DECENTRALIZED AND COMPLETE MULTI-ROBOT
MOTION PLANNING IN CONFINED SPACES

DEXTER R. R. SCOBEE '12 AND ADAM T. WIKTOR ’12
ADVISOR: CHRISTOPHER M. CLARK

SUBMITTED TO THE
DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING
PRINCETON UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
OF UNDERGRADUATE INDEPENDENT WORK

FINAL REPORT

MAY 3, 2012

READER: NAOMI LEONARD
MAE 440

78 PAGES

COLOR IMAGES

ADVISOR CoPY

To the Indestructible

Acknowledgements

First and foremost, we would like to thank our advisor, Christopher Clark, for helping us
throughout the process and up until the very last minute. He managed to achieve the difficult
balance of steering us towards a challenging, interesting problem that was actually solvable
in the time frame available to us. We are extremely grateful for his support. We would also
like to thank the Mechanical and Aerospace Engineering department for all we have learned,
and special thanks to Jo Ann Love, without whom not a single MAE would graduate.

Adam would like to thank his parents, Stefan and Terry, for supporting him throughout
his undergraduate years. They have provided him with an incredible amount of love and
support, and have never failed to be there whether he needed someone to talk to or just
wanted to put off working. He also appreciates his friends at Princeton for offering him
a much-needed distraction from academics. Finally, he’d like to thank Dexter for making
the senior thesis process infinitely more enjoyable. The late-night thesis sessions spent in
Charter will always remain one of his defining memories of Princeton.

Dexter would like to thank his parents, Richard and Teresa, whose love and support
throughout his entire lifetime have made it possible for him to realize his dreams. He thanks
his sister, Cristi, whose unrelenting enthusiasm and infectious disposition never cease to
bring a smile to his face, even on the cloudiest days. He would be remiss if he did not thank
his girlfriend, Ilina, who, in her limitless patience, has been a source of peace and tranquility
throughout his entire Princeton career. If it were possible, he would enumerate all of the
friends and family who have helped him along the way. Thank you, all.

Finally, Dexter would like to thank Adam for accompanying him in this endeavor. His
partnership has made the many long hours spent on this project more than enjoyable, and

there is no one with whom he would rather swap bots.

i

Abstract

This paper presents the Push-Swap-Wait algorithm, a decentralized and complete approach
for multi-robot motion planning in confined spaces. The algorithm builds upon a "push and
swap" paradigm that has been used effectively in centralized navigation. This push and
swap approach was expanded to apply to decentralized planning by adding a waiting mode
to handle situations in which communication between robots is lost.

A proof is presented that guarantees the completeness of the Push-Swap-Wait algorithm
in cases where the environment can be modeled as a tree T' for which the number of leaf
nodes is greater than the number of robots navigating through it. The algorithm also relies
on the formation of ad-hoc communication networks among robots, such that robots can
share information with a subset of other robots in the tree.

Finally, the algorithm is implemented in MATLAB to test its efficacy in a simulated
environment populated with virtual robots. In systems of up to 30 robots navigating a
randomly generated 10x10 graph, each simulated robot performs on average only one to two
swaps before all robots reach their goal states. The algorithm was also found to have a time
complexity of O(R?), indicating that this algorithm is well suited for scaling to large systems

of robots.

il

Contents

Acknowledgements

Abstract

List of Figures

List of Tables

List of Algorithms

Nomenclature

1 Introduction
1.1 Background

1.2 Problem Formulation

2 Push-Swap-Wait Algorithm

21 OVerview e
2.2 Description Lo
221 Plan e
2.2.2 CheckSwap e
2.2.3 SWaAD . . . o e e
2.24 Pushed
2.3 Key Features
2.4 Proof of Completeness
2.4.1 Lemma One: Branch Availability
2.4.2 Lemma Two: Ability of Robots to Swap
2.4.3 Lemma Three: Goal Reachability
2.4.4 Lemma Four: Solved Robots Never Swap
2.4.5 Lemma Five: Solution Monotonicity

iv

ii

iii

vi

vii

viii

ix

(]

© = ot o G

CONTENTS CONTENTS

2.4.6 Theorem: Completeness of Algorithm 28

3 Implementation and Experiments 29
3.1 Implementation 29
3.2 Testing 30
3.3 Results. e 30
3.3.1 Path Length oo 32

3.3.2 Numberof Swaps 32

3.3.3 Algorithm Complexity 34

4 Conclusion 36
4.1 Summary e 36
4.2 Suggestions for Future Work o000 37
References 37
A Data Storage and Transfer 40
A.1 Data Storage 40
A.2 Data Transfer 40

B MATLAB Code 42
B.1 animation.m Lo 42
B.2 Robot.m e 43
B.3 Map.m 61
B.4 checkNeighborsm 65

List of Figures

1.2.1 Formation of networks among robots 3
1.2.2 Special types of nodes

2.2.1 Tree formation and priority assignment 6
2.2.2 Four swapping condilionso o 10
2.2.3 Swap suppression at child of g(rs)o 11
2.2.4 Process of finishing a swap oL 15
2.3.1 Successive problem reduction Lo 20
2.4.1 Existence of a branch node oo 22
2.4.2 Swappers encounter stuck robotso oo 23
2.4.3 Dynamic availability of branch nodes 24
2.4.4 Permanence of swapso 26
3.2.1 Randomly generated tree and robots 31
3.2.2 Sample test cases e e 31
3.3.1 Extra distance traveled: 33
3.3.2 Number of swaps: e 34
3.3.3 Runtime: e 35

vi

List of Tables

2.1 List of possible robot statuses

A1 Stored Data e e
A2 Transferred Data

Vil

List of Algorithms

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Plan(r,t) o

CheckSwap(r,t) . .« . o

Swap(ryt) . .. 12
StartSwap(r,t) 12
ContinueSwap(r,t) . . .« « . o 13
FinishSwapLeader(r,t) 16
FinishSwapFollower(r,t) 16
Pushed(r,t) o 17

viii

Nomenclature

d(n,t)

oL

Set of nodes adjacent to node n at time ¢ that are available for a pushed robot

Lowest priority node adjacent to node n at time ¢ that is available for a pushed

robot
Twig node
Set of all twig nodes of branch node b

First node on the path from branch node b to the swapping robots at the time

the swap is initialized

Planned next node of r at time ¢

Higher priority robot of the two swapping robots ¥ and r*
Priority of robot r or node n

Sequence of moves

Change in position of robot r at time ¢

Radius of communication

Lower priority robot of the two swapping robots 7" and r*
Set of all edges in the tree

Assignment (position of robot r at time ¢)

Set of all branch nodes

Branch node

Set of all robots in the communication network of r

X

Nomenclature Nomenclature

c(r) Set of all robots in direct communication with r

E Set of all edges in the graph

e Individual edge

G Graph

g(r) Goal node of robot r

L Set of all leaf nodes

l Leaf node

N Set of all nodes

n Individual node

P(n) Set of all ancestors of node n

R Set of all robots

r Individual robot

r* Highest priority unsolved robot

T follow Swapping robot that begins farther from the target branch node b
Tleader Swapping robot that begins closer to the target branch node b

s(ng,np) First node on the path from n, to n,

Sab Path (set of nodes) leading from a to b
T Spanning tree
t Time

Chapter 1

Introduction

1.1 Background

Robotics holds the potential to solve many practical problems in everyday life that would
otherwise require intensive human effort, but in order to fully realize this goal, the robots
must be able to make decisions and move automatically without human intervention. Plan-
ning the motion of even a single robot can be quite complicated as movements become more
intricate, environments change over time, and measurement uncertainties become significant
[1]. When multiple robots are involved in a system and must either avoid interfering with
one another or actively collaborate, the problem becomes harder still. The field of multi-
robot motion planning has many direct applications to real-world problems. If driverless
vehicles ever become common, for example, they will need to be able to interact and react
to a dynamically changing environment [2|. Unmanned aerial vehicles (UAVs) could likewise
benefit by coordinating their actions to accomplish missions using less complicated and ex-
pensive systems than a vehicle performing the same task alone [3]. Farther in the future,
teams of rovers on other planets might need to work together to explore the surroundings,
collect data, or build structures as precursors to manned exploration [4].

In general, algorithms to plan the motion of groups of robots can be categorized as either
a centralized control architecture, in which a single computer controls all robotic agents, or
a decentralized architecture in which each robot calculates its own motions. Decentralized
control offers several advantages over a centralized algorithm|5]. First, it can be difficult
for a central computer to control a robot when distance or obstacles limit communication.
Second, centralized controllers tend not to scale well as the number of robots increases
because a single computer must calculate the paths for a large number of robots.

