. In Figure (a), the robots rleader and rfollow have
just arrived at b∗and γend and will soon begin �nishing their swap. In (b), rleader and rfollow
arrive at their respective twigs, and each will call the function FinishSwap() in order to
calculate their next position. Figure (c) shows rleader reaching γend. In Figure (d), rfollow
reaches b∗ and the swap is over. Notice that rfollow and rleader have swapped positions from
(a) to (d).
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Algorithm 2.6 FinishSwapLeader(r, t)

1 i f A(r, t) = γr
2 i f status(r′) = swap_set

3 StartSwap(r)
4 e l s e i f A(r′, t) = γr′
5 π(r, t)← s(A(r, t), γend)
6 status(r)← swap_finish

7 else

8 π(r, t)← A(r, t)
9 status(r)← swap_finish

10 end

11 e l s e i f A(r, t) = γend
12 i f A(r′, t) = b
13 π(r, t)← s(A(r, t), g(r))
14 status(r)← normal

15 else

16 π(r, t)← A(r, t)
17 status(r)← swap_finish

18 end

19 e l s e i f r heading to γend
20 π(r, t)← s(A(r, t), γend)
21 status(r)← swap_finish

22 end

Algorithm 2.7 FinishSwapFollower(r, t)

1 i f A(r, t) = γr
2 i f A(r′, t) = γend
3 π(r, t)← s(A(r, t), b)
4 status(r)← swap_finish

5 else

6 π(r, t)← A(r, t)
7 status(r)← swap_finish

8 end

9 e l s e i f A(r, t) = b
10 π(r, t)← s(A(r, t), g(r))
11 status(r)← normal

12 end
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Algorithm 2.8 Pushed(r, t)

1 i f ∃ri ∈ C(r) : A(r, t) ∈ path(ri) and status(ri) = pushed or swapping

2 i f ∃n ∈ δ(A(r, t), t)
3 π(r, t)← δL(A(r, t), t)
4 status(r)← pushed

5 return

6 else

7 π(r, t)← A(r, t)
8 status(r)← stuck

9 return

10 end

11 e l s e i f r∗ ∈ c(r)
12 i f π̂(r∗, t) = s(A(r∗, t), g(r∗))
13 π(r, t)← A(r, t)
14 status(r)← paused

15 return

16 else

17 π(r, t)← A(r, t)
18 status(r)← waiting

19 return

20 end

21 e l s e i f status(r) = waiting

22 π(r, t)← A(r, t)
23 status(r)← waiting

24 return

25 else

26 π(r, t)← A(r, t)
27 status(r)← paused

28 return

29 end

has reached γend. Otherwise r does not move. In the second case, if A(r, t) = b then robot

r′ must have already reached γend, so the swap is complete. r sets its path to its goal, and

status(r) is set to normal.

2.2.4 Pushed

The Pushed() algorithm governs the behavior of robot r in the case where r is neither swap-

ping nor the highest priority robot in [r, C(r)], and r is not waiting to regain communication

with r∗. First, robot r checks whether it is on the path of of any other robot ri that is being

a�ected by a swap (either one of the swappers, or a robot being pushed by the swappers).
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If so, r examines the set of nodes δ(A(r, t)) that are adjacent to its current position and

available for a pushed robot.

De�nition. Available for Pushed Robot: A node n is available for a pushed robot r if

it is not on the path between the pushed robots and the swapping robots (n 6= s(A(r, t), A(r∗, t)))

and it is not occupied by a stuck robot.

If there are adjacent nodes available and δ(A(r, t), t) is not an empty set. then π(r, t) is

set to the lowest priority node in this set, δL(A(r, t), t), and the status of r is set to pushed

since it is being pushed to this new node. If δ(A(r, t), t) is an empty set, then robot r has

nowhere to be pushed and sets its status to stuck while remaining on its current node.

When r is not on the path of a swapping robot or a pushed robot, the algorithm checks

whether r is in direct communication with the highest priority unsolved robot r∗, that is,

r∗ ∈ c(r). If so, and r∗ is heading towards its goal such that its predicted move π̂(r∗, t) is the

next node on the path between its current location and its goal (that is s(A(r∗, t), g(r∗)))

then r will remain on its current node and set its status to paused. If, however, r∗ is not

heading towards its goal, r will remain on its current node and set its status to waiting so

that, if at time t + 1 r∗ 6∈ C(r), r will wait for the return of r∗. This waiting ensures that

robot r remains in the correct order with respect to r∗, such that, if r and r∗ have swapped,

they will never need to swap again. If r∗ /∈ c(r), then robot r will set its status based on its

previous status, waiting if it was previously set to waiting, and paused otherwise. The

continuity of the waiting status allows r to continue preparing to wait when r∗ is still in

C(r) but not in c(r).

2.3 Key Features

After looking at each component in detail, some important characteristics of the Push-

Swap-Wait algorithm will be highlighted. First, in order to make this di�cult problem more

manageable, robot motion is restricted to a spanning tree T instead of allowing robots to

traverse any edge in the graph G. While this change eliminates potential shortcuts between

nodes, the nature of the tree structure can be exploited in order to guarantee the completeness

of the algorithm in spite of the decentralization of motion planning. Second, one robot r ∈ R
is permitted to reach its goal at a time. To that end, in any given network of communication,

there can only be one pair of swapping robots, while all other robots will only move in order

to accommodate the swappers. This restriction allows the algorithm to focus on sequentially

�nding solutions to smaller subsets of the full problem at the cost of overlooking potential

simultaneous solutions.
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The nature of the PSW algorithm allows for the guarantee that a solution to any given

instance of the problem can be found by solving sub-problems and ensuring that they remain

solved. The guarantee that a solved sub-problem is not disturbed by any subsequent swaps

is based on several key components of the algorithm. By assigning robot r a priority Φ(r)

based on a postorder traversal of the tree, and only allowing the highest priority unsolved

robot to reach its goal, the problem can be successively reduced into smaller subtrees where

solved robots are e�ectively removed from the overall problem (see Figure 2.3.1). In reality,

there are some situations in which a solved robot must be disturbed if there are insu�cient

leaf nodes in the reduced problem to guarantee a solution. It is therefore necessary to ensure

that any such solved robot that is pushed by a swap is able to return to its goal position

without becoming unsolved. To achieve this, the algorithm forces all pushed robots to move

to the lowest priority node possible, and after being pushed to give the right of way to robots

on higher priority nodes, ensuring that solved robots recover from a push operation.

The decentralization of decision making in this problem lead to some of the greatest

challenges in developing a complete algorithm, namely, handling situations in which robots

lose communication with one another and are therefore forced to plan their motion based

on incomplete information. For instance, in the case mentioned above where solved robots

are displaced from their goals, problems can arise if the swapping robots leave the network

of communication of the solved robots and become trapped when the solved robots return

to their goals. To address this and other issues, pushed robots - solved or unsolved - wait

for swappers to return if the swapping robots were last seen moving away from the goal

of the highest-priority swapper. Additionally, the algorithm prevents new swaps from being

initialized by robots that are at a descendant node of a solved robot's goal. These precautions

correct for the previous issue and ensure that unsolved robots cannot become trapped behind

a solved robot.

Loss of communication also presents potential problems for two robots attempting to

complete a swap. If the two swapping robots are not in communication with one another

when a critical event, such as discovering that a certain branch node cannot be used to swap,

takes place, it is possible that the two would make di�erent decisions about how to proceed

and the swap would be unsuccessful. The algorithm prevents this undesirable situation by

only allowing swaps to be initiated by two robots occupying adjacent nodes. Since the radius

of communication ρ is required to be at least two edge lengths, the swapping robots will be

able to maintain constant communication as they traverse the tree. Similarly, if the swapping

robots lose communication with robots that they have already pushed, it is possible that

the availability of branch nodes in the tree could change when the previously pushed robots

move (see Figure 2.4.3). To compensate for the dynamic nature of branch node availability,
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(a)

(b) (c)

Figure 2.3.1: Successive problem reduction. The problem begins with all robots needing to
reach their goals, and all nodes on the tree T being possible locations for any robot. (Figure
(a)). When robot r1 reaches its goal node g1 and becomes solved, it is known that no robots
occupy any lower priority nodes, and the problem space is reduced to a subset of robots and
a subset of the tree, T ′ (Figure (b)). When robot r2 reaches its goal, the remaining problem
space is even further reduced (Figure (c)). While solved robots may later be pushed down
the tree, whenever a new robot becomes solved at some time t, there can be no lower priority
robots on higher priority nodes at that time t.
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swapping robots will re-check all potential branch nodes as they make their way towards

the root. Through these corrective measures, robots compensate for the limitations on their

information inherent in a decentralized system and maintain the completeness guarantee of

the algorithm.

2.4 Proof of Completeness

The completeness guarantee of this algorithm is based on several lemmas. First, for any

given tree T and set of robots R such that |R| ≤ |L| − 1, there exists a branch node b such

that for any single pair of two robots ri, rj ∈ R, ri and rj can swap. Second, there exists

a sequence of moves Π over some time period t1 to t2 such that ∀ri, rj ∈ R, it is possible

that A(ri, t2) = A(rj, t1) and A(rj, t2) = A(ri, t1). That is, any pair of two robots can swap

positions in the tree T . Third, through a series of these swaps, the highest priority robot

yet to be solved, r∗, will reach his goal at some time t∗ such that A(r∗, t∗) = g(r∗) and it

becomes solved. Finally, once a robot r has been solved, no future swaps will cause it to

become unsolved. That is, it will never need to swap to return to its goal.

De�nition. Available Branch Node: For a branch node b to be available for two swap-

ping robots ri and rj at time t, it must satisfy the conditions that ∀rx ∈ R : rx 6= ri and

rx 6= rj, A(rx, t) 6= b and that there are at least three nodes n ∈ N such that edge (b, n) ∈ ε
and A(rx, t) 6= n.

2.4.1 Lemma One: Branch Availability

It will �rst be shown that there is a branch node available for two robots to swap. Considering

an instance of the problem where |R| = 2 (the minimum number of robots for a nontrivial

solution) and |L| = 3, each node l ∈ L has exactly one edge connecting it to the rest of the

tree. If two leafs l1 and l2 are part of the same tree T (N, ε), then they must be somehow

connected by a path de�ned by a set of nodes S1,2. Since all nodes but l1 and l2 on this path

must be connected to at least two other nodes by edges e ∈ ε, and l1 and l2 are connected to

exactly one node, the path from a third leaf node l3 to l1, S1,3, must overlap with S1,2 such

that they have at least one node b 6= l1 in common. This node b will therefore be connected

to a node ncom which is common to both S1,2 and S1,3, as well as to two additional nodes, one

in S1,2 and one in S1,3. Because it has at least three edges associated with it and there are

no non-swapping robots to occupy node b or its adjacent nodes, node b satis�es the criteria

for a branch nodes and is available for swapping. Figure 2.4.1 represents this relationship

graphically.
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Figure 2.4.1: Existence of a branch node. The paths from l2 and l3 to l1, S1,2 and S1,3 must
intersect at some branch node b such that b is connected to a node in common between S1,2

and S1,3, ncom, as well as two other nodes, each unique to one of the two sets.

In applying this to a tree T of arbitrary size containing a group of robots R such that the

condition |R| ≤ |L|−1 holds, in the case of global communication (ρ→∞), swappers will be

able to push all other robots to leaf nodes and the other robots will not move until the swap

is complete. The swappers themselves can then navigate to leaf nodes such that at some

time time t, ∀r ∈ R, A(r, t) ∈ L, and at least one leaf node will remain unoccupied. With

all robots on leaf nodes, there exists an available branch node based on the logic introduced

for the case where |R| = 2. To prove this, let li be the leaf node occupied by robot ri,

then ∀ri, rj ∈ R, let the leaf nodes mentioned above, l1 and l2, equal li and lj, respectively,

and allow l3 to be one of the unoccupied leafs. As discussed for the case when |L| = 3 and

|R| = 2, there must be a branch node b between these three leafs. Additionally, the paths

from this node b to l1, l2, and l3 can not contain any node n = A(r, t),∀r ∈ R, since no nodes
on these paths may be leaf nodes, including node b itself. This fact means that branch node

b satis�es the condition for availability since it is adjacent to at least three nodes n ∈ N such

that (b, n) ∈ ε and A(rx, t) 6= n for rx ∈ R : rx 6= ri and rx 6= rj. Therefore, there is always

a potential branch point that any robots ri and rj could use to swap.

2.4.2 Lemma Two: Ability of Robots to Swap

Next, it will be shown that even for cases where the radius of communication is limited

(ρ < ∞), a single pair of swapping robots will still be able to reach an available branch

point. Limited communication presents two possible cases for robots trying to swap. First,

it is possible that all robots, swappers and others, maintain communication throughout the

swap. Second, it is possible that the swappers lose communication with other robots before

the swap is completed. Since robots only decide to initiate swaps with robots on adjacent
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(a) (b)

Figure 2.4.2: Swappers encounter stuck robots. In Figure (a), the swapping robots r∗ and
r∗ select branch node b as their branch to complete a swap. After pushing robot r3 down
the tree, r3, r4, and r5 become stuck and the swapping robots know that branch node b is
unavailable for swapping.

nodes and swappers always choose to head towards the same branch node, the algorithm

dictates that swapping robots will never lose communication with one another.

Case 1: Persistent Communication Following the algorithm presented here, once

two robots r∗, r∗ ∈ R have identi�ed themselves as the highest priority swapping pair and

have selected a branch node b1, they will push any other robot r that they encounter to the

lowest priority nodes possible until r∗ and r∗ either reach twigs of b1 or realize that branch

node b1 cannot be made available.

Since pushed robots will be instructed to stay in place for the remainder of the swap

(enabled by persistent communication), the problem then reduces to the case where all

nodes occupied by stuck robots are removed from the tree. Considering only the remaining

set of nodes N ′ ⊂ N and the remaining robots R′ ⊂ R that occupy N ′ such that r∗, r∗ ∈ R′,
it must be the case that |R| − |R′| = |N | − |N ′| ≥ |L| − |L′| since each stuck robot removed

from R corresponds to a node removed from N , but not all nodes removed from N are

necessarily leaf nodes. Therefore, |L′| − |R′| ≥ |L| − |R|. From the original constraint that

|R| ≤ |L| − 1, |L| − |R| ≥ 1 and hence |L′| − |R′| ≥ |L| − |R| ≥ 1. The new tree T ′(N ′, ε′)

will therefore also still satisfy the condition that |R′| ≤ |L′| − 1. Knowing this, Lemma One

gives that there is a branch node b′ in T ′ which can be made available for r∗ and r∗ to use

for swapping.

The swapping robots will then begin looking for branch nodes in T ′, knowing that the

other portion of T is completely occupied by stuck robots. In the worst case, r∗ and r∗ will

continue pushing other robots and re�ning their search to smaller and smaller subtrees until

they are the only two robots which remain on some subtree T x, in which case there can be
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(a) Assignment at time t1

(b) Assignment at time t2 > t1 (c) Assignment at time t3 > t2

Figure 2.4.3: Dynamic availability of branch nodes. If robots r∗and r∗ decide to swap at time
t1 (Figure (a)), they would �rst select b1 as a branch node, discover that it is unavailable,
and continue exploring branch nodes down the tree until time t2 (Figure (b)). At this point,
if the swapping robots have lost communication with robots r5 through r8, it would be
possible for those robots to navigate to the other side of the tree and change the availability
of branch nodes in the tree (Figure (c)). In particular, notice that branch node b1 has been
made available for swapping after having been previously identi�ed as unavailable by the
swapping robots.

no other robots which will prevent them from using a branch node bx found in T x to swap.

Case 2: Loss of Communication In the case where the swapping robots r∗ and r∗

lose communication with robots that they have already pushed, there is no guarantee that

those robots will stay in place. That is, a robot r that became stuck on some node n1 at

time t1, such that n1 66∈ N ′, may at some future time t2 occupy some node n2 : n2 ∈ N ′. This
complication means that two swapping robots cannot simply iterate through all possible

branch nodes if they want to be guaranteed to be able to swap, as it may be possible that

di�erent branch nodes can be made available at di�erent times (see Figure 2.4.3 for more

detail).

To correct for the dynamic nature of the set of available branch nodes, whenever the

swapping pair r∗ and r∗ select a new target branch node b, they remove any parent branch
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nodes bi : bi ∈ P (b) from their list of previously visited branch nodes. This change takes

advantages of the tree structure of T to ensure that, as r∗ and r∗ make their way up T

from an unavailable branch node b, they check all branch nodes which may now be made

available since last they were examined, that is all nodes bi ∈ P (b). This behavior guarantees

that r∗ and r∗ will eventually be able to swap because they will either �nd that a previously

unavailable branch node can be made available, or they will �nd that it is still unavailable, in

which case there must be a branch node that can be made available elsewhere in T , following

the logic for the case of persistent communication.

2.4.3 Lemma Three: Goal Reachability

Given that any two robots can swap positions, it will now be shown that through a series

of swaps, the highest priority unsolved robot r∗ ∈ R will reach its goal at some time t∗ such

that A(r∗, t∗) = g(r∗) and become solved. This property follows from the fact that once r∗

has swapped with another robot r ∈ R, the algorithm prevents r from coming between r∗

and its goal g(r∗), as will be shown below. Taking advantage of the properties of the tree

structure, it can be shown that this fact holds regardless of which direction r∗ travels.

Suppose r∗ completes a swap with some robot r ∈ R at time t1. Since r and r
∗ have just

swapped, the two robots must be correctly positioned with respect to one another (that is,

if g(r∗) is down the tree from A(r∗, t1), then A(r, t1) is up the tree from A(r∗, t1), and vice

versa). As r∗ begins to move again, it will either head towards or away from its goal g(r∗).

If r∗ is heading away from its goal, and r and r∗ lose communication with one another, r

will wait in place until it regains communication with r∗, ensuring that the ordering of r and

r∗ is maintained. If r∗ moves towards its goal, no movement by r can place it on the path

between r∗and g(r∗), because to do so r would need to pass through r∗ (see Figure 2.4.4).

By the property that after swapping with r∗ robot r can never come between r∗ and g(r∗),

it follows that once r∗ has swapped with any robot r, there will never be a time t2 : t2 > t1

at which r∗ will again need to swap with r. In the worst case, r∗ can swap with every other

robot r ∈ R before having an unobstructed path to its goal. Therefore, when it �nishes

swapping and reaches its goal, r∗ will satisfy all the conditions to be solved.

2.4.4 Lemma Four: Solved Robots Never Swap

Next it will be proved that a solved robot r ∈ R will not swap with any other robots and

can only be pushed down the tree. Considering �rst the case of the highest priority robot

r1 ∈ R such that Φ(r1) > Φ(rL) ∀rL ∈ R : rL 6= r1, if r1 is solved all robots must be up

the tree from r1, so if r1 is pushed it can only be pushed down the tree. Since at some
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(a) Completion of Swap

(b) r∗ moves away from g(r∗) (c) r∗ moves towards g(r∗)

Figure 2.4.4: Permanence of swaps. Figure (a) shows a just completed swap between r and
r∗. In (b), r∗ moves away from its goal. In this case, r will stay in place until r∗ reaches its
goal or it loses communication with r∗. However, since r∗ is heading away from its goal, if
communication is lost, r will wait for r∗to return, preventing r from coming between r∗and
g(r∗). In (c), r∗ is moving towards its goal, which physically blocks r from coming between
r∗ and g(r∗).
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time t1 < t A(r1, t1) = g(r1), if r1 is pushed down the tree it will always be the case that

both rL and g(rL) are up the tree from r1. Also, g(rL) must be up the tree from g(r1) since

Φ(r1) > Φ(rL), so if r1 is solved it does not meet any of the conditions for a swap. Applying

the same logic to other solved robots r, any robots down the tree from r will be solved and

will not swap. All lower priority robots rL ∈ R : Φ(r) > Φ(rL) will be up the tree from r,

so if r is pushed it can only be pushed down the tree. Once again, this means that both rL

and g(rL) are up the tree from r, and since g(rL) is up the tree from g(r), a solved robot

will never swap.

2.4.5 Lemma Five: Solution Monotonicity

Finally, it will be shown that once a robot is solved it remains solved regardless of other

swaps. That is, if time t1 is the time that robot r ∈ R is �rst solved, there is no time

tf : t1 < tf at which robot r becomes unsolved.

Consider a set of solved robots r1, r2, ..., rn ∈ R such that Φ(r1) > Φ(r2) > ... > Φ(rn).

The de�nition of a solved robot dictates that the only way rn could be unsolved at some

time tf is if for some r ∈ r1...rn and some rL ∈ R : Φ(r) > Φ(rL) A(r, tf ) ∈ P (A(rLtf )).

By Lemma Four, at any time t : t1 ≤ t robot r can only get pushed down the tree or

move back up the tree to its goal. Since r will stop moving up the tree when it reaches

g(r), it could only become unsolved if at some time t, g(r) ∈ P (A(rL, t)). Also, since robots

choose the lowest priority branch available when getting pushed, a low priority branch must

�ll completely before pushed robots move on to a higher priority branch, and therefore r

could only become unsolved if at time t, Φ(A(r, t)) < Φ(A(rL, t)).

It will now be shown that even in situations where the conditions that g(r) ∈ P (A(rL, t))

and Φ(A(r, t)) < Φ(A(rL, t)) are met, the algorithm will prevent robot r from becoming

unsolved. There are two cases to consider: robot r maintains communication with all robots

rL satisfying Φ(A(r, t)) < Φ(A(rL, t)) and g(r) ∈ P (A(rL, t)), and r loses communication

with some robots rL.

Case 1: Persistent Communication In the �rst case, the algorithm dictates that

A(r, tf ) 6∈ P (A(rL, tf )) because robots give right of way to other robots on a higher priority

branch. Therefore r will wait until Φ(A(r, t)) > Φ(A(rL, t)) before moving back up the tree,

so r will not be unsolved if communication is maintained.

Case 2: Loss of Communication In the second case, where r loses communication

with some robots rL such that Φ(A(r, t)) < Φ(A(rL, t)) and g(r) ∈ P (A(rL, t)), it must be

the case that r also loses communication with both of the swapping robots r∗ ∈ R, and r∗
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also satis�es Φ(A(r, t)) < Φ(A(r∗, t)) and g(r) ∈ P (A(r∗, t)). This is due to the fact that

robots are only pushed one node at a time and ρ ≥ 2, so r will always have a communication

network at least one node beyond the branch node where rL took a di�erent path than r.

This means that r∗ must have pushed rL down past the branch node and is also out of

communication in the same direction.

Since ρ ≥ 2, at some point r will have communication with r∗and will see it heading down

the tree. It must be the case that r∗ is heading away from its goal because g(r) ∈ P (A(r∗, t))

and Φ(r) > Φ(r∗), so r will wait until r∗ returns to the communication network before

moving. Once r∗ begins moving back up the tree, no robots are allowed to initiate swaps

when g(r) ∈ P (A(rL, t)), and any robots rL that were pushed by r∗ will also move back up

the tree and follow r∗ back into the communication network. Once r regains communication

with rL, the argument presented above demonstrates that r will remain solved.