One class of problem where decentralization offers significant advantages is in the navi-

gation of confined spaces. Path planning in confined spaces such as tunnels or hallways is

1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

particularly challenging because the passageway can be so narrow that robots are unable to
pass one another. If two robots attempt to use the same narrow corridor, one may have to
move off its planned path to let the other pass. This problem can arise for mining robots,
which must be able to navigate in small tunnels without colliding. Similarly, warehouse
management robots need to be able to navigate narrow aisles along predefined tracks [6].
In the first case, decentralization offers the advantage of avoiding a challenging and poten-
tially intermittent communication link to a central computer [7]. In the second case, large
numbers of warehouse robots could make centralized control computationally difficult. A
decentralized algorithm for the navigation of confined spaces could therefore be extremely
beneficial.

Several centralized algorithms for robot navigation in confined spaces already exist. Some
of these algorithms have the extremely desirable property of being complete - that is, they
guarantee that a solution will be found if it exists [8, 9, 10]. Centralized algorithms can
also be classified as either optimal or non-optimal. Optimal algorithms, such as search
algorithms like A*, are capable of computing the shortest set of paths that solve the problem
(if a solution exists), but the computation is NP-complete [11]. Others, like the push-swap
algorithm proposed by Luna, are not guaranteed to find the shortest path, but are capable
of finding a solution in much less time [10].

Unlike these centralized algorithms, decentralized architectures do not necessarily have
total information on all robots, so it is difficult to guarantee that a solution is always found.
For this reason, all known decentralized algorithms to date are not complete and suffer from
the possibility of deadlocks [11]. This paper addresses this issue by proposing the Push-
Swap-Wait approach, a decentralized algorithm for navigating in confined spaces that is

guaranteed to be complete under certain conditions.

1.2 Problem Formulation

Consider a set of nodes N and a set of bi-directional connecting edges between them FE
which form a graph G(N, E). Occupying G is a set of autonomous robotic agents R. At
each timestep ¢, there is an assignment A that maps each robot r € R to its location in G,
such that A(r,t) € N. All agents have knowledge of G(N, E) and each has a unique assigned
goal g(r) € N such that g(r;) # g(r;) if i # j. Each node can contain only one robot at
a time, meaning that Vr;,r; € R, if ¢ # j, then A(r;,t) # A(r;,t). Between timesteps,
robots may move from node n, to node n, provided that Je € E : e = (n,,n,). However,
two robots cannot traverse the same edge between the same timesteps, so Vr;,r; € R, if
A(ri,t+1) = A(r;, t), then A(r;,t + 1) # A(r;,t). The change from one assignment A(R, 1)

1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

(a) Two separate networks (b) One unified network

Figure 1.2.1: Formation of networks among robots. Here, the radius of communication p
equals 2. As robot r, moves in the tree, it enters the communication range of ro, thus
enabling communication between all five robots.

to another A(R,t+ 1) is determined by the individual position change made my each robot,
m(r,t). At each timestep t, every robot r computes which move 7(r,t) to make, which may
take the robot along an edge e to a new node n (provided the conditions given above hold)
or keep the robot at its current node. The goal is to rearrange the robots from an initial
assignment A(R,0) to a final assignment A(R, ¢tinq) where Vr € R, A(7, t fina) = g(7).

In order to make informed decisions about where to go, robots are able to detect and
communicate with other robots within a certain radius p, measured in the number of edges
between agents. All robots r; within p nodes of r are considered to be in direction commu-
nication with r, such that r € ¢(r). Robots will transmit information about themselves and
any other robots of which they are aware. In this way, two robots well outside of individ-
ual communication may still be aware of one another thanks to the formation of an ad-hoc
communication network among a larger group of robots (see Figure 1.2.1). The set C(r)
includes all robots in communication with r, whether direct or indirect.

For the algorithm presented here, robotic motion is restricted to a spanning tree 7" of G,
such that T'=T(N,¢), where ¢ C E. With this tree framework, three special kinds of nodes

can be identified: leafs, branch nodes, and twigs.

Definition. LEAF NODE: A leaf is defined as a node | such that 3\'n : (I,n) € e, or in other

words, a node connected to only one other node.
The set of nodes L contains the leaf nodes of T, such that L C N.

Definition. BRANCH NODE: Branch nodes are those nodes b for which the number of nodes
n satisfying (b,n) € € is greater than or equal to three, and they correspond to nodes which

are connected to three or more edges.

1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

leaf node

twig node

{__: branch node

Figure 1.2.2: Special types of nodes. This figure shows leaf and branch nodes highlighted for
a typical tree structure. For one particular branch node, arrows are drawn pointing from it to
its twig nodes. Note that branch nodes, leaf nodes, and regular nodes can all be categorized
as twig nodes.

As with leaf nodes, branch nodes of T" are contained in a set B: B C N.

Definition. TWIG NODE: A node v is considered to be a twig of branch node b if node is
adjacent to b such that Je € € : e = (b,) .

Each individual branch node b has an associated set I'(b) which contains all twig nodes
~v of b. Figure 1.2.2 illustrates examples of where leaf, branch, and twig nodes appear
graphically.

The completeness guarantee of this algorithm is restricted to those cases where |R| <
|L| —1 and p > 2.

Chapter 2

Push-Swap-Wait Algorithm

2.1 Overview

The Push-Swap-Wait (PSW) algorithm presented here draws inspiration from the push-swap
algorithm presented by Luna and Bekris [10]. A third mode, waiting, is added to guarantee
completeness for the decentralized problem. This mode is used to ensure that a solution can
be found even in cases where communication is lost between swapping robots and pushed
robots. Like the push-swap algorithm, robots use two different modes to reach their goal
positions. In swap mode, two robots decide to switch positions and move through the tree
T to find a branch node at which they can complete the swap. In pushed mode, all robots
move out of the path of a swapping pair to allow the swap to take place. The PSW algorithm
assigns a priority value to each robot, and then allows the robot with the highest priority
to perform any swaps necessary until it reaches its goal. At this point, the robot with the
next highest priority receives these same privileges and proceeds towards its goal in the same
manner. In this way, PSW successively solves one robot at a time until the overall problem

is solved.

2.2 Description

Before any motion planning or movement occurs at time %y, each robot must analyze the
graph G of their environment and calculate the spanning tree 7. Each robot r will perform
this operation in the same manner, such that each robot has an identical copy of tree T
off of which to base decisions. Once the tree T has been formed, every node n € N will
be assigned a priority value ®(n) based on a postorder traversal of the tree. This priority

ordering assures that no two nodes are given the same priority, such that Vn;,n; € N, if

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

£ % root
o 12
® o Y
o—r= -e-——8
®
G T

Figure 2.2.1: Tree formation and priority assignment. An arbitrary graph G can be trans-
formed into a tree T by choosing a root node and selecting edges according to a breadth-first
search. The nodes n of T' can then each be assigned a priority ®(n) by following a postorder
traversal of the tree, as shown in the figure. Note that lower-numbered nodes are considered
to be higher-priority.

i # j, then ®(n;) # ®(n;). Figure 2.2.1 illustrates the formation of a tree and the assignment
of priority to nodes on that tree. By assigning priority in this way, each robot r € R can
also be given a priority equal to the priority of its goal g(r), such that ®(r) = ®(g(r)). The

ordering of robots by priority is central to the guarantee of completeness (see Section 2.4)

Definition. PRIORITY: In reference to nodes, the priority ®(n) of node n is the position
of node n in a postorder traversal of the tree T. In reference to robots, the priority ®(r) of
robot 1 is equal to the priority ®(g(r)) of its goal and places it in an order relative to all

other robots.

The algorithm dictates that robots behave in such a way that they become solved in

order of their priority.

Definition. ANCESTORS: The set of ancestors of a noden € N is the set of nodes P(n) € N
such that P(n) = parent(n) + P(parent(n)) and is empty for n = root(T).

Definition. SOLVED: A robot r is solved at time t when the following conditions are met:
1. for some time t; < t, A(r,t;) = g(r)
2. ¥r € R such that ®(rp) < ®(r) and Vt' : t; <t <t it holds that A(r,t') & P(A(rp,t'))

3. and Vrg € R such that ®(ry) > ®(r), robot ry is also solved.

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

| Status Description |
NORMAL Robot is heading towards goal
PAUSED Robot is temporarily not moving
WAITING Robot is awaiting the return of r*
PUSHED Robot is being pushed by another robot
STUCK Robot was pushed, but could not move
SWAP _SET Robot is initializing a swap
SWAP_CONTINUE Robot is continuing a swap
SWAP _FINISH Robot is finishing a swap
SWAPPING Robot is swapping (whether set, continue, or finish)

Table 2.1: List of possible robot statuses

At each time ¢, all robots r € R decide which move 7(r,t) to make by executing the
Plan(r,t) algorithm. By performing logical checks based on robot r’s knowledge of itself and
of all other robots r; € C(r), Plan(r,t) will determine A(r,t+ 1) by setting = (r,t) as well
as set the status of robot r (see table 2.1).

As time progresses, robots will become solved in order of their priority, until some
time 4, When all robots r € R have been solved, and by the definition of being solved,
A(r, tpina) = g(r) Vr € R, meaning that a solution to the problem has been found.

In describing the logic of the algorithm, two definitions related to movement on the tree

structure will prove useful: “up” the tree and “down” the tree.

Definition. UP THE TREE: A node ny € N is up the tree from node ny € N if there exists
n' € N on the path Sy 2 C € from ny to ny such that n’ € P(ny)

Definition. DOWN THE TREE: A node ny € N s down the tree from node ny € N if there
exists ' € N on the path S12 C € from ny to ny such that n € P(n’)

2.2.1 Plan

At each time ¢, each robot r € R calls the Plan() function to decide on its next move based
on its knowledge of other robots in the local communication network C(r). Algorithm 2.1
first checks if r or any robot r; € C(r) is waiting for a swapping robot * € R : r* & C(r).
If is the one waiting for r*, status(r) gets set to WAITING so that r does not move and all
other robots in C(r) will remain motionless. If another robot r; is the one waiting for r*, r
remains motionless to allow * to return, but does not set status(r) to WAITING to avoid a
loop where other robots remain frozen even after r* returns because status(r) = WAITING

and vice versa.

O~ O Tl W N+

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Algorithm 2.1 Plan(r,t)

if [3Jr; € [r,C(r)]: status(r;) = WAITING| and r* & C(r)
if status(r) = WAITING
status(r) <— WAITING
else
status(r) <— PAUSED
end
m(r,t) < A(r,t)
elseif r e [, r*] « CheckSwap(r,t)
if I
Swap(r,t)
else
m(r,t) < s(A(r,t),g(r))
status(r) <~ NORMAL
end
elseif e C(r)
Pushed(r,t)
elseif Jr; € C(r) : ®(A(r;,t)) > P(A(r,t)) and 7(r,t) € path(r;)
status <— PAUSED
else
7(r,t) < s(A(r,t),g(r))
status < NORMAL
end

Algorithm 2.1 next checks if robot r should be swapping. The algorithm calls the Check-
Swap() function (algorithm 2.2), which returns the two robots that should be swapping, or
just the highest priority unsolved robot if it does not need to swap, or NULL if there are
no valid swaps. If r is one of the two robots that should be swapping, the algorithm calls
the Swap() function (algorithm 2.3) to handle the details of the swap. If r is the only robot
returned by CheckSwap() (i.e. it is the highest priority unsolved robot and does not need to
swap), 1 sets its path to ¢g(r) and status(r) to NORMAL so that it pushes other robots out
of its way as it moves to its goal. If CheckSwap() does not return any robots, the algorithm
moves on.

Next (line 15) the Swap() function checks for a swapping robot r* € C(r). r* can be
either of the swapping robots 7* or r*, or it can be the highest priority unsolved robot that
is moving towards its goal without needing to swap. If r sees a robot r*, the algorithm calls
the Pushed() function (algorithm 2.8) which makes sure that r moves out of the way of r*.

Finally, the algorithm handles the case where the robot is moving without swapping or

being pushed. Since the movement of the highest priority unsolved robot is handled earlier

O~ O Ot W N —

— e = s =
Gk W= OO

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

with the call to CheckSwap() and all other robots are stationary unless swapping or being
pushed, this section handles the movement when all robots in C(r) are solved. The algorithm
checks if there is a robot r; € C(r) on a higher priority branch than r, and r pauses if 7 (r,t),

the planned next node for r, is on the path of r;.

Definition. PLANNED NEXT NODE: if w(r,t — 1) <= s(A(r,t — 1),n), the planned next node
of r € R at time t, w(r,t), is the next node after w(r,t — 1) on the path S(A(r,t —1),n).

Since robots always choose the lowest priority branch available when getting pushed, this
ensures that a robot that got pushed down a higher priority branch moves back up first,
preserving the order of solved robots. If there are no robots meeting this criterion, » moves

towards its goal with status(r) set to NORMAL.

2.2.2 CheckSwap

Algorithm 2.2 CheckSwap(r,t) returns [7*, r*]

T 1 € [r,C(r)] : ®(r;) = @(ry)Vr; € [r,C(r)]

if status(T*) = SWAPPING
return [/, r
elseif 7, rp € [r,C(r)] should swap and 7, r;, are adjacent
if Irs€ R:g(rs) € P(A(7*,t)) and 7, is solved
return [NULL,NULL]
else
g
status(T*), status(r*) - SWAP_SET
return [7, 1%
end
else
return [/, NULL]
end

The CheckSwap() algorithm determines which robots in a communication network should
be swapping, if any. The function first finds the highest priority unsolved robot 7" in the
set [r, C(r)]. If 7 is already swapping with a robot r*, the pair of robots [F*, r*] is returned
to allow the swap to finish. Otherwise, the algorithm checks for a robot on a node adjacent
to 7* that needs to swap with 7. Since p > 2, the adjacency condition ensures that the two
swapping robots will not loose communication with one another. The CheckSwap() algorithm
calls a function ShouldSwap() to determine if two robots need to swap. The four possible

conditions for two robots 7" and r* needing to swap are:

9

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Figure 2.2.2: Four swapping conditions. Figures (a), (b), (¢), and (d) each demonstrate
one of the four conditions which two robots must satisfy in order to need to swap with one
another. In (a), r* is on the path from 7* to g(7*) and 7 is on the path from r* to g(r*).
In (b), r* and g(r*) are on the path from 7* to ¢g(7), and vice versa for (¢). Figure (d)
demonstrates the case where r* is stuck and blocking the path from 7 and g(7).

1. if r* is on the path from 7 to ¢g(7*) and 7 is on the path from r* to g(r*)

2. if both r* and ¢(r*) are on the path from 7 to g(7")

3. if both 7 and ¢(7) are on the path from r* to g(r*)

4. if 7 is heading to its goal without swapping and status(r*) is STUCK (see figure 2.2.2).

The list of robots r; € [r, C(r)] is sorted by decreasing priority, so if 7* is not already swapping
it will choose to swap with the next highest priority robot satisfying the above conditions.
After identifying the swapping robots, the algorithm checks if the swapping robot is at
a child node of the goal of a solved robot r; € R. Note that 7, is in R rather than C(r),
meaning that each robot must maintain a list of all solved robots it has seen at any time. If
g(rs) € P(A(T*,t)), the new swap is suppressed to ensure that any robots that were pushed
down the tree past the goal of a solved robot will return to C(rs) before starting a swap (see
Figure 2.2.3). If g(rs) & P(A(7*,t)) the algorithm returns the two swapping robots 7, r*.

10

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

/%
0000 N . 00

Figure 2.2.3: Swap suppression at child of g(rs). In Figure (a), two robots, 7 and r*, initiate
a swap that will take them to the other side of the tree, where they will push two unsolved
robots, r4 and r5, and one solved robot rs. In Figure (b), ry is waiting for the return of the
swappers before returning to its goal g, preventing it from becoming unsolved. Figure (c)
shows a hypothetical situation in which the swappers have moved up the tree from r,, but
unsolved robots remain below. Swap suppression ensures that all robots will move up the
tree together, so no robots will be stuck under 7;.

Finally, if the highest priority unsolved robot 7 does not need to swap with any other robots,

the function returns only 7* so it can drive straight to its goal.

2.2.3 Swap

Based on the swapping robot’s status, Swap() decides which phase of the swap it is in, and
calls the appropriate function (Algorithms 2.4, 2.5, 2.6, and 2.7).