It is therefore not possible for any sequence of moves to cause A(r, tf ) ∈ P (A(rLtf )), so

there is no tf at which robot rn becomes unsolved.

2.4.6 Theorem: Completeness of Algorithm

By Lemma One, for any given tree T and set of robots R such that |R| ≤ |L| − 1, for any

two robots ri, rj ∈ R, there exists a branch node b such that ri and rj can swap. Second,

by Lemma Two any two robots will be able to reach an available branch point and swap

positions in the tree T . The four criteria for a swap to take place (see algorithm 2.2) reduce

to testing for a robot ri ∈ R between robot r ∈ R and g(r) that cannot move o� the path,

so the criteria will successfully pick the correct swaps to perform. Through a series of these

swaps, Lemma Three states that the highest priority robot yet to be solved, r∗, will reach its

goal at some time t∗ such that A(r∗, t∗) = g(r∗) and become solved. By Lemma Five, once a

robot r has been solved, no future swaps by other robots will cause it to become unsolved.

Therefore, by successively allowing the highest priority unsolved robot to swap and become

solved, every robot will eventually meet the de�nition of being solved. At that point, every

robot can drive unobstructed to its goal and the problem is solved.
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Implementation and Experiments

3.1 Implementation

The algorithm was implemented and tested in Matlab. The eight algorithms were written

as detailed above, with several important di�erences. First, robots moved at a given velocity

rather than jumping from node to node. This allowed for a smooth animation, but also

necessitated the implementation of code to handle cases where robots are between nodes.

The number of computations also increased signi�cantly since the Plan() function was called

each time a robot moved.

Another result of the asynchronous nature of robot motion is that it is possible for

swapping robots to lose communication with one another. For the purposes of the algorithm,

robots are approximated as being at the node closest to their actual position (referred to

as the box the robot is in). If the two swapping robots are each at the outer edge of their

respective boxes, the algorithm could consider them to be on adjacent nodes while they

actually are at a distance of ≈ 2. Since robots can take time to turn corners and are not

synchronized when they move, this could cause two swapping robots to lose communication

while moving towards a branch. This problem is handled by incorporating a series of tests

into Swap() to ensure that the swapping robots have communication during the crucial swap

maneuvers. For example, if a swapping robot realizes that it needs to pick a new branch point,

it �rst checks if it is in communication with its swap partner. If not, the swap is canceled

and the robot moves back towards its goal. Similarly, robots cancel a swap if they reach their

twig and do not see their partner. However, if swapping robots lose communication while

driving to their goals they do not cancel the swap. In this way, the loss of communication

is acceptable because robots will be closer to the branch point when they cancel the swap

than when it began, so eventually they will reach the branch point and �nish the swap.

Finally, the method implemented to handle communication between robots di�ers from
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the ideal communication network assumed by the algorithm. First, since robots are not

always exactly at nodes the communication radius is de�ned such that a robot ri ∈ c(r) is
within the radius of communication of r if the distance from the node closest to ri is less than

ρ away from the node closest to r. This can lead to r and ri being in communication up to a

distance of ρ+ 1 if they are on opposite sides of their nodes, but this is acceptable because it

still meets the minimum criteria for communication. More signi�cantly, the communication

network is not ideal because there is a lag as information propagates from one robot to

another. Each robot chooses the most up-to-date information on other robots when making

decisions, but if two robots are far apart and transferring information through several inter-

mediaries it could take several timesteps for information to reach the other robot. While it

is extremely unlikely, this could result in problems if a robot moves so that a communication

network is shortened at precisely the wrong moment, leading to an important signal being

lost. This risk is minimized by the fact that only adjacent robots can swap, so swapping

robots should always have direct communication and not have to worry about signal delay.

However, there remains a chance that the delay could cause other unanticipated problems.

3.2 Testing

The implementation was tested by running two hundred random simulations as well as several

planned cases designed to test speci�c aspects of the code. The algorithm successfully solved

one hundred problem instances with a random graph of 5x5 nodes and ten robots with

randomized positions and goals (see �gure 3.2.1). These simulations were meant to test the

implementation in a densely populated environment, since on average there were barely more

leaf nodes than the minimum requirement. The algorithm also successfully solved problems

in a sparsely populated map, this time solving one hundred random problem instances with

a 10x10 node graph and ten robots.

Several problem instances were speci�cally designed to test certain aspects of the imple-

mentation, and once again the algorithm successfully solved them all. These included a map

with only one branch node and many leafs designed to test the ability of robots to choose and

execute swaps, as well as one with a single long branch and a distant branch node designed

to test the ability of robots to push others out of the way (see �gure 3.2.2).

3.3 Results

The algorithm was tested by generating a set of ten randomized 10x10 node graphs, then

running ten simulations with random robot positions for each number of robots |R| =
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Figure 3.2.1: Randomly generated tree and robots. Map generated by computer code for
stress testing of algorithm.

(a) �Star� (b) �Broom�

Figure 3.2.2: Sample test cases. Purposefully created to test algorithm on corner cases.
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5, 10, 15, 20, 30. Data was collected on the distance each robot traveled, the number of

swaps it performed, the maximum amount of time taken for one call to Plan(), and the total

amount of time to solve the problem.

3.3.1 Path Length

Path length data was collected by tracking the di�erence between the total distance the

robot traveled and the distance it would have traveled if no other robots were present. This

data is presented in �gure 3.3.1. As expected, robots are pushed further o� their path as

the number of robots increases. This is because robots in sparse graphs can for the most

part drive directly to their goal, whereas densely populated graphs require multiple swaps

and push operations. Besides having a higher average distance traveled, densely populated

graphs like |R| = 30 have a larger variation in distance. This indicates that some robots

do not have to change their course very much to accommodate other robots they encounter,

whereas others get pushed to many di�erent nodes. This behavior is likely due to the fact

that the higher priority robots that get solved �rst do not have to move far from their goals,

whereas the low priority robots are pushed for a long period of time before �nally being

solved. In the worst case, a robot in a problem where |R| = 30 can be pushed to over 70

nodes. However, it is important to note that even in this worst case scenario the robot is not

traveling all over the map, but rather is being pushed back and forth between the same set

of nodes. By tracking the number of distinct nodes that each robot explores, it is revealed

that in this worst case for |R| = 30 where a robot has a path of over 70 nodes, the robot

only visits a total of 12 unique nodes. It may be the case that in some applications this

behavior of moving back and forth between several nodes is acceptable as long as the robot

is not driving across the entire tree. Alternatively, it is possible that some optimizations

could allow a robot to remain in place instead of moving back and forth.

3.3.2 Number of Swaps

Figure 3.3.2 shows the total number of swaps robots must complete before solving the prob-

lem. As the �gure shows, robots perform an average of two swaps even in densely populated

graphs. The maximum number of swaps seen - nine swaps when |R| = 20 - is still sig-

ni�cantly below the total number of robots in the problem. This is advantageous because

swaps take a long time to complete, especially if robots must travel a long distance to reach

a branch node. By Lemma Three of the proof, in the worst case each robot would have to

swap with every other robot in order to be solved. As the �gure shows, though, robots in

reality swap far less than this upper limit.
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Figure 3.3.1: Extra distance traveled. The extra distance is de�ned as (Total distance trav-
eled) - (Distance from start node to goal node), and is shown against an increasing number
of robots in a 10x10 grid. The horizontal red line indicates the median number of nodes, the
box encloses the 2nd and 3rd quartiles, and the dashed vertical line extends to the minimum
and maximum values not judged to be outliers.
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Figure 3.3.2: Number of swaps. Total number of swaps performed by each robot before a
solution is reached, shown against an increasing number of robots on a 10x10 grid.

3.3.3 Algorithm Complexity

Figure 3.3.3 is a log-log plot showing the runtime required to solve the entire problem, as well

as the maximum runtime for a single call to Plan(). The log-log plot shows that the runtime

for the whole problem grows by three orders of magnitude as the number of robots grows by

approximately one order of magnitude, meaning that the complexity of the whole problem is

roughly O(|R|3). However, this is partly due to the fact that one computer is simulating all

R robots, meaning that the actual complexity of the algorithm should be roughly O(|R|2).
Additionally, the number of moves required to solve the problem grows as |R| increases,
meaning that the planning algorithm is called many more times for large |R|. In many cases,

the computational complexity of the algorithm itself could therefore be less than |R|2 if the
number of calls to Plan() is accounted for. This can also be seen by examining the code in

Appendix B, since Plan() contains one nested for loop that breaks when a value is found.

Indeed, �gure 3.3.3 shows that the maximum runtime for a single call to Plan() grows by

one order of magnitude as the number of robots goes from |R| = 5 to |R| = 30, so in fact it

is true that the time complexity of the algorithm is between |R| and |R|2.
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Figure 3.3.3: Runtime. Average runtime to reach a solution for every robot in the grid, along
with the maximum runtime for one call to Plan()
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Chapter 4

Conclusion

4.1 Summary

The Push-Swap-Wait algorithm presented here represents a reliable and complete solution to

the problem of e�ectively coordinating the motion of many autonomous agents navigating a

graph structure G in real time without reliance on global communication. The decentralized

nature of the algorithm allows each robot r ∈ R to plan its next move without full knowledge

of the current state of the problem, but with a subset of information based on its current

network of communication C(r). Even with this limited information, it can be guaranteed

that, in those cases where G can be transformed into a tree T such that |R| ≤ |L|−1 and the

radius of communication ρ is greater than or equal to two edge lengths on this tree, a solution

can be found such that all robots will reach their goals at some time tfinal. This coordinated

behavior is achieved by taking advantage of a priori information available to each robot (the

structure of the graph G) and having them process and utilize the information in a consistent

manner. Additionally, robots are able to predict the future behavior of other robots based

on their reported positions, current status, directions of motion, and the locations of their

goals in the tree.

While the resulting behavior of PSWmay appear to be centrally organized, it is important

to remember that each robotic agent is independently making decisions at each time t, and it

is these individual decisions, computed continuously as the problem develops, that lead to the

�nal solution. This is in sharp contrast to previous work on the subject, which either relied

on centralized control to guarantee completeness, or implemented a decentralized algorithm

that was susceptible to deadlock[11]. The fact that PSW computes a solution in real time

rather than pre-computing a path can also be advantageous, as it can be more �exible and

robust against disturbances. In fact, the dynamic nature of the information available to each

robot in this formulation of the problem would make most pre-computed solutions useless,
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as they could not be guaranteed to take into account information on all of the robots on the

graph. The real time nature of the algorithm also ensures that the amount of computation

required at each time step is independent of the amount of time that passes before a solution

is found. The Push-Swap-Wait algorithm is therefore able to scale to larger problems without

incurring costs in time beyond those inherent in traveling further distances.

4.2 Suggestions for Future Work

While the Push-Swap-Wait algorithm is both complete and decentralized, there are several

constraints that limit its e�ectiveness. First, it is by no means optimal, and in some cases

robots can be forced to traverse over 70 extra nodes before reaching their goal. Second, there

are some problem instances that do not meet the constraint that |R| ≤ |L|− 1 and therefore

PSW is not guaranteed to �nd a solution even if one exists. Finally, robots are slow to reach

their goals because of the constraints that pushed robots do not move unless instructed to

by a swapping robot.

Future research o�ers the opportunity to address these and other limitations. The al-

gorithm could certainly get closer to the optimal solution by taking advantage of speci�c

situations as they arise in the course of solving the problem. The simplest case would be

making a more intelligent choice of twigs when swapping. This optimization would not in-

terfere with the completeness guarantee, and has the potential to speed up swaps by relaxing

the requirement that the swapping robots move back to γend and b to complete the swap.