StartSwap

StartSwap() is called to initialize a new swap or to pick a new branch point once a pair of
swapping robots realize that their original branch point is unavailable. The algorithm first
selects the branch node b € B that is closest to the higher priority robot 7 and has not
yet been visited by the swapping pair. b is then added to the list of visited nodes, and all

11

— O © 0 1O Ui W N

—_

O~ O Ol W N+

DO DO DD = = = e = e e e e e
N — O © 00~ O Ui Wi H—H=O©o

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Algorithm 2.3 Swap(r,t)

if status(r) = SWAP_SET
StartSwap(r,t)
elseif status(r) = SWAP CONTINUE
ContinueSwap(r,t)
elseif status(r) = SWAP_FINISH
if r= Tleader
FinishSwapLeader(r,t)
else
FinishSwapFollower(r,t)
end
end

Algorithm 2.4 StartSwap(r,t)

b* < b; € B :b; € visited(r) and b; is closest branch node to 7
visited(r) <— b*,n Vn € visited(r) : n ¢ P(b*)

if AT t) = s(r*,b)
Tleader < T
T follow <~ E*
else
Tleader < f*
T follow < T*
end
Yend € Vi € F(b*) Y= S(b*, A(Tfollowa t))
[v1:72] <= [is 1) € T(0%) = iy 5 7# Vena

if r= Tleader

r <~ Al

7T(’I", t) <~ S(A(’I", t)a ’71)
elseif 7 =7u0wer

r — Y2

7T(7”, t) A S(A(Tv t)a 72)
end

status(r) <~ SWAP_CONTINUE

12

O~ O Tl W N+

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Algorithm 2.5 ContinueSwap(r,t)

if status(r’) = SWAP_SET
StartSwap(r)
elseif A(r,t) =,
m(r,t) < A(r,t)
status(r) <— SWAP _FINISH
elseif Jr, € C(r): A(r;,t) =7, and status(r;) = STUCK or SWAP_FINISH
if Eh/new € F " Ynew 7& Vends Vr
m(r,t) <= s(A(r,t), Ynew)
status(r) <~ SWAP _CONTINUE
else
m(r,t) < A(r,t)
status(r) <— SWAP_SET
end
end

parents of b are removed so that the swapping robots will check these nodes again on their
way back up the tree. This behavior is necessary to guarantee that the swapping robots will
be able to find an available branch node even if they lose communication with robots they
pushed out of the way.

The algorithm next determines which robot is the leader in the swap, that is, which
of 7,r* is closer to b. The twig that the robots must pass to reach b, v..q, is set to be
the first node on the path from b to the farther robot rfo0, so that it is defined even if
A(Teader,t) = b. The robot r then finds two additional twigs v1,v2 # Venq and sets its path
to one of them (see figure 2.2.4). Finally, status(r) is set to SWAP__CONTINUE so that on

the next iteration r will move to the twig it selected.

ContinueSwap

ContinueSwap() handles the movement of swapping robots after they choose a branch node
and until they reach their destination twig +,. If robot r sees that its swap partner r’ has
reset its status to SWAP_SET, r’ must have realized that the branch node b is no longer
valid because not enough twigs are available. Therefore r" will pick a different branch node,
so r calls StartSwap() to also pick a different branch node. StartSwap() must be called
immediately rather than on the next iteration so that r’ does not misinterpret a change in
status(r) to mean that another new branch node is needed. Otherwise, the algorithm checks
if r has reached its twig, in which case its path is set to its current location so it does not

move and status(r) is set to SWAP_FINISH so it calls FinishSwap() on the next iteration.

13

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

The algorithm finally checks if the current destination of r is still available. This is
done by checking for a robot r; € C(r) with A(r;,t) = 7, and whose status is STUCK or
SWAP_FINISH. If there are any more twigs of b available (other than v, and ve,q), r sets its
path to this new twig Ve, and calls ContinueSwap() again on the next iteration. Note that
this could cause Y e = v, but this would only occur if r = 744 because StartSwap() sets
Vieader = Y1- In this case rieqger would reach Yeqger and set status(rieqger) to SWAP FINISH,
and on the next iteration r o0, would realize its twig was occupied and pick a new twig. In
this way the swapping robots iterate through all twigs of b, and only pick a new branch point
if there are not enough available twigs of b. When robot r realizes that there are insufficient
twigs it sets status(r) to SWAP__SET, and on the next iteration both swapping robots pick

a new branch node.

FinishSwap

The FinishSwap() function handles the details of a swap once the robots have reached an
available branch node. The algorithm ensures that robots leave their twigs in the proper
order to complete swapping. There are two different functions depending on the order of
the robots as they arrive at the branch node: FinishSwapLeader() is called if robot r is the
first to reach the branch node, and FinishSwapFollower() is called if r is the second robot.

Figure 2.2.4 demonstrates the steps involved in completing a swap.

FinishSwapLeader If robot r = 7.44er, there are three possible states to consider: r could
be at its twig v,, or r could be at the end position 7.4, or r could be on the branch node
b (see figure 2.2.4). In the first case, where A(r,t) = ~,, the algorithm checks if r sees that
its swap partner robot 7’ was unable to reach an available twig and needs to use a different
branch node. If this is the case, r immediately calls StartSwap() to pick a new branch node.
Next the algorithm checks if the swap partner »’ has reached its twig +,~, in which case r
sets its path to move to the end twig 7.,q. Finally, if neither condition holds r assumes that
r’ is on b moving towards 7,, so r does not move.

In the second case, where A(7,t) = Yenq, 7 has reached the end twig 7.,q so it is waiting
for the swap partner ' to reach the branch node b before the swap is complete. r therefore
checks if A(r’,t) = b, and if so sets its path to g(r) and status(r) to NORMAL. Otherwise, r
assumes that 7’ is still moving towards b and does not move.

Finally, if robot r is heading towards 7.,q it simply continues moving.

FinishSwapFollower If r = rfoouer there are two possible states: it can be at its twig

Yr, O it can be at the branch node b. If A(r,t) = ~,, r first checks if its swap partner r’

14

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

onllow

Figure 2.2.4: Process of finishing a swap. In Figure (a), the robots 7jeqder and 7 o0, have
just arrived at b*and 7e,q and will soon begin finishing their swap. In (b), 7eqder and 7 fouow
arrive at their respective twigs, and each will call the function FinishSwap() in order to
calculate their next position. Figure (c¢) shows 7ieqger reaching Yenq. In Figure (d), 7 fouow
reaches b* and the swap is over. Notice that 7 fyi00 and 7cqqer have swapped positions from
(a) to (d).

15

O~ O Ot i Wi —

11
12
13
14
15
16
17
18
19
20
21
22

2.2. DESCRIPTION

CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Algorithm 2.6 FinishSwapLeader(r,t)

if A(rt) =~

if status(r’) = SWAP_SET
StartSwap(r)
elseif A(r',t) =
7(r,1) s(A(r,1), Yena)
status(r) <— SWAP_ FINISH
else
m(r,t) < A(r,t)
status(r) <— SWAP _FINISH
end

elseif A(r,t) = Yena
=b

if A(r)t)

7(r,) s(A(r,1), g(r)

status(r) < NORMAL
else

m(r,t) < A(r,t)

status(r) - SWAP__ FINISH
end

elseif r heading to 7Yenq

end

7T(’I“, t) < S(A(’I“, t)a ’yend)
status(r) - SWAP _FINISH

Algorithm 2.7 FinishSwapFollower(r,t)

if A(rt) =7,

if A(r',t) = Yena

m(r,t) < s(A(r,t),b)

status(r) <~ SWAP__FINISH
else

m(r,t) < A(r,t)

status(r) <— SWAP_ FINISH
end

elseif A(r,t)=0

end

m(r,t) < s(A(r,t),g(r))
status(r) <— NORMAL

16

O~ O Tl W N+

2.2. DESCRIPTION CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Algorithm 2.8 Pushed(r,t)

if Jr; € C(r): A(r,t) € path(r;) and status(r;) = PUSHED or SWAPPING
if 3In e i(A(rt),t)
m(r,t) < op(A(r,t),t)
status(r) <— PUSHED
return
else
m(r,t) < A(r,t)
status(r) < STUCK
return
end
elseif r* € ¢(r)
if 7w(r*t) = s(A(r*t), g(r"))
m(r,t) < A(r,t)
status(r) <— PAUSED
return
else
w(r,t) « A(r,t)
status(r) <— WAITING
return
end
elseif status(r) = WAITING
w(r,t) < A(r,t)
status(r) <— WAITING
return
else
m(r,t) < A(r,t)
status(r) <— PAUSED
return
end

has reached 7.,q. Otherwise r does not move. In the second case, if A(r,t) = b then robot
r’ must have already reached 7,4, S0 the swap is complete. r sets its path to its goal, and

status(r) is set to NORMAL.

2.2.4 Pushed

The Pushed() algorithm governs the behavior of robot r in the case where 7 is neither swap-
ping nor the highest priority robot in [r, C'(r)], and r is not waiting to regain communication
with r*. First, robot r checks whether it is on the path of of any other robot r; that is being
affected by a swap (either one of the swappers, or a robot being pushed by the swappers).

17

2.3. KEY FEATURES CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

If so, r examines the set of nodes 0(A(r,t)) that are adjacent to its current position and

available for a pushed robot.

Definition. AVAILABLE FOR PUSHED ROBOT: A node n is available for a pushed robot r if
it is not on the path between the pushed robots and the swapping robots (n # s(A(r,t), A(r*,t)))

and it 1s not occupied by a stuck robot.

If there are adjacent nodes available and 0(A(r,t),t) is not an empty set. then 7(r,t) is
set to the lowest priority node in this set, d;(A(r,t),t), and the status of r is set to PUSHED
since it is being pushed to this new node. If 6(A(r,¢),t) is an empty set, then robot r has
nowhere to be pushed and sets its status to STUCK while remaining on its current node.

When 7 is not on the path of a swapping robot or a pushed robot, the algorithm checks
whether r is in direct communication with the highest priority unsolved robot r*, that is,
r* € ¢(r). If so, and r* is heading towards its goal such that its predicted move 7(7*,¢) is the
next node on the path between its current location and its goal (that is s(A(r*,t), g(r*)))
then r will remain on its current node and set its status to PAUSED. If, however, r* is not
heading towards its goal, r will remain on its current node and set its status to WAITING so
that, if at time ¢ + 1 7* ¢ C(r), r will wait for the return of r*. This waiting ensures that
robot r remains in the correct order with respect to r*, such that, if r and r* have swapped,
they will never need to swap again. If r* ¢ c(r), then robot r will set its status based on its
previous status, WAITING if it was previously set to WAITING, and PAUSED otherwise. The
continuity of the WAITING status allows r to continue preparing to wait when r* is still in
C(r) but not in ¢(r).

2.3 Key Features

After looking at each component in detail, some important characteristics of the Push-
Swap-Wait algorithm will be highlighted. First, in order to make this difficult problem more
manageable, robot motion is restricted to a spanning tree 7" instead of allowing robots to
traverse any edge in the graph (G. While this change eliminates potential shortcuts between
nodes, the nature of the tree structure can be exploited in order to guarantee the completeness
of the algorithm in spite of the decentralization of motion planning. Second, one robot r € R
is permitted to reach its goal at a time. To that end, in any given network of communication,
there can only be one pair of swapping robots, while all other robots will only move in order
to accommodate the swappers. This restriction allows the algorithm to focus on sequentially
finding solutions to smaller subsets of the full problem at the cost of overlooking potential

simultaneous solutions.

18

2.3. KEY FEATURES CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

The nature of the PSW algorithm allows for the guarantee that a solution to any given
instance of the problem can be found by solving sub-problems and ensuring that they remain
solved. The guarantee that a solved sub-problem is not disturbed by any subsequent swaps
is based on several key components of the algorithm. By assigning robot r a priority ®(r)
based on a postorder traversal of the tree, and only allowing the highest priority unsolved
robot to reach its goal, the problem can be successively reduced into smaller subtrees where
solved robots are effectively removed from the overall problem (see Figure 2.3.1). In reality,
there are some situations in which a solved robot must be disturbed if there are insufficient
leaf nodes in the reduced problem to guarantee a solution. It is therefore necessary to ensure
that any such solved robot that is pushed by a swap is able to return to its goal position
without becoming unsolved. To achieve this, the algorithm forces all pushed robots to move
to the lowest priority node possible, and after being pushed to give the right of way to robots
on higher priority nodes, ensuring that solved robots recover from a push operation.

The decentralization of decision making in this problem lead to some of the greatest
challenges in developing a complete algorithm, namely, handling situations in which robots
lose communication with one another and are therefore forced to plan their motion based
on incomplete information. For instance, in the case mentioned above where solved robots
are displaced from their goals, problems can arise if the swapping robots leave the network
of communication of the solved robots and become trapped when the solved robots return
to their goals. To address this and other issues, pushed robots - solved or unsolved - wait
for swappers to return if the swapping robots were last seen moving away from the goal
of the highest-priority swapper. Additionally, the algorithm prevents new swaps from being
initialized by robots that are at a descendant node of a solved robot’s goal. These precautions
correct for the previous issue and ensure that unsolved robots cannot become trapped behind
a solved robot.

Loss of communication also presents potential problems for two robots attempting to
complete a swap. If the two swapping robots are not in communication with one another
when a critical event, such as discovering that a certain branch node cannot be used to swap,
takes place, it is possible that the two would make different decisions about how to proceed
and the swap would be unsuccessful. The algorithm prevents this undesirable situation by
only allowing swaps to be initiated by two robots occupying adjacent nodes. Since the radius
of communication p is required to be at least two edge lengths, the swapping robots will be
able to maintain constant communication as they traverse the tree. Similarly, if the swapping
robots lose communication with robots that they have already pushed, it is possible that
the availability of branch nodes in the tree could change when the previously pushed robots

move (see Figure 2.4.3). To compensate for the dynamic nature of branch node availability,

19

2.3. KEY FEATURES CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

Figure 2.3.1: Successive problem reduction. The problem begins with all robots needing to
reach their goals, and all nodes on the tree T being possible locations for any robot. (Figure
(a)). When robot 7, reaches its goal node g; and becomes solved, it is known that no robots
occupy any lower priority nodes, and the problem space is reduced to a subset of robots and
a subset of the tree, 7" (Figure (b)). When robot r, reaches its goal, the remaining problem
space is even further reduced (Figure (c¢)). While solved robots may later be pushed down
the tree, whenever a new robot becomes solved at some time ¢, there can be no lower priority
robots on higher priority nodes at that time t.

20

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

swapping robots will re-check all potential branch nodes as they make their way towards
the root. Through these corrective measures, robots compensate for the limitations on their
information inherent in a decentralized system and maintain the completeness guarantee of

the algorithm.

2.4 Proof of Completeness

The completeness guarantee of this algorithm is based on several lemmas. First, for any
given tree T" and set of robots R such that |R| < |L| — 1, there exists a branch node b such
that for any single pair of two robots r;,7; € R, r; and r; can swap. Second, there exists
a sequence of moves II over some time period ?; to ?5 such that Vr;,7; € R, it is possible
that A(r;, t2) = A(r;,t1) and A(r;,t2) = A(r;, t1). That is, any pair of two robots can swap
positions in the tree T'. Third, through a series of these swaps, the highest priority robot
yet to be solved, r*, will reach his goal at some time t* such that A(r*,t*) = g(r*) and it
becomes solved. Finally, once a robot r has been solved, no future swaps will cause it to

become unsolved. That is, it will never need to swap to return to its goal.

Definition. AVAILABLE BRANCH NODE: For a branch node b to be available for two swap-
ping robots r; and r; at time t, it must satisfy the conditions that Vr, € R : v, # r; and
ry # 1, A(ry,t) # b and that there are at least three nodes n € N such that edge (b,n) € ¢
and A(rg,t) # n.

2.4.1 Lemma One: Branch Availability

It will first be shown that there is a branch node available for two robots to swap. Considering
an instance of the problem where |R| = 2 (the minimum number of robots for a nontrivial
solution) and |L| = 3, each node [€ L has exactly one edge connecting it to the rest of the
tree. If two leafs [; and [, are part of the same tree T'(N,¢), then they must be somehow
connected by a path defined by a set of nodes S . Since all nodes but /; and [on this path
must be connected to at least two other nodes by edges e € ¢, and [; and [, are connected to
exactly one node, the path from a third leaf node I3 to [;, S} 3, must overlap with S 5 such
that they have at least one node b # [in common. This node b will therefore be connected
to a node 1, which is common to both S; 5 and S 3, as well as to two additional nodes, one
in 512 and one in S} 3. Because it has at least three edges associated with it and there are
no non-swapping robots to occupy node b or its adjacent nodes, node b satisfies the criteria
for a branch nodes and is available for swapping. Figure 2.4.1 represents this relationship

graphically.

21

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

{ "+ branch node

Figure 2.4.1: Emistence of a branch node. The paths from I and I3 to [, S12 and S 3 must
intersect at some branch node b such that b is connected to a node in common between 5 »
and S13, Neom, as well as two other nodes, each unique to one of the two sets.