Another possibility is the case where two swaps could occur simultaneously without interfer-

ing with one another. Additional thought would need to go towards deciding exactly which

conditions would allow for this behavior and how to detect when they are satis�ed. It may

also be possible to check for cases where non-swapping robots can continue moving towards

their goals if they do not interfere with an ongoing swap. More generally, it may be useful to

explore easing the restriction of robotic motion to a tree structure and investigate situations

in which it is not only possible but advantageous for a robot to traverse an edge e /∈ ε that is
not part of the tree. If done carefully, such changes could maintain the completeness of the

algorithm while reducing both the time taken and the distance traveled before each robot

reaches its goal.

Beyond optimizations to the algorithm, testing an implementation designed for physical

robots will be necessary to determine its �nal usefulness. While the theoretical treatment

supplied here provides guarantees on the completeness of the algorithm, those guarantees

are contingent upon a certain set of requirements that may be di�cult to satisfy in practical

applications.
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Appendix A

Data Storage and Transfer

A.1 Data Storage

Robots store many variables describing themselves, other robots, and their environment.

While some are redundant, they are stored to avoid recomputing values unnecessarily. The

stored values are listed in table A.1.

A.2 Data Transfer

The information passed between robots is summarized in table A.2. The robot's priority is

actually redundant given the botNum and swap, and the boxNum is redundant given X and

Y position, but both of these variables are used frequently enough that they merit being

transferred. The rest of the variables are speci�cally needed by the algorithm at some point.

Note that the path transmitted from robot to robot is di�erent from the path variable that

each robot stores about itself in that the path in knowledge begins at the robot's last node.
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Variable Explanation

botNum Robot's ID number (priority)
swap ID of this robot's swap partner

priority Maximum priority of this robot and swap partner
status State of this robot when swapping or pushed
leader Is this robot the leader in the swap?
visited List of unavailable branch nodes already visited
oldTwig γend

otherSwap Swapping robot to wait for
solved Is this robot solved?

solvedBots List of all solved robots seen so far
boxNum Node nearest this robot's current position
path Set of nodes this robot is planning to take
last Index of last node in path that this robot was on
xPos X coordinate of this robot's position
yPos Y coordinate of this robot's position
xGoal X coordinate of this robot's goal
yGoal Y coordinate of this robot's goal

goalNum Node number of this robot's goal
theta Orientation (counter-clockwise from right, in rad)
time Simulation time
map Data type storing environment (graph and tree)
color Used for drawing this robot in the animation

knowledge Information on all other robots in C(r)

Table A.1: Stored Data

Variable Explanation

botNum Robot's ID number
xPos X coordinate of robot's position
yPos Y coordinate of robot's position
xGoal X coordinate of robot's goal
yGoal Y coordinate of robot's goal
priority Maximum priority of robot and swap partner
path Set of nodes robot is planning to take

boxNum Node nearest robot's current position
swap Robot's swap partner
status State of robot when swapping or pushed
solved Is this robot solved?

TimeOfReceipt Simulation time this data was generated

Table A.2: Transferred Data
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Appendix B

MATLAB Code

B.1 animation.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Decentralized and Complete Multi-Robot Motion Planning %

3 % in Confined Spaces %

4 % Dexter Scobee and Adam Wiktor %

5 % Top-level animation code: %

6 % %

7 % Initializes each robot. Next, calls functions to pass %

8 % messages between robots, have them plan their paths and move, %

9 % and draw the map and their current location. Continues %

10 % looping until all robots have reached their goal. %

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13 clear all

14 close all

15 clc

16

17 dt = 0.1; % time step

18 radius = 2; % radius of communication

19

20 % initialize the map and robots

21 map = MapMaker(’maptest.txt’, radius);

22 bot = BotMaker(’MapTestBots.txt’,map);

23 numBots = length(bot);

24

25 done = 0;

26 while done == 0

27 clf

28 hold on

29 % map.draw();

30 map.drawTree();

31 done = 1;

32

33 % each robot communicates with neighbors

34 for i=1:numBots

35 bot(i).getInfo(checkNeighbors(i, bot));

36 end

37

38 % each robot moves

39 for i=1:numBots

40 botDone = bot(i).move(dt);

41 bot(i).draw();

42 if (bot(i).solved ~= 1) || (botDone ~= 1)

43 done = 0; % loop again if any robot is not done

44 end

45 end

46 axis equal

47
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48 hold off

49

50 pause(dt/10);

51 end % while

B.2 Robot.m
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Decentralized and Complete Multi-Robot Motion Planning %

3 % in Confined Spaces %

4 % Dexter Scobee and Adam Wiktor %

5 % Robot datatype: %

6 % %

7 % Datatype to represent one robot, along with methods for %

8 % moving the robot toward its goal and avoiding collisions. %

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 classdef Robot < handle

12

13 properties

14 % Swap parameters

15 botNum = 0; % robot’s ID number

16 swap = 0; % ID of the bot this bot is swapping with

17 % (0 if no swap)

18 priority = 0; % priority of swap pair OR depth of goal node

19 status = 0; % 1 if moving, -1 if can’t move, 0 if could move

20 leader = 0; % is this bot the leader in the swap

21 visited = 0; % branch nodes already visited

22 oldTwig = 0; % twig that bot came from in a swap

23 otherSwap = 0; % the pair of swappers that you’re waiting for

24 solved = 0; % has this bot (and all higher priority bots)

25 % been properly sorted

26 solvedBots =0; % list of solved robots seen

27

28 % Bot position and goal

29 boxNum = 0; % node nearest the robot’s current position

30 path = 0; % array of nodes for robot to travel along

31 last = 0; % index in path of the last node the robot was on

32 xPos = 0; % x position

33 yPos = 0; % y position

34 xGoal = 0; % x coordinate of goal node

35 yGoal = 0; % y coordinate of goal node

36 goalNum = 0; % node number of goal

37 theta = 0; % orientation (ccw from right)

38

39 % Other parameters

40 time = 0; % simulation time

41 map = 0; % map

42 color = ’b’;

43 knowledge = struct(’botNum’, 0, ’xPos’, 0,...

44 ’yPos’, 0,’xGoal’, 0, ’yGoal’, 0,...

45 ’priority’, 0, ’path’, 0, ’boxNum’, 0,...

46 ’swap’, 0, ’status’, 0, ’solved’, 0, ’ToR’, 0);

47 end

48

49 properties (Constant = true)

50 radius = 0.1; % robot’s radius when drawing

51 turn = 10; % turning speed (rad/s)

52 vel = 1; % velocity (units/s)

53 end

54

55 methods

56

57 %*********************************************************%

58 % Constructor. Takes a map, the robot’s ID number, %

59 % current x-y position, goal x-y position, and color as %

60 % arguments and returns a robot object. The color %

61 % argument is optional and defaults to blue. %

62 %*********************************************************%

63 function bot = Robot(map, botNum, x, y, xdest, ydest, color)

64 %initialize variables
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65 bot.botNum = botNum;

66 bot.xPos = x;

67 bot.yPos = y;

68 bot.xGoal = xdest;

69 bot.yGoal = ydest;

70 bot.map = map;

71 bot.time = 1;

72 bot.swap = 0;

73 bot.status = 0;

74 bot.solved = 0;

75

76 bot.goalNum = map.xy2node(xdest,ydest);

77 bot.priority = map.nodeDepth(bot.goalNum);

78

79 if nargin > 6

80 bot.color = color;

81 end

82 bot.boxNum = map.xy2node(x,y);

83 bot.path = map.makePath(bot.boxNum, bot.goalNum);

84 bot.last = 1;

85 % bot.initialize(map.xy2node(xdest,ydest));

86 bot.botNum = bot.priority;

87 end

88

89 %*********************************************************%

90 % signal: %

91 % Pass bot’s current state and knowledge to a neighboring %

92 % robot. %

93 %*********************************************************%

94 function signal = signal(bot)

95 % pass bot’s current state

96 signal(1) = struct(...

97 ’botNum’, bot.botNum,...

98 ’xPos’, bot.xPos,...

99 ’yPos’, bot.yPos,...

100 ’xGoal’, bot.xGoal,...

101 ’yGoal’, bot.yGoal,...

102 ’priority’, bot.priority,...

103 ’path’, bot.path(bot.last:length(bot.path)),...

104 ’boxNum’, bot.boxNum,...

105 ’swap’, bot.swap,...

106 ’status’, bot.status,...

107 ’solved’, bot.solved,...

108 ’ToR’, bot.time);

109

110 signal(2:length(bot.knowledge)+1) = bot.knowledge;

111 end

112

113 %*********************************************************%

114 % getInfo: %

115 % Receive data from neighboring robots and store it to %

116 % bot’s knowledge. %

117 %*********************************************************%

118 function getInfo(bot, data)

119 bot.knowledge = data;

120 end

121

122 %*********************************************************%

123 % draw: %

124 % Draw bot as a circle with a line indicating the %

125 % direction bot is facing. %

126 %*********************************************************%

127 function draw(bot)

128 % Draw the robot at its current position

129 alpha = 0:0.1:2*pi;

130 x = bot.xPos + bot.radius*cos(alpha);

131 y = bot.yPos + bot.radius*sin(alpha);

132 plot(x,y,’Color’,bot.color, ’LineWidth’,2);

133 x = [bot.xPos bot.xPos+2*bot.radius*cos(bot.theta)];

134 y = [bot.yPos bot.yPos+2*bot.radius*sin(bot.theta)];

135 plot(x,y,’Color’,bot.color,’LineWidth’,2);

136

137 % Draw the goal

138 plot(bot.xGoal,bot.yGoal,’x’,...
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139 ’Color’,bot.color,’MarkerSize’,15);

140 axis square

141 end

142

143

144 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

145 % These methods change the robot’s positon / orientation %

146 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

147

148

149 %*********************************************************%

150 % move: %

151 % Plans a path and moves bot along it. Takes the time %

152 % step as an argument and returns 1 if bot has reached %

153 % the goal or 0 otherwise. %

154 %*********************************************************%

155 function done = move(bot, dt)

156 % plan bot’s path

157 bot.time = bot.time + 1;

158 done = bot.plan();

159 done = bot.checkLockBox(done);

160

161 if done == 1 % reached goal

162 return;

163 end

164

165 if done == -1 % do not move

166 done = 0;

167 return;

168 end

169

170 if bot.last >= length(bot.path) - 1

171 return;

172 end

173

174 next = bot.path(bot.last+1);

175 [nextX nextY] = bot.map.node2xy(next);

176 dx = nextX - bot.xPos;

177 dy = nextY - bot.yPos;

178 if (dx == 0) && (dy == 0)

179 nextTheta = bot.theta;

180 else

181 nextTheta = atan2(dy,dx);

182 end

183

184 dTheta = nextTheta - bot.theta;

185 % check for shortest turning direction

186 if abs(dTheta - 2*pi) < abs(dTheta)

187 dTheta = dTheta - 2*pi;

188 else

189 if abs(dTheta + 2*pi) < abs(dTheta)

190 dTheta = dTheta + 2*pi;

191 end

192 end

193

194 % turn

195 if abs(dTheta) > 1e-14

196 if abs(dTheta) <= bot.turn*dt % close enough

197 bot.theta = nextTheta;

198 return;

199 end

200 bot.theta = bot.theta + bot.turn*dt*sign(dTheta);

201 return;

202 end

203

204 % move

205 if (abs(dx) <= abs(bot.vel*dt*cos(bot.theta))) && ...

206 (abs(dy) <= abs(bot.vel*dt*sin(bot.theta)))

207 % close enough

208 bot.xPos = nextX;

209 bot.yPos = nextY;

210 bot.last = bot.last + 1;

211 else

212 bot.xPos = bot.xPos + bot.vel*dt*cos(bot.theta);
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213 bot.yPos = bot.yPos + bot.vel*dt*sin(bot.theta);

214 end

215

216 % check if bot has entered a different boxNum

217 if next ~= bot.boxNum

218 nextDist = bot.map.xyDist(bot.xPos, bot.yPos,...