In applying this to a tree T" of arbitrary size containing a group of robots R such that the
condition |R| < |L|—1 holds, in the case of global communication (p — o0), swappers will be
able to push all other robots to leaf nodes and the other robots will not move until the swap
is complete. The swappers themselves can then navigate to leaf nodes such that at some
time time t, Vr € R, A(r,t) € L, and at least one leaf node will remain unoccupied. With
all robots on leaf nodes, there exists an available branch node based on the logic introduced
for the case where |R| = 2. To prove this, let [; be the leaf node occupied by robot r;,
then Vr;,r; € R, let the leaf nodes mentioned above, [; and [y, equal [; and [}, respectively,
and allow [3 to be one of the unoccupied leafs. As discussed for the case when |L| = 3 and
|R| = 2, there must be a branch node b between these three leafs. Additionally, the paths
from this node b to [y, ls, and [3 can not contain any node n = A(r,t),Vr € R, since no nodes
on these paths may be leaf nodes, including node b itself. This fact means that branch node
b satisfies the condition for availability since it is adjacent to at least three nodes n € N such
that (b,n) € € and A(r,,t) #n for r, € R:r, # r; and r, # r;. Therefore, there is always

a potential branch point that any robots r; and r; could use to swap.

2.4.2 Lemma Two: Ability of Robots to Swap

Next, it will be shown that even for cases where the radius of communication is limited
(p <), a single pair of swapping robots will still be able to reach an available branch
point. Limited communication presents two possible cases for robots trying to swap. First,
it is possible that all robots, swappers and others, maintain communication throughout the
swap. Second, it is possible that the swappers lose communication with other robots before

the swap is completed. Since robots only decide to initiate swaps with robots on adjacent

22

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

e b
SEIRO

/ oo
(a)

Figure 2.4.2: Swappers encounter stuck robots. In Figure (a), the swapping robots 7* and
r* select branch node b as their branch to complete a swap. After pushing robot r3 down
the tree, r3, r4, and r; become stuck and the swapping robots know that branch node b is
unavailable for swapping.

nodes and swappers always choose to head towards the same branch node, the algorithm

dictates that swapping robots will never lose communication with one another.

Case 1: Persistent Communication Following the algorithm presented here, once
two robots 7", 7" € R have identified themselves as the highest priority swapping pair and
have selected a branch node by, they will push any other robot r that they encounter to the
lowest priority nodes possible until 7* and r* either reach twigs of b; or realize that branch
node b; cannot be made available.

Since pushed robots will be instructed to stay in place for the remainder of the swap
(enabled by persistent communication), the problem then reduces to the case where all
nodes occupied by stuck robots are removed from the tree. Considering only the remaining
set of nodes N’ C N and the remaining robots R C R that occupy N’ such that 7, r* € R/,
it must be the case that |R| — |R/| = |[N| — |N'| > |L| — |L’| since each stuck robot removed
from R corresponds to a node removed from N, but not all nodes removed from N are
necessarily leaf nodes. Therefore, |L'| — |R'| > |L| — |R|. From the original constraint that
|R| < |L| =1, |L] —|R| > 1 and hence |L'| — |R'| > |L| — |R| > 1. The new tree T"(N’,&’)
will therefore also still satisfy the condition that |R'| < |L'| — 1. Knowing this, Lemma One
gives that there is a branch node ¢’ in 77 which can be made available for 7 and r* to use
for swapping.

The swapping robots will then begin looking for branch nodes in 7", knowing that the
other portion of T"is completely occupied by stuck robots. In the worst case, 7* and r* will
continue pushing other robots and refining their search to smaller and smaller subtrees until

they are the only two robots which remain on some subtree 7%, in which case there can be

23

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

" available

N__/ swapping

{, unavailable

(a) Assignment at time ¢;

{7 available N__ swapping

.+ unavailable

N swapping

(b) Assignment at time to > t; (c) Assignment at time t3 > to

Figure 2.4.3: Dynamic availability of branch nodes. If robots 7*and r* decide to swap at time
t1 (Figure (a)), they would first select b; as a branch node, discover that it is unavailable,
and continue exploring branch nodes down the tree until time ¢y (Figure (b)). At this point,
if the swapping robots have lost communication with robots r5 through rg, it would be
possible for those robots to navigate to the other side of the tree and change the availability
of branch nodes in the tree (Figure (c)). In particular, notice that branch node b; has been
made available for swapping after having been previously identified as unavailable by the
swapping robots.

no other robots which will prevent them from using a branch node b, found in 7% to swap.

Case 2: Loss of Communication In the case where the swapping robots 7* and r*
lose communication with robots that they have already pushed, there is no guarantee that
those robots will stay in place. That is, a robot r that became stuck on some node n; at
time t1, such that n; € N’, may at some future time t5 occupy some node ny : no € N'. This
complication means that two swapping robots cannot simply iterate through all possible
branch nodes if they want to be guaranteed to be able to swap, as it may be possible that
different branch nodes can be made available at different times (see Figure 2.4.3 for more
detail).

To correct for the dynamic nature of the set of available branch nodes, whenever the

swapping pair 7 and r* select a new target branch node b, they remove any parent branch

24

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

nodes b; : b; € P(b) from their list of previously visited branch nodes. This change takes
advantages of the tree structure of 7' to ensure that, as 7 and r* make their way up T
from an unavailable branch node b, they check all branch nodes which may now be made
available since last they were examined, that is all nodes b; € P(b). This behavior guarantees
that 7* and r* will eventually be able to swap because they will either find that a previously
unavailable branch node can be made available, or they will find that it is still unavailable, in
which case there must be a branch node that can be made available elsewhere in 7', following

the logic for the case of persistent communication.

2.4.3 Lemma Three: Goal Reachability

Given that any two robots can swap positions, it will now be shown that through a series
of swaps, the highest priority unsolved robot r* € R will reach its goal at some time ¢* such
that A(r*,t*) = g(r*) and become solved. This property follows from the fact that once r*
has swapped with another robot r € R, the algorithm prevents r from coming between r*
and its goal g(r*), as will be shown below. Taking advantage of the properties of the tree
structure, it can be shown that this fact holds regardless of which direction r* travels.
Suppose r* completes a swap with some robot r € R at time ¢;. Since r and r* have just
swapped, the two robots must be correctly positioned with respect to one another (that is,
if g(r*) is down the tree from A(r*,t1), then A(r,t;) is up the tree from A(r*,t;), and vice
versa). As r* begins to move again, it will either head towards or away from its goal g(r*).
If r* is heading away from its goal, and r and r* lose communication with one another, r
will wait in place until it regains communication with r*, ensuring that the ordering of r and
r* is maintained. If r* moves towards its goal, no movement by r can place it on the path
between r*and g(r*), because to do so r would need to pass through r* (see Figure 2.4.4).
By the property that after swapping with r* robot r can never come between r* and g(r*),
it follows that once r* has swapped with any robot r, there will never be a time t5 : t5 > t;
at which r* will again need to swap with r. In the worst case, r* can swap with every other
robot r € R before having an unobstructed path to its goal. Therefore, when it finishes

swapping and reaches its goal, r* will satisfy all the conditions to be solved.

2.4.4 Lemma Four: Solved Robots Never Swap

Next it will be proved that a solved robot r € R will not swap with any other robots and
can only be pushed down the tree. Considering first the case of the highest priority robot
r1 € R such that ®(r1) > ®(ry) Vry, € R : rp # rq, if 7 is solved all robots must be up

the tree from 71, so if r1 is pushed it can only be pushed down the tree. Since at some

25

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

A g
/

a) Completion of Swap

£ 5D,

r* moves away from g(r r* moves towards g(r

Figure 2.4.4: Permanence of swaps. Figure (a) shows a just completed swap between r and
r*. In (b), r* moves away from its goal. In this case, r will stay in place until r* reaches its
goal or it loses communication with r*. However, since r* is heading away from its goal, if
communication is lost, r will wait for r*to return, preventing r from coming between r*and
g(r*). In (c), r* is moving towards its goal, which physically blocks r from coming between
r* and g(r*).

26

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

time t; < t A(ry,t1) = g(r1), if 1 is pushed down the tree it will always be the case that
both 77, and g(ry) are up the tree from r;. Also, g(ry) must be up the tree from g(ry) since
O (ry) > ®(rr), so if r is solved it does not meet any of the conditions for a swap. Applying
the same logic to other solved robots r, any robots down the tree from r will be solved and
will not swap. All lower priority robots r, € R : ®(r) > ®(ry) will be up the tree from r,
so if r is pushed it can only be pushed down the tree. Once again, this means that both r,
and g(ry) are up the tree from r, and since g(ry) is up the tree from g(r), a solved robot

will never swap.