219 nextX, nextY);

220 [lastX lastY] = bot.map.node2xy(bot.path(bot.last));

221 lastDist = bot.map.xyDist(bot.xPos, bot.yPos,...

222 lastX, lastY);

223 if nextDist < lastDist

224 bot.boxNum = next;

225 end

226 end

227

228 end % function move

229 end % methods

230

231 methods (Access = private)

232

233 %*********************************************************%

234 % checkLockBox: %

235 % Check for lock box violations. If one is found, stop %

236 % moving. Otherwise continue as planned %

237 %*********************************************************%

238 function done = checkLockBox(bot,done)

239 % check for lock box violations

240 if bot.knowledge(1).botNum ~= 0 % know about other robots

241 for i = 1:length(bot.knowledge)

242 if bot.knowledge(i).boxNum == bot.path(bot.last+1)

243 % another robot is at bot’s next node

244 done = -1;

245 return;

246 end

247 end

248 end

249 end

250

251 %*********************************************************%

252 % plan: %

253 % Plan a path from bot’s current position to the goal, %

254 % avoiding collisions if necessary. Return 1 if bot has %

255 % reached the goal, -1 if bot should stop moving, and 0 %

256 % otherwise. %

257 %*********************************************************%

258 function done = plan(bot)

259 done = 0;

260

261 % get this bots solved state

262 bot.solved = bot.checkSolved();

263 waitForSwappers = 0;

264 getPushed = 0;

265

266 % get info on other bots in network

267 if bot.knowledge(1).botNum ~= 0

268 for i = 1:length(bot.knowledge)

269 % check if there was a high-priority swap to wait for

270 if bot.knowledge(i).priority == bot.otherSwap || ...

271 (bot.knowledge(i).swap ~= 0 && ...

272 bot.knowledge(i).priority < bot.otherSwap)

273 bot.otherSwap = 0;

274 end

275

276 % check if anyone else is waiting

277 % for swappers to return

278 if bot.knowledge(i).status == -2

279 waitForSwappers = 1;

280 end

281

282 % Only get pushed if you’re lower priority than

283 % the swappers OR if you’re already solved

284 if bot.knowledge(i).swap ~= 0 && ...

285 (bot.botNum > bot.knowledge(i).priority || ...

286 bot.solved == 1)
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287 getPushed = 1;

288 end

289

290 % Check for solved bots to add to solvedBots

291 goal = bot.map.xy2node(bot.knowledge(i).xGoal,...

292 bot.knowledge(i).yGoal);

293 if bot.knowledge(i).solved == 1

294 if bot.solvedBots == 0

295 bot.solvedBots = goal;

296 continue;

297 end

298 foundGoal = 0;

299 for j=1:length(bot.solvedBots)

300 if bot.solvedBots(j) == goal

301 foundGoal = 1;

302 break;

303 end

304

305 if bot.map.nodeDepth(bot.solvedBots(j)) > ...

306 bot.map.nodeDepth(goal)

307 solvedList = ...

308 zeros(1,length(bot.solvedBots)+1);

309 if j > 1

310 solvedList(1:j-1) = ...

311 bot.solvedBots(1:j-1);

312 end

313 solvedList(j) = goal;

314 solvedList(j+1:end) = ...

315 bot.solvedBots(j:end);

316 bot.solvedBots = solvedList;

317 foundGoal = 1;

318 break;

319 end

320 end

321 if ~foundGoal

322 bot.solvedBots(end+1) = goal;

323 end

324 elseif bot.solvedBots ~= 0

325 % remove any unsolved bots in solvedBots

326 unsolvedBot = 0;

327 for j=length(bot.solvedBots):-1:1

328 if bot.map.nodeDepth(goal) <= ...

329 bot.map.nodeDepth(bot.solvedBots(j))

330 unsolvedBot = j;

331 else

332 break;

333 end

334 end

335 if unsolvedBot > 1

336 bot.solvedBots = ...

337 bot.solvedBots(1:unsolvedBot-1);

338 elseif unsolvedBot == 1

339 bot.solvedBots = 0;

340 end

341 end

342 end

343 end

344

345 if bot.otherSwap ~= 0

346 done = bot.getStopped();

347 return;

348 end

349

350 if bot.status == -2

351 bot.status = 0;

352 end

353

354

355 if waitForSwappers

356 done = -1;

357 return;

358 end

359

360 % check if there is a higher priority bot to swap with
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361 [swapBot1 swapBot2] = bot.checkSwap();

362

363 if bot.botNum == swapBot1

364 if bot.swap ~= swapBot2

365 % suppress new swaps if below a solved bot

366 belowSolved = 0;

367 for i = 1:length(bot.solvedBots)

368 if bot.solvedBots == 0

369 break;

370 end

371 goal = bot.solvedBots(i);

372 goalPriority = bot.map.nodeDepth(goal);

373 if bot.botNum < goalPriority

374 break;

375 end

376

377 node = bot.boxNum;

378 nodePriority = bot.map.nodeDepth(node);

379 while nodePriority < goalPriority

380 if goal == bot.map.tree(node)

381 belowSolved = 1;

382 end

383 node = bot.map.tree(node);

384 nodePriority = bot.map.nodeDepth(node);

385 end

386 end

387

388 if ~belowSolved

389 bot.resetSwap();

390 bot.priority = min([swapBot1 swapBot2]);

391 bot.swap = swapBot2;

392 else

393 getPushed = 0;

394 bot.resetSwap();

395 end

396 end

397 elseif bot.botNum == swapBot2

398 if bot.swap ~= swapBot1

399 % suppress new swaps if below a solved bot

400 belowSolved = 0;

401 for i = 1:length(bot.solvedBots)

402 if bot.solvedBots == 0

403 break;

404 end

405 goal = bot.solvedBots(i);

406 goalPriority = bot.map.nodeDepth(goal);

407 if bot.botNum < goalPriority

408 break;

409 end

410

411 node = bot.boxNum;

412 nodePriority = bot.map.nodeDepth(node);

413 while nodePriority < goalPriority

414 if goal == bot.map.tree(node)

415 belowSolved = 1;

416 end

417 node = bot.map.tree(node);

418 nodePriority = bot.map.nodeDepth(node);

419 end

420 end

421

422 if ~belowSolved

423 bot.resetSwap();

424 bot.priority = min([swapBot1 swapBot2]);

425 bot.swap = swapBot1;

426 else

427 getPushed = 0;

428 bot.resetSwap();

429 end

430 end

431 elseif bot.swap ~= 0

432 bot.resetSwap();

433 end

434
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435 % if I need to swap

436 if bot.swap ~= 0 && bot.swap ~= bot.botNum

437 % enter swap mode

438 done = bot.getSwapped();

439 return;

440 end

441

442 % if I don’t need to swap

443

444 if bot.swap == bot.botNum

445 bot.status = 0;

446 done = 0;

447 return;

448 end

449

450

451 if getPushed

452 % enter get pushed mode

453 done = bot.getPushed();

454 return;

455 end

456

457

458 % in normal mode

459

460 % want to give right of way to bots on higher priority branch

461 % (this reverses the ’push’)

462 if bot.knowledge(1).botNum ~= 0

463 for i = 1:length(bot.knowledge)

464 if bot.boxNum > bot.knowledge(i).boxNum

465 for j = 1:length(bot.knowledge(i).path)

466 if bot.knowledge(i).path(1) ~= ...

467 bot.knowledge(i).boxNum

468 continue;

469 end

470 if bot.knowledge(i).path(j) == bot.boxNum

471 break;

472 end

473 if bot.knowledge(i).path(j) == ...

474 bot.path(bot.last+1)

475 done = -1;

476 return;

477 end

478 end

479 end

480 end

481 end

482

483 % at this point, bot is not involved in any swaps

484 [xDest yDest] = bot.map.node2xy(bot.path(end));

485 if (bot.xPos == xDest) && (bot.yPos == yDest)

486 % reached last node on current path

487 if (bot.xPos == bot.xGoal) && (bot.yPos == bot.yGoal)

488 done = 1; % reached goal

489 return;

490 end

491 % plan a new path to the goal

492 bot.initialize(bot.map.xy2node(bot.xGoal,bot.yGoal));

493 end

494 end % function plan

495

496 %*********************************************************%

497 % checkSolved: %

498 % Checks to see if a robot and subtree are solved %

499 %*********************************************************%

500

501 function solved = checkSolved(bot)

502 solved = bot.solved;

503 if (bot.xPos == bot.xGoal) && (bot.yPos == bot.yGoal)

504 solved = 1; % reached goal

505 end

506 if bot.knowledge(1).botNum ~= 0

507 for i=1:length(bot.knowledge)

508 if bot.knowledge(i).botNum < bot.botNum ...
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509 && bot.knowledge(i).solved == 0

510 solved = 0;

511 end

512 end

513 end

514 end

515

516 %*********************************************************%

517 % checkSwap: %

518 % Checks to see if a robot needs to swap %

519 %*********************************************************%

520

521 function [swapBot1 swapBot2] = checkSwap(bot)

522 if bot.knowledge(1).botNum == 0

523 swapBot1 = 0;

524 swapBot2 = 0;

525 return;

526 end

527

528 botList = bot.signal();

529 botRank = zeros(size(botList));

530 botNumList = zeros(size(botList));

531 for i=1:length(botList)

532 botNumList(i) = botList(i).botNum;

533 botRank(i) = botList(i).priority;

534 end

535

536 % first sort by botNum so this bot is in the right order

537 [~,I] = sort(botNumList);

538 botList = botList(I);

539 botRank = botRank(I);

540

541 % next sort by priority

542 [~,I] = sort(botRank);

543 botList = botList(I);

544

545 for i = 1:length(botList)

546 % if highest priority robot who needs to swap is already

547 % swapping with someone, let them continue

548 if (botList(i).swap ~= 0) && ...

549 (botList(i).swap ~= botList(i).botNum)

550 swapBot1 = botList(i).botNum;

551 swapBot2 = botList(i).swap;

552 return;

553 end

554

555 for j = i+1:length(botList)

556 % j must be adjacent to i for them to swap

557 if ~bot.checkAdjacent(botList(i),botList(j))

558 continue;

559 end

560

561 [split1, split2, onPath1G, onPath2G] = ...

562 bot.checkSplit(botList(i),botList(j));

563 if (split1 && split2) || (split1 && onPath2G) || ...

564 (split2 && onPath1G) || ...

565 (botList(i).swap == botList(i).botNum && ...

566 split1 && botList(j).status == -1)

567 % assumes knowledge is ordered

568 % with highest priority bots first

569 swapBot1 = botList(i).botNum;

570 swapBot2 = botList(j).botNum;

571 return;

572 end

573 end

574

575 if botList(i).solved ~= 1

576 swapBot1 = botList(i).botNum;

577 swapBot2 = botList(i).botNum;

578 return;

579 end

580 end

581

582 swapBot1 = 0;
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583 swapBot2 = 0;

584 end

585

586 %*********************************************************%

587 % checkSplit: %

588 % Checks to see if two robots split eachother from their %

589 % goals.

590 % splitX = 1 if bot(X) is separted from his goal %

591 % onPathXG = 1 if bot(X)’s goal is on the path between %

592 % bot(Y) and bot(Y)’s goal %

593 %*********************************************************%

594

595 function [split1, split2, onPath1G, onPath2G] = ...

596 checkSplit(bot, bot1, bot2)

597

598 bot1Goal = bot.map.xy2node(bot1.xGoal, bot1.yGoal);

599 bot2Goal = bot.map.xy2node(bot2.xGoal, bot2.yGoal);

600

601 pathBot = bot.map.makePath(bot1.boxNum, bot2.boxNum);

602 pathGoal1 = bot.map.makePath(bot1.boxNum, bot1Goal);

603 pathGoal2 = bot.map.makePath(bot1.boxNum, bot2Goal);

604

605 if (pathBot(2) ~= pathGoal2(2)) || (bot1.boxNum == bot2Goal)

606 split2 = 1;

607 else

608 split2 = 0;

609 end

610

611 if ~isempty(find(pathGoal1 == bot2Goal, 1))

612 onPath2G = 1;

613 else

614 onPath2G = 0;

615 end

616

617 pathBot = bot.map.makePath(bot2.boxNum, bot1.boxNum);

618 pathGoal1 = bot.map.makePath(bot2.boxNum, bot1Goal);

619 pathGoal2 = bot.map.makePath(bot2.boxNum, bot2Goal);

620

621 if (pathBot(2) ~= pathGoal1(2)) || (bot2.boxNum == bot1Goal)

622 split1 = 1;

623 else

624 split1 = 0;

625 end

626

627 if ~isempty(find(pathGoal2 == bot1Goal, 1))

628 onPath1G = 1;

629 else

630 onPath1G = 0;

631 end

632 end

633

634 %*********************************************************%

635 % checkAdjacent: %

636 % Check if two robots are on adjacent nodes %

637 %*********************************************************%

638

639 function isAdjacent = checkAdjacent(bot, bot1, bot2)

640 % check if bot2 is on bot1’s parent

641 if bot.map.tree(bot1.boxNum) == bot2.boxNum

642 isAdjacent = 1;

643 return;

644 end

645

646 %check if bot1 is on bot2’s parent

647 if bot.map.tree(bot2.boxNum) == bot1.boxNum

648 isAdjacent = 1;

649 return;

650 end

651

652 isAdjacent = 0;

653 end

654

655 %*********************************************************%

656 % getPushed: %
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657 % Robot moves out of the way of swapping bots %

658 %*********************************************************%

659 function done = getPushed(bot)

660

661 if bot.knowledge(1).botNum ~= 0

662 % find the swapping pair with highest priority

663 swapCheck = 0;

664 for i=1:length(bot.knowledge)

665 if bot.knowledge(i).swap ~= 0

666 if swapCheck == 0 % first swapping pair found

667 swapBots(1) = bot.knowledge(i);

668 swapCheck = 1;

669 elseif bot.knowledge(i).botNum == swapBots(1).swap

670 swapBots(2) = bot.knowledge(i);

671 end

672 end

673 end

674

675 % set otherSwap to keep track of highest priority swapBot

676 if swapCheck ~= 0

677 % if swapBots(1) is higher priority bot and bot is

678 % in direct communication with swapBots(1)

679 if swapBots(1).botNum == swapBots(1).priority &&...

680 swapBots(1).ToR == bot.time - 1

681 bot.otherSwap = 0;

682 if bot.botNum == 14

683 a=1;

684 end

685 % check if swapBots(1) is at a parent of his goal

686 node = bot.map.xy2node(swapBots(1).xGoal,...

687 swapBots(1).yGoal);

688

689 atParent = 0;

690 foundFirstNode = 0;

691 while node ~= bot.map.root

692 if (node == swapBots(1).path(1)) || ...

693 (node == swapBots(1).path(2)) &&...

694 ~foundFirstNode

695 foundFirstNode = 1;

696 end

697 if (node == swapBots(1).path(1)) || ...

698 (node == swapBots(1).path(2)) &&...

699 foundFirstNode

700 atParent = 1;

701 break;

702 end

703

704 node = bot.map.tree(node);

705 end

706

707 % if swapBots(1) is heading up the tree

708 if bot.map.tree(swapBots(1).path(1)) == ...

709 swapBots(1).path(2) && ...

710 swapBots(1).path(1) ~= bot.map.root

711 if atParent

712 bot.otherSwap = swapBots(1).botNum;

713 end

714

715 else % if swapBots(1) is not heading up the tree

716 if ~atParent

717 bot.otherSwap = swapBots(1).botNum;

718 end

719 end

720 end

721 end

722

723 % add pushed robots to swapBots array

724 for i=1:length(bot.knowledge)

725 if (bot.knowledge(i).status == 1) ...

726 && (bot.knowledge(i).swap == 0)

727 swapBots(end+1) = bot.knowledge(i);

728 swapCheck = 1;

729 end

730 end
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731

732 if swapCheck == 0

733 bot.status = 0;

734 done = 0;

735 return

736 end

737

738 freeNodes = zeros(bot.map.n,1);

739 % check if bot is on the path of the swapping robots

740 for i=1:length(swapBots)

741 if ~isempty(find(swapBots(i).path(2:end) ==...

742 bot.boxNum,1))

743 for j=1:length(swapBots(i).path)

744 if swapBots(i).path(1) ~= swapBots(i).boxNum

745 continue;

746 end

747 freeNodes(swapBots(i).path(j)) = 1;

748

749 if swapBots(i).path(j) == bot.boxNum

750 break;

751 end

752 end

753 end

754 end

755

756

757 % check if bot has reached destination

758 [xDest yDest] = bot.map.node2xy(bot.path(end));

759 if bot.xPos == xDest && bot.yPos == yDest

760 bot.status = 0;

761 end

762

763 if freeNodes(bot.boxNum) == 0 % bot is not in the way

764 bot.initialize(bot.boxNum);

765 if bot.status == 1

766 done = 0;

767 return;

768 else

769 bot.status = 0;

770 done = -1;

771 return;

772 end

773 end

774

775 % check for nodes that are free

776 for i=1:length(bot.knowledge)

777 if bot.knowledge(i).status == -1 || ...

778 bot.knowledge(i).status == 2

779 freeNodes(bot.knowledge(i).boxNum) = 1;

780 end

781 end

782

783 index = 1;

784 % add all children to neighbors

785 for i=1:bot.map.n

786 if (bot.map.tree(i) == bot.boxNum) && ...

787 (i ~= bot.map.root)

788 neighbors(index) = i;

789 index = index + 1;

790 end

791 end

792 % add parent to neighbors

793 if (bot.boxNum ~= bot.map.root)

794 neighbors(index) = bot.map.tree(bot.boxNum);

795 end

796

797 % sort neighbors based on node depth

798 [~,I] = sort(-bot.map.nodeDepth(neighbors));

799 neighbors = neighbors(I);

800

801

802

803 dest = 1;

804 if bot.status == 1
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805 if freeNodes(bot.path(bot.last+1)) == 0

806 % current path is still good, continue moving

807 done = 0;

808 return;

809 else % need to find new destination

810 currentDest = find(neighbors ==...

811 bot.path(bot.last+1),1);

812 if ~isempty(currentDest)

813 dest = currentDest + 1;

814 end

815 end

816 end

817

818 while dest <= length(neighbors)

819 if freeNodes(neighbors(dest)) == 0

820 bot.initialize(neighbors(dest));

821 bot.status = 1;

822 done = 0;

823 return;

824 end

825 dest = dest + 1;

826 end

827

828 % no free nodes available

829 bot.status = -1;

830 bot.initialize(bot.boxNum);

831 done = -1;

832 return;

833 end

834 end

835

836 %*********************************************************%

837 % getStopped: %

838 % Robot moves out of the way of swapping bots %

839 %*********************************************************%

840 function done = getStopped(bot)

841 bot.status = -2;

842 done = -1;

843 return;

844 end

845

846 %*********************************************************%

847 % getSwapped: %

848 % Robot swaps with another robot %

849 %*********************************************************%

850 function done = getSwapped(bot)

851 bot.solved = 0;

852 if bot.status == 0 % find a new branch point

853 done = bot.startSwap();

854 return;

855 end

856

857 if bot.status == 1

858 done = bot.continueSwap();

859 return;

860 end

861

862 if bot.status == 2

863 done = bot.endSwap();

864 return;

865 end

866 end

867

868 %*********************************************************%

869 % startSwap: %

870 % Initialize the swap, picking a branch point and planning%

871 % a path. %

872 %*********************************************************%

873 function done = startSwap(bot)

874 foundPartner = 0;

875 bot.leader = 0;

876 bot.oldTwig = 0;

877 count = bot.map.findBranches();

878
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879 for i=2:length(bot.visited)

880 if bot.visited(i) ~= 0

881 count(bot.visited(i)) = 0;

882 end

883 end

884

885 priorityBot = bot; % bot with higher ID number

886 otherBot = bot;

887

888 if bot.knowledge(1).botNum ~= 0

889 for i=1:length(bot.knowledge)

890 if bot.knowledge(i).botNum == bot.swap

891 foundPartner = 1;

892 otherBot = bot.knowledge(i);

893 end

894

895 % find lower ID bot

896 if (bot.swap == bot.knowledge(i).botNum) && ...

897 (bot.swap < bot.botNum)

898 priorityBot = bot.knowledge(i);

899 otherBot = bot;

900 end

901 end

902 end

903

904 %revert to normal mode if partner not found during

905 %branch reassignment

906 if ~foundPartner

907 bot.resetSwap();

908 done = 0;

909 return;

910 end

911

912 minLength = inf;

913 goBranch = 0;

914 noTwig = 0;

915

916 for i=1:length(count)

917 if count(i) >= 3 % node is a viable branch

918 route = bot.map.makePath(priorityBot.boxNum,i);

919 if length(route) < minLength

920 minLength = length(route);

921 goBranch = i;

922 if length(route) > 2

923 noTwig = route(end-2);

924 else

925 noTwig = 0;

926 end

927 end

928 end

929 end

930

931 %didn’t find available branch; reset visited and try again

932 if goBranch == 0

933 bot.visited = 0;

934 done = 0;

935 return;

936 end

937

938 %%%%if here, you are in contact with your partner, and

939 %%%% there are branch points available

940

941 bot.visited(end+1) = goBranch;

942

943 % remove the next "parent branch" from visited

944 branch = goBranch;

945 while branch ~= bot.map.root

946 found = find(bot.visited == bot.map.tree(branch),1);

947 if ~isempty(found)

948 bot.visited(found) = 0;

949 break;

950 end

951 branch = bot.map.tree(branch);

952 end
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953

954 %if priorityBot was on the chosen branch point, look at

955 %otherBot

956 route = bot.map.makePath(otherBot.boxNum, goBranch);

957 if noTwig == 0

958 if length(route) > 2

959 noTwig = route(end-2);

960 end

961 else

962 if length(route) > 2

963 %if robots are on opposite sides of a branch point

964 if route(end-2) ~= noTwig

965 noTwig(2) = route(end-2);

966 %lower priority bot waits on his twig

967 if bot.botNum == otherBot.botNum

968 bot.initialize(noTwig(2));

969 bot.leader = 1;

970 bot.status = 1;

971 bot.oldTwig = noTwig(1);

972 done = 0;

973 return;

974 end

975 end

976 end

977 end

978

979 % build list of twigs off of branch point

980 % add parent to list of twigs

981 if goBranch ~= bot.map.root && ...

982 isempty(find(noTwig == bot.map.tree(goBranch), 1))

983 twigList = bot.map.tree(goBranch);

984 else

985 twigList = [];

986 end

987 for j=1:bot.map.n

988 if bot.map.tree(j) == goBranch && ...

989 isempty(find(noTwig==j,1)) && ...