2.4.5 Lemma Five: Solution Monotonicity

Finally, it will be shown that once a robot is solved it remains solved regardless of other
swaps. That is, if time ¢; is the time that robot r € R is first solved, there is no time
ty:t1 <ty at which robot r becomes unsolved.

Consider a set of solved robots 11,79, ...,7, € R such that ®(r1) > &(r2) > ... > §(r,).
The definition of a solved robot dictates that the only way 7, could be unsolved at some
time ¢; is if for some r € ry...r, and some r;, € R : ®(r) > O(ry) A(r,ty) € P(A(rpty)).
By Lemma Four, at any time ¢ : ¢t; < t robot r can only get pushed down the tree or
move back up the tree to its goal. Since r will stop moving up the tree when it reaches
g(r), it could only become unsolved if at some time ¢, g(r) € P(A(rp,t)). Also, since robots
choose the lowest priority branch available when getting pushed, a low priority branch must
fill completely before pushed robots move on to a higher priority branch, and therefore r
could only become unsolved if at time ¢, ®(A(r,t)) < ®(A(rg,t)).

It will now be shown that even in situations where the conditions that g(r) € P(A(ry,t))
and ®(A(r,t)) < ®(A(rp,t)) are met, the algorithm will prevent robot r from becoming
unsolved. There are two cases to consider: robot » maintains communication with all robots
rr, satisfying ®(A(r,t)) < ®(A(rg,t)) and g(r) € P(A(rp,t)), and r loses communication

with some robots ry,.

Case 1: Persistent Communication In the first case, the algorithm dictates that
A(r,tg) & P(A(rr,tr)) because robots give right of way to other robots on a higher priority
branch. Therefore r will wait until ®(A(r,t)) > ®(A(rp,t)) before moving back up the tree,

so r will not be unsolved if communication is maintained.

Case 2: Loss of Communication In the second case, where r loses communication
with some robots 77 such that ®(A(r,t)) < ®(A(rp,t)) and g(r) € P(A(rg,t)), it must be

the case that r also loses communication with both of the swapping robots »* € R, and r*

27

2.4. PROOF OF COMPLETENESS CHAPTER 2. PUSH-SWAP-WAIT ALGORITHM

also satisfies ®(A(r,t)) < ®(A(r*,t)) and g(r) € P(A(r*,t)). This is due to the fact that
robots are only pushed one node at a time and p > 2, so r will always have a communication
network at least one node beyond the branch node where r; took a different path than r.
This means that r* must have pushed r;, down past the branch node and is also out of
communication in the same direction.

Since p > 2, at some point r will have communication with r*and will see it heading down
the tree. Tt must be the case that r* is heading away from its goal because g(r) € P(A(r*,1))
and ®(r) > O(r*), so r will wait until r* returns to the communication network before
moving. Once r* begins moving back up the tree, no robots are allowed to initiate swaps
when g(r) € P(A(rg,t)), and any robots ry, that were pushed by r* will also move back up
the tree and follow r* back into the communication network. Once r regains communication
with r7, the argument presented above demonstrates that r will remain solved.

It is therefore not possible for any sequence of moves to cause A(r,tr) € P(A(rpty)), so

there is no ¢ at which robot 7, becomes unsolved.

2.4.6 Theorem: Completeness of Algorithm

By Lemma One, for any given tree T" and set of robots R such that |R| < |L| — 1, for any
two robots r;,r; € R, there exists a branch node b such that r; and r; can swap. Second,
by Lemma Two any two robots will be able to reach an available branch point and swap
positions in the tree T. The four criteria for a swap to take place (see algorithm 2.2) reduce
to testing for a robot r; € R between robot r € R and ¢(r) that cannot move off the path,
so the criteria will successfully pick the correct swaps to perform. Through a series of these
swaps, Lemma Three states that the highest priority robot yet to be solved, r*, will reach its
goal at some time t* such that A(r*,t*) = g(r*) and become solved. By Lemma Five, once a
robot 7 has been solved, no future swaps by other robots will cause it to become unsolved.
Therefore, by successively allowing the highest priority unsolved robot to swap and become
solved, every robot will eventually meet the definition of being solved. At that point, every

robot can drive unobstructed to its goal and the problem is solved.

28

Chapter 3

Implementation and Experiments

3.1 Implementation

The algorithm was implemented and tested in MATLAB. The eight algorithms were written
as detailed above, with several important differences. First, robots moved at a given velocity
rather than jumping from node to node. This allowed for a smooth animation, but also
necessitated the implementation of code to handle cases where robots are between nodes.
The number of computations also increased significantly since the Plan() function was called
each time a robot moved.

Another result of the asynchronous nature of robot motion is that it is possible for
swapping robots to lose communication with one another. For the purposes of the algorithm,
robots are approximated as being at the node closest to their actual position (referred to
as the box the robot is in). If the two swapping robots are each at the outer edge of their
respective boxes, the algorithm could consider them to be on adjacent nodes while they
actually are at a distance of &~ 2. Since robots can take time to turn corners and are not
synchronized when they move, this could cause two swapping robots to lose communication
while moving towards a branch. This problem is handled by incorporating a series of tests
into Swap() to ensure that the swapping robots have communication during the crucial swap
maneuvers. For example, if a swapping robot realizes that it needs to pick a new branch point,
it first checks if it is in communication with its swap partner. If not, the swap is canceled
and the robot moves back towards its goal. Similarly, robots cancel a swap if they reach their
twig and do not see their partner. However, if swapping robots lose communication while
driving to their goals they do not cancel the swap. In this way, the loss of communication
is acceptable because robots will be closer to the branch point when they cancel the swap
than when it began, so eventually they will reach the branch point and finish the swap.

Finally, the method implemented to handle communication between robots differs from

29

3.2. TESTING CHAPTER 3. IMPLEMENTATION AND EXPERIMENTS

the ideal communication network assumed by the algorithm. First, since robots are not
always exactly at nodes the communication radius is defined such that a robot r; € ¢(r) is
within the radius of communication of r if the distance from the node closest to r; is less than
p away from the node closest to . This can lead to r and r; being in communication up to a
distance of p+ 1 if they are on opposite sides of their nodes, but this is acceptable because it
still meets the minimum criteria for communication. More significantly, the communication
network is not ideal because there is a lag as information propagates from one robot to
another. Each robot chooses the most up-to-date information on other robots when making
decisions, but if two robots are far apart and transferring information through several inter-
mediaries it could take several timesteps for information to reach the other robot. While it
is extremely unlikely, this could result in problems if a robot moves so that a communication
network is shortened at precisely the wrong moment, leading to an important signal being
lost. This risk is minimized by the fact that only adjacent robots can swap, so swapping
robots should always have direct communication and not have to worry about signal delay.

However, there remains a chance that the delay could cause other unanticipated problems.

3.2 Testing

The implementation was tested by running two hundred random simulations as well as several
planned cases designed to test specific aspects of the code. The algorithm successfully solved
one hundred problem instances with a random graph of 5x5 nodes and ten robots with
randomized positions and goals (see figure 3.2.1). These simulations were meant to test the
implementation in a densely populated environment, since on average there were barely more
leaf nodes than the minimum requirement. The algorithm also successfully solved problems
in a sparsely populated map, this time solving one hundred random problem instances with
a 10x10 node graph and ten robots.

Several problem instances were specifically designed to test certain aspects of the imple-
mentation, and once again the algorithm successfully solved them all. These included a map
with only one branch node and many leafs designed to test the ability of robots to choose and
execute swaps, as well as one with a single long branch and a distant branch node designed
to test the ability of robots to push others out of the way (see figure 3.2.2).

3.3 Results

The algorithm was tested by generating a set of ten randomized 10x10 node graphs, then

running ten simulations with random robot positions for each number of robots |R| =

30

3.3. RESULTS CHAPTER 3. IMPLEMENTATION AND EXPERIMENTS

Figure 3.2.1: Randomly generated tree and robots. Map generated by computer code for
stress testing of algorithm.

4 Tr
381 g B
3 .
5 e
25
4 W ———y
2 i K—&
3 F
151
2
1 & N
05 1
] 05 1 bt 2 258 3 348 4 445 2 -1 o 1 2 5 4 a 4]
(a) “Star” (b) “Broom”

Figure 3.2.2: Sample test cases. Purposefully created to test algorithm on corner cases.

31

3.3. RESULTS CHAPTER 3. IMPLEMENTATION AND EXPERIMENTS

5,10,15,20,30. Data was collected on the distance each robot traveled, the number of
swaps it performed, the maximum amount of time taken for one call to Plan(), and the total

amount of time to solve the problem.