990 j ~= bot.map.root

991 twigList(end+1) = j;

992 end

993 end

994

995 if ~isempty(find(route(2:end)==priorityBot.boxNum,1))

996 %priorityBot is leader

997 if bot.botNum == priorityBot.botNum % bot is priorityBot

998 bot.initialize(twigList(1));

999 done = 0;

1000 bot.leader = 1;

1001 bot.status = 1;

1002 bot.oldTwig = noTwig(end);

1003 return;

1004 else % non-split case, pick second twig

1005 bot.initialize(twigList(2));

1006 done = 0;

1007 bot.leader = -1;

1008 bot.status = 1;

1009 bot.oldTwig = noTwig(1);

1010 return;

1011 end

1012

1013 else %otherBot is leader

1014 if bot.botNum == otherBot.botNum % bot is otherBot

1015 bot.initialize(twigList(1));

1016 done = 0;

1017 bot.leader = 1;

1018 bot.status = 1;

1019 bot.oldTwig = noTwig(1);

1020 return;

1021 elseif length(noTwig) > 1 % bot is priorityBot

1022 % split case, pick first twig

1023 bot.initialize(twigList(1));

1024 done = 0;

1025 bot.leader = -1;

1026 bot.status = 1;
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1027 bot.oldTwig = noTwig(1);

1028 return;

1029 else % non-split case, pick second twig

1030 bot.initialize(twigList(2));

1031 done = 0;

1032 bot.leader = -1;

1033 bot.status = 1;

1034 bot.oldTwig = noTwig(1);

1035 return;

1036 end

1037 end

1038 end

1039

1040 %*********************************************************%

1041 % continueSwap: %

1042 % Bot continues to move unless it has reached its %

1043 % destination or there are other bots blocking the path %

1044 %*********************************************************%

1045 function done = continueSwap(bot)

1046 done = 0;

1047 foundPartner = 0;

1048

1049 if bot.knowledge(1).botNum ~= 0

1050 for i=1:length(bot.knowledge)

1051 if bot.knowledge(i).botNum == bot.swap

1052 foundPartner = 1;

1053 swapPartner = bot.knowledge(i);

1054 break;

1055 end

1056 end

1057 end

1058

1059 % if regaining communication with partner, need to

1060 % reinitialize all swap parameters (oldTwig, visited, etc.)

1061 % becuase he may have already cleared them

1062 if foundPartner && swapPartner.swap ~= bot.botNum

1063 bot.visited = 0;

1064 bot.status = 0;

1065 % call immediately to avoid confusion

1066 done = bot.startSwap();

1067 return;

1068 end

1069

1070 % if partner is picking a new branch while he knows

1071 % he’s swapping with you

1072 if foundPartner && swapPartner.status == 0 ...

1073 && swapPartner.swap == bot.botNum

1074 bot.leader = 0;

1075 bot.status = 0;

1076 % call start swap right away so partner

1077 % doesn’t misinterpret status = 0

1078 done = bot.startSwap();

1079 return;

1080 end

1081

1082

1083 % check if bot has reached destination twig

1084 [xDest yDest] = bot.map.node2xy(bot.path(end));

1085 if bot.xPos == xDest && bot.yPos == yDest

1086 bot.status = 2;

1087 done = -1;

1088 return;

1089 end

1090

1091 % if not at destination, make sure that destination

1092 % is still available, else, choose a different twig.

1093 if bot.knowledge(1).botNum ~= 0

1094 for i = 1:length(bot.knowledge)

1095 if (bot.knowledge(i).status == -1 || ...

1096 bot.knowledge(i).status == 2) && ...

1097 bot.knowledge(i).boxNum == bot.path(end)

1098

1099 % build list of twigs off of branch point

1100 % add parent to list of twigs
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1101 goBranch = bot.path(end-2);

1102 if goBranch ~= bot.map.root

1103 twigList = bot.map.tree(goBranch);

1104 else

1105 twigList = [];

1106 end

1107 for j=1:bot.map.n

1108 if bot.map.tree(j) == goBranch && ...

1109 j ~= bot.map.root

1110 %isempty(find(noTwig==j,1)) && ...

1111 twigList(end+1) = j;

1112 end

1113 end

1114

1115 % current twig should only appear once

1116 % in twigList

1117 current = find(twigList == bot.path(end));

1118 if current < length(twigList)

1119 if twigList(current+1) ~= bot.oldTwig

1120 bot.initialize(twigList(current+1));

1121 return;

1122 elseif current+1 < length(twigList)

1123 bot.initialize(twigList(current+2));

1124 return;

1125 end

1126 end

1127 % either no more twigs to check, or remaining twig

1128 % is oldTwig

1129 % move on to next branch

1130

1131 if foundPartner

1132 bot.status = 0;

1133 bot.leader = 0;

1134 done = 0;

1135 return;

1136 end

1137

1138 bot.resetSwap();

1139 done = 0;

1140 return;

1141

1142 end

1143 end

1144 end

1145 end

1146

1147

1148 %*********************************************************%

1149 % endSwap: %

1150 % Send the bot back to the branch point %

1151 %*********************************************************%

1152 function done = endSwap(bot)

1153 foundPartner = 0;

1154

1155 if bot.knowledge(1).botNum ~= 0

1156 for i=1:length(bot.knowledge)

1157 if bot.knowledge(i).botNum == bot.swap

1158 foundPartner = 1;

1159 swapPartner = bot.knowledge(i);

1160 break;

1161 end

1162 end

1163 end

1164

1165 if bot.leader == 1 % bot is the leader

1166 if bot.oldTwig == bot.path(end) % heading to oldTwig

1167 % follower has reached twig

1168 [xDest yDest] = bot.map.node2xy(bot.path(end));

1169 if bot.xPos == xDest && bot.yPos == yDest

1170 % bot is at oldTwig

1171 if foundPartner

1172 [xBranch yBranch] = ...

1173 bot.map.node2xy(bot.visited(end));

1174 if swapPartner.xPos == xBranch...
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1175 && swapPartner.yPos == yBranch...

1176 && swapPartner.path(end) == ...

1177 bot.visited(end)

1178 % follower is at branch, end swap

1179 % swap is complete!

1180 % Huzzah, Huzzah for Charter Club!

1181 bot.resetSwap();

1182 done = 0;

1183 return;

1184 end

1185 % follower is not at branch, wait

1186 done = -1;

1187 return

1188 end

1189

1190 % no communication, return to normal mode

1191 bot.resetSwap();

1192 done = 0;

1193 return;

1194 else

1195 % heading to oldTwig

1196 % check if oldTwig is blocked

1197 if bot.knowledge(1).botNum ~= 0

1198 for i=1:length(bot.knowledge)

1199 if bot.knowledge(i).status == -1 && ...

1200 bot.knowledge(i).boxNum == ...

1201 bot.oldTwig

1202 bot.status = 0;

1203 bot.leader = 0;

1204 done = 0;

1205 return;

1206 end

1207 end

1208 end

1209

1210 % keep going to oldTwig

1211 done = 0;

1212 return;

1213 end

1214 end

1215

1216 % at twig, check if other bot is in position

1217 if foundPartner

1218 % check if other bot needs new branch

1219 if swapPartner.status == 0

1220 bot.status = 0;

1221 bot.leader = 0;

1222 % call start swap right away so partner

1223 % doesn’t misinterpret status = 0

1224 done = bot.startSwap();

1225 return;

1226 end

1227 % check if other bot is at his twig

1228 [xTwig yTwig] = bot.map.node2xy(swapPartner.path(end));

1229 if swapPartner.xPos == xTwig && ...

1230 swapPartner.yPos == yTwig

1231 bot.initialize(bot.oldTwig);

1232 done = 0;

1233 return;

1234 else

1235 done = -1;

1236 return;

1237 end

1238 end

1239

1240

1241 else % bot is the follower

1242 if bot.visited(end) == bot.path(end) % heading to branch

1243 [xDest yDest] = bot.map.node2xy(bot.path(end));

1244 if bot.xPos == xDest && bot.yPos == yDest

1245 % swap is complete

1246 bot.resetSwap();

1247 done = 0;

1248 return;
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1249 end

1250

1251 % heading to branch

1252 done = 0;

1253 return;

1254 end

1255

1256 if foundPartner

1257 [xTwig yTwig] = bot.map.node2xy(bot.oldTwig);

1258 if swapPartner.xPos == xTwig && ...

1259 swapPartner.yPos == yTwig

1260 % leader is at oldTwig

1261 bot.initialize(bot.visited(end));

1262 done = 0;

1263 return;

1264 else

1265 % check if other bot needs new branch

1266 if swapPartner.status == 0

1267 bot.status = 0;

1268 bot.leader = 0;

1269 % call start swap right away so partner

1270 % doesn’t misinterpret status = 0

1271 done = bot.startSwap();

1272 return;

1273 end

1274 end

1275 done = -1;

1276 return;

1277 end

1278 end

1279

1280

1281 % at this point, no communication with swap partner

1282 bot.resetSwap();

1283 done = 0;

1284 end

1285

1286 %*********************************************************%

1287 % resetSwap: %

1288 % Reset bot variables involved in swaps. %

1289 %*********************************************************%

1290 function resetSwap(bot)

1291 bot.swap = 0;

1292 bot.visited = 0;

1293 bot.status = 0;

1294 bot.leader = 0;

1295 bot.oldTwig = 0;

1296

1297 bot.initialize(bot.goalNum);

1298 bot.priority = bot.botNum;

1299 end

1300

1301 %*********************************************************%

1302 % initialize: %

1303 % Initializes bot’s path. %

1304 %*********************************************************%

1305 function initialize(bot, destNode)

1306 startNode1 = bot.path(bot.last);

1307 startNode2 = bot.path(bot.last+1);

1308

1309 path1 = bot.map.makePath(startNode1, destNode);

1310 path2 = bot.map.makePath(startNode2, destNode);

1311 if path1(2) == path2(1)

1312 bot.path = path1;

1313 else

1314 bot.path = path2;

1315 end

1316 bot.last = 1;

1317 end

1318 end % private methods

1319 end % classdef
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B.3 Map.m
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Decentralized and Complete Multi-Robot Motion Planning %

3 % in Confined Spaces %

4 % Dexter Scobee and Adam Wiktor %

5 % Map datatype: %

6 % %

7 % Datatype to store the map that robots travel on. Consists of %

8 % nodes and the edges that connect them. %

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 classdef Map < handle

12

13 properties

14 nX = 0; % number of nodes along X axis

15 nY = 0; % number of nodes along Y axis

16 n = 0; % total number of nodes

17 graph = 0; % matrix storing connections between nodes

18 tree = 0; % tree

19 root = 0; % root of the tree

20 nodeDepth = 0; % matrix containing the depth of each node

21 rho = 0;

22 comm = 0;

23 end

24

25 properties (Constant = true)

26 dx = 1; % X distance between nodes

27 dy = 1; % Y distance between nodes

28 end

29

30 methods

31

32 %*********************************************************%

33 % Constructor. Takes the number of x nodes and the number %

34 % of y nodes as arguments, and returns a map object %

35 %*********************************************************%

36 function map = Map(x, y)

37 map.nY = y;

38 map.nX = x;

39 map.n = map.nX*map.nY;

40 map.graph = zeros(map.n, map.n);

41

42 map.root = map.xy2node(ceil(map.nX/2), ceil(map.nY/2));

43 map.tree = map.bfs(map.root);

44 map.dfs(map.root, 1);

45 map.makeComm();

46 end

47

48 %*********************************************************%

49 % addEdge: %

50 % Adds an edge to the map. Takes the x and y coordinates %

51 % of each node to be connected. %

52 %*********************************************************%

53 function addEdge(map, x1, y1, x2, y2)

54 v = map.xy2node(x1,y1);

55 w = map.xy2node(x2,y2);

56 map.graph(v,w) = 1;

57 map.graph(w,v) = 1;

58 end

59

60 %*********************************************************%

61 % makePath: %

62 % Calculates the shortest path between the start node and %

63 % destination node using breadth-first search. Takes the %

64 % start node and destination node numbers as arguments %

65 % and returns an array of nodes representing the path. %

66 %*********************************************************%

67 function path = makePath(map, startNode, destNode)

68 % Build a tree using BFS with startNode as the root

69

70 s = startNode;

71 i = 1;

72 while (map.tree(s(i)) ~= s(i))

61



B.3. MAP.M APPENDIX B. MATLAB CODE

73 s(i+1) = map.tree(s(i));

74 i = i+1;

75 end

76

77 d = destNode;

78 i = 1;

79 while (map.tree(d(i)) ~= d(i))

80 d(i+1) = map.tree(d(i));

81 i = i+1;

82 end

83

84 for i=1:length(d)

85 pathD(i) = d(length(d)-i+1);

86 end

87

88 for i=1:length(s)

89 for j=1:length(pathD)

90 if s(i) == pathD(j)

91 break;

92 end

93 end

94 if s(i) == pathD(j)

95 break;

96 end

97 end

98

99 path = s(1:i);

100 path(i+1:i+(length(pathD)-j)) = pathD(j+1:end);

101

102

103 path(end+1) = path(end);

104 end

105

106 %*********************************************************%

107 % draw: %

108 % Draws the map %

109 %*********************************************************%

110 function draw(map)

111 hold on

112 for i=1:map.n

113 % draw the nodes

114 [x1 y1] = map.node2xy(i);

115 plot(map.dx*x1,map.dy*y1,’.k’,’MarkerSize’,10);

116

117 % draw the edges

118 for j=1:map.n

119 if (map.graph(i,j) == 1)

120 [x2 y2] = map.node2xy(j);

121 plot(map.dx*[x1 x2], map.dy*[y1 y2],’k’);

122 end

123 end

124 end

125

126 axis([0 map.dx*(map.nX+1) 0 map.dy*(map.nY+1)]);

127 axis square

128 end

129

130

131 %*********************************************************%

132 % drawTree: %

133 % Draws only edges that are part of the tree %

134 %*********************************************************%

135 function drawTree(map)

136 hold on

137 for i=1:map.n

138 % draw the nodes

139 [x1 y1] = map.node2xy(i);

140 plot(map.dx*x1,map.dy*y1,’.k’,’MarkerSize’,10);

141

142 % draw the edges

143 for j=1:map.n

144 if j == map.root

145 continue;

146 end
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147 [x1 y1] = map.node2xy(j);

148 [x2 y2] = map.node2xy(map.tree(j));

149 plot(map.dx*[x1 x2], map.dy*[y1 y2],’k’);

150 end

151 end

152

153 axis([0 map.dx*(map.nX+1) 0 map.dy*(map.nY+1)]);

154 % axis square

155 end

156

157

158 %*********************************************************%

159 % makeTree: %

160 % Build the tree using BFS %

161 %*********************************************************%

162 function makeTree(map)

163 map.tree = map.bfs(map.root);

164 end

165

166 %*********************************************************%

167 % findBranches: %

168 % Find branch nodes in the tree %

169 %*********************************************************%

170 function count = findBranches(map)

171 count = ones(map.n, 1);

172 for i=1:map.n

173 if i ~= map.root

174 count(map.tree(i)) = count(map.tree(i)) + 1;

175 end

176 end

177

178 count(map.root) = count(map.root) - 1;

179 end

180

181 %*********************************************************%

182 % xy2node: %

183 % Converts the x-y coordinates of a node to a node %

184 % number. %

185 %*********************************************************%

186 function node = xy2node(map,x,y)

187 node = (y-1)*map.nX + x;

188 end

189

190 %*********************************************************%

191 % node2xy: %

192 % Converts a node number to x-y coordinates. %

193 %*********************************************************%

194 function [x y] = node2xy(map,node)

195 y = floor((node-1)/map.nX)+1;

196 x = node - (y-1)*map.nX;

197 end

198

199 %*********************************************************%

200 % nodeDist: %

201 % Calculates the cartesian distance between two nodes %

202 % given the node numbers. %

203 %*********************************************************%

204 function distance = nodeDist(map, n1, n2)

205 [x1 y1] = map.node2xy(n1);

206 [x2 y2] = map.node2xy(n2);

207

208 xDist = x1 - x2;

209 yDist = y1 - y2;

210

211 distance = sqrt(xDist*xDist + yDist*yDist);

212 end

213

214

215

216 %*********************************************************%

217 % testMap: %

218 % Adds edges to a sample map. Requires a map at least 5x4 %

219 % nodes. %

220 %*********************************************************%
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221 function testMap(map)

222 map.addEdge(1,1,2,1);

223 map.addEdge(2,1,2,2);

224 map.addEdge(2,2,1,2);

225 map.addEdge(1,2,1,3);

226 map.addEdge(1,3,2,3);

227 map.addEdge(2,3,2,4);

228 map.addEdge(2,4,1,4);

229 map.addEdge(3,2,2,3);

230 map.addEdge(3,1,3,2);

231 map.addEdge(3,2,4,2);

232 map.addEdge(4,2,4,1);

233 map.addEdge(4,1,5,1);

234 map.addEdge(3,2,3,3);

235 map.addEdge(3,2,4,3);

236 map.addEdge(3,3,3,4);

237 map.addEdge(3,4,4,4);

238 map.addEdge(4,4,4,3);

239 map.addEdge(4,3,5,3);

240 map.addEdge(5,3,5,2);

241 map.addEdge(5,3,5,4);

242 end

243

244 %*********************************************************%

245 % makeComm: %

246 % Performs breadth-first search to complete the %

247 % communication matrix %

248 %*********************************************************%

249 function makeComm(map)

250 r = ceil(map.rho);

251 map.comm = zeros(map.n, map.n);

252 for i=1:map.n

253 map.bfsComm(i, r);

254 end

255 end

256

257 %*********************************************************%

258 % bfsComm: %

259 % Performs breadth-first search to build a tree from the %

260 % start node to every other node on the map. %

261 %*********************************************************%

262 function bfsComm(map, startNode, r)

263

264 q = zeros(1,map.n);

265 q(1) = startNode;

266 pos = 1;

267 len = 1;

268 dist = zeros(1,map.n);

269

270 while (len > 0 && dist(q(pos)) <= r)

271 v = q(pos);

272 map.comm(startNode, v) = 1;

273

274 pos = pos+1;

275 len = len - 1;

276 for i=1:map.n

277 if i ~= v && ((map.tree(i) == v) ...

278 || map.tree(v) == i) && dist(i) == 0

279 dist(i) = dist(v) + 1;

280 q(pos + len) = i;

281 len = len + 1;

282 end

283 end

284 end

285 end

286

287 %*********************************************************%

288 % bfs: %

289 % Performs breadth-first search to build a tree from the %

290 % start node to every other node on the map. %

291 %*********************************************************%

292 function tree = bfs(map, startNode)

293 tree = zeros(1,map.n);

294 tree(startNode) = startNode;
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295

296 q = zeros(1,map.n);

297 q(1) = startNode;

298 pos = 1;

299 len = 1;

300 while (len > 0)

301 v = q(pos);

302 pos = pos+1;

303 len = len-1;

304 for i=1:map.n

305 if (map.graph(v,i) == 1) && (tree(i) == 0)

306 q(pos + len) = i;

307 len = len + 1;

308 tree(i) = v;

309 end

310 end

311 end

312 end

313

314 %*********************************************************%

315 % dfs: %

316 % Performs depth-first search to determine the %

317 % priority ranking ("depth") of each node in the tree %

318 %*********************************************************%

319 function depth = dfs(map, parent, depth)

320

321 for i=1:map.n

322 if (map.tree(i) == parent) && (i ~= parent)

323 depth = map.dfs(i, depth);

324 end

325 end

326

327 map.nodeDepth(parent) = depth;

328 depth = depth+1;

329 end

330

331 end % public methods

332

333 methods (Static)

334 %*********************************************************%

335 % xyDist: %

336 % Calculates the cartesian distance between two points on %

337 % the map given cartesian coordinates. %

338 %*********************************************************%

339 function distance = xyDist(x1, y1, x2, y2)

340 xDist = x1 - x2;

341 yDist = y1 - y2;

342

343 distance = sqrt(xDist*xDist + yDist*yDist);

344 end

345 end % static methods

346

347 end % classdef

B.4 checkNeighbors.m
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Decentralized and Complete Multi-Robot Motion Planning %

3 % in Confined Spaces %

4 % Dexter Scobee and Adam Wiktor %

5 % checkNeighbors function: %

6 % %

7 % Checks if a given robot has neighbors close enough to %

8 % communicate with, and collects data from any close neighbors. %

9 % Takes the radius of communication, the botNum of the given %

10 % robot, and the array of all robots as input arguments. %

11 % Returns the array of data from neighboring robots, or a %

12 % structure with a botNum of 0 if there are no neighbors. %

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 function data = checkNeighbors(botIndex, bot)
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16 neighbor = 1;

17

18 for i=1:length(bot)

19 if i == botIndex

20 continue; % do not check if a robot is its own neighbor

21 end

22

23 % check if the robots are close enough to communicate

24 if bot(botIndex).map.comm(bot(botIndex).boxNum,bot(i).boxNum) == 1

25 signal = bot(i).signal(); % get data from robot i

26 tempData(neighbor:neighbor+length(signal)-1) = signal;

27 neighbor = neighbor + length(signal);

28 end

29

30 end % for

31

32 if neighbor == 1 % no neighbors found, return an empty struct

33 data = struct(’botNum’, 0, ’xPos’, 0,...

34 ’yPos’, 0,’xGoal’, 0, ’yGoal’, 0,...

35 ’priority’, 0, ’path’, 0, ’boxNum’, 0,...

36 ’swap’, 0, ’status’, 0, ’solved’, 0, ’ToR’, 0);

37

38 else % neighbors were found

39 % check for duplicate information in tempData

40

41 botNumList = zeros(1,length(tempData));

42 torList = zeros(1,length(tempData));

43 for i=1:length(tempData)

44 botNumList(i) = tempData(i).botNum;

45 torList(i) = tempData(i).ToR;

46 end

47

48 [Y I] = sort(-torList);

49 botNumList = botNumList(I);

50 tempData = tempData(I);

51

52 [Y I] = sort(botNumList);

53 tempData = tempData(I);

54 checkBot = zeros(1,bot(botIndex).map.n);

55

56 if bot(botIndex).knowledge(1).botNum ~= 0

57 for i=1:length(bot(botIndex).knowledge)

58 checkBot(bot(botIndex).knowledge(i).botNum) =...

59 bot(botIndex).knowledge(i).ToR;

60 end

61 end

62

63 index = 2;

64 num = 1;

65 while tempData(num).botNum == 0 ||...

66 tempData(num).botNum == bot(botIndex).botNum ||...

67 (tempData(num).ToR <= checkBot(tempData(num).botNum) ...

68 && (checkBot(tempData(num).botNum) ~= ...

69 bot(botIndex).time - 1))

70 num = num + 1;

71 end

72 data(1) = tempData(num);

73

74 for i = num+1:length(tempData)

75 if tempData(i).botNum ~= tempData(i-1).botNum && ...

76 tempData(i).botNum ~= bot(botIndex).botNum && ...

77 tempData(i).botNum ~= 0 &&...

78 (tempData(i).ToR > checkBot(tempData(i).botNum) ...

79 || (checkBot(tempData(i).botNum) == ...

80 bot(botIndex).time - 1))

81 data(index) = tempData(i);

82 index = index + 1;

83 end

84 end

85

86 end % if

87 end % function checkNeighbors
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