3.3.1 Path Length

Path length data was collected by tracking the difference between the total distance the
robot traveled and the distance it would have traveled if no other robots were present. This
data is presented in figure 3.3.1. As expected, robots are pushed further off their path as
the number of robots increases. This is because robots in sparse graphs can for the most
part drive directly to their goal, whereas densely populated graphs require multiple swaps
and push operations. Besides having a higher average distance traveled, densely populated
graphs like |R| = 30 have a larger variation in distance. This indicates that some robots
do not have to change their course very much to accommodate other robots they encounter,
whereas others get pushed to many different nodes. This behavior is likely due to the fact
that the higher priority robots that get solved first do not have to move far from their goals,
whereas the low priority robots are pushed for a long period of time before finally being
solved. In the worst case, a robot in a problem where |R| = 30 can be pushed to over 70
nodes. However, it is important to note that even in this worst case scenario the robot is not
traveling all over the map, but rather is being pushed back and forth between the same set
of nodes. By tracking the number of distinct nodes that each robot explores, it is revealed
that in this worst case for |R| = 30 where a robot has a path of over 70 nodes, the robot
only visits a total of 12 unique nodes. It may be the case that in some applications this
behavior of moving back and forth between several nodes is acceptable as long as the robot
is not driving across the entire tree. Alternatively, it is possible that some optimizations

could allow a robot to remain in place instead of moving back and forth.

3.3.2 Number of Swaps

Figure 3.3.2 shows the total number of swaps robots must complete before solving the prob-
lem. As the figure shows, robots perform an average of two swaps even in densely populated
graphs. The maximum number of swaps seen - nine swaps when |R| = 20 - is still sig-
nificantly below the total number of robots in the problem. This is advantageous because
swaps take a long time to complete, especially if robots must travel a long distance to reach
a branch node. By Lemma Three of the proof, in the worst case each robot would have to
swap with every other robot in order to be solved. As the figure shows, though, robots in

reality swap far less than this upper limit.

32

3.3. RESULTS CHAPTER 3. IMPLEMENTATION AND EXPERIMENTS

Extra Distance Traveled, 10x10 Graph

f0F

B0 -

al -

A0r

Murnber of Nodes

30r

+
J’_
+
iy

|

|

|

|

|

A0F =5

+
+
+
e
|
|
|

I
|
N — — — FE I

5 10 15 20 30
Mumber of Robots

Figure 3.3.1: Extra distance traveled. The extra distance is defined as (Total distance trav-
eled) - (Distance from start node to goal node), and is shown against an increasing number
of robots in a 10x10 grid. The horizontal red line indicates the median number of nodes, the
box encloses the 2nd and 3rd quartiles, and the dashed vertical line extends to the minimum
and maximum values not judged to be outliers.

33

3.3. RESULTS CHAPTER 3. IMPLEMENTATION AND EXPERIMENTS

Mumber of Swaps, 10410 Graph

gl + 2

Murmnber of Swaps

5 10 15 20 30
Mumber of Robots

Figure 3.3.2: Number of swaps. Total number of swaps performed by each robot before a
solution is reached, shown against an increasing number of robots on a 10x10 grid.

3.3.3 Algorithm Complexity

Figure 3.3.3 is a log-log plot showing the runtime required to solve the entire problem, as well
as the maximum runtime for a single call to Plan(). The log-log plot shows that the runtime
for the whole problem grows by three orders of magnitude as the number of robots grows by
approximately one order of magnitude, meaning that the complexity of the whole problem is
roughly O(|R|?). However, this is partly due to the fact that one computer is simulating all
R robots, meaning that the actual complexity of the algorithm should be roughly O(|RJ?).
Additionally, the number of moves required to solve the problem grows as |R| increases,
meaning that the planning algorithm is called many more times for large |R|. In many cases,
the computational complexity of the algorithm itself could therefore be less than Hi’|2 if the
number of calls to Plan() is accounted for. This can also be seen by examining the code in
Appendix B, since Plan() contains one nested for loop that breaks when a value is found.
Indeed, figure 3.3.3 shows that the maximum runtime for a single call to Plan() grows by
one order of magnitude as the number of robots goes from |R| =5 to |R| = 30, so in fact it

is true that the time complexity of the algorithm is between |R| and |R|”.

34

3.3. RESULTS CHAPTER 3. IMPLEMENTATION AND EXPERIMENTS

Algorithm Runtime

10

Entire Problem
17 L Worst-case Plan 5
10° -
10’ -

Runtirne (s)
=]
i

1D_3 i // _E

10 1 L]
10’
Mumber of Robots

Figure 3.3.3: Runtime. Average runtime to reach a solution for every robot in the grid, along
with the maximum runtime for one call to Plan()

35

Chapter 4

Conclusion

4.1 Summary

The Push-Swap-Wait algorithm presented here represents a reliable and complete solution to
the problem of effectively coordinating the motion of many autonomous agents navigating a
graph structure G in real time without reliance on global communication. The decentralized
nature of the algorithm allows each robot € R to plan its next move without full knowledge
of the current state of the problem, but with a subset of information based on its current
network of communication C(r). Even with this limited information, it can be guaranteed
that, in those cases where G can be transformed into a tree 7" such that |R| < |L|—1 and the
radius of communication p is greater than or equal to two edge lengths on this tree, a solution
can be found such that all robots will reach their goals at some time ¢ 4;,,;. This coordinated
behavior is achieved by taking advantage of a priori information available to each robot (the
structure of the graph GG) and having them process and utilize the information in a consistent
manner. Additionally, robots are able to predict the future behavior of other robots based
on their reported positions, current status, directions of motion, and the locations of their
goals in the tree.

While the resulting behavior of PSW may appear to be centrally organized, it is important
to remember that each robotic agent is independently making decisions at each time ¢, and it
is these individual decisions, computed continuously as the problem develops, that lead to the
final solution. This is in sharp contrast to previous work on the subject, which either relied
on centralized control to guarantee completeness, or implemented a decentralized algorithm
that was susceptible to deadlock[11]. The fact that PSW computes a solution in real time
rather than pre-computing a path can also be advantageous, as it can be more flexible and
robust against disturbances. In fact, the dynamic nature of the information available to each

robot in this formulation of the problem would make most pre-computed solutions useless,

36

4.2. SUGGESTIONS FOR FUTURE WORK CHAPTER 4. CONCLUSION

as they could not be guaranteed to take into account information on all of the robots on the
graph. The real time nature of the algorithm also ensures that the amount of computation
required at each time step is independent of the amount of time that passes before a solution
is found. The Push-Swap-Wait algorithm is therefore able to scale to larger problems without

incurring costs in time beyond those inherent in traveling further distances.

4.2 Suggestions for Future Work

While the Push-Swap-Wait algorithm is both complete and decentralized, there are several
constraints that limit its effectiveness. First, it is by no means optimal, and in some cases
robots can be forced to traverse over 70 extra nodes before reaching their goal. Second, there
are some problem instances that do not meet the constraint that |R| < |L| —1 and therefore
PSW is not guaranteed to find a solution even if one exists. Finally, robots are slow to reach
their goals because of the constraints that pushed robots do not move unless instructed to
by a swapping robot.

Future research offers the opportunity to address these and other limitations. The al-
gorithm could certainly get closer to the optimal solution by taking advantage of specific
situations as they arise in the course of solving the problem. The simplest case would be
making a more intelligent choice of twigs when swapping. This optimization would not in-
terfere with the completeness guarantee, and has the potential to speed up swaps by relaxing
the requirement that the swapping robots move back to Y.,q and b to complete the swap.
Another possibility is the case where two swaps could occur simultaneously without interfer-
ing with one another. Additional thought would need to go towards deciding exactly which
conditions would allow for this behavior and how to detect when they are satisfied. It may
also be possible to check for cases where non-swapping robots can continue moving towards
their goals if they do not interfere with an ongoing swap. More generally, it may be useful to
explore easing the restriction of robotic motion to a tree structure and investigate situations
in which it is not only possible but advantageous for a robot to traverse an edge e ¢ ¢ that is
not part of the tree. If done carefully, such changes could maintain the completeness of the
algorithm while reducing both the time taken and the distance traveled before each robot
reaches its goal.

Beyond optimizations to the algorithm, testing an implementation designed for physical
robots will be necessary to determine its final usefulness. While the theoretical treatment
supplied here provides guarantees on the completeness of the algorithm, those guarantees
are contingent upon a certain set of requirements that may be difficult to satisfy in practical

applications.

37

References

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

Jean-Claude Latombe. Robot Motion Planning. Kluwer international series in engineer-

ing and computer science: Robotics. Kluwer Academic Publishers, 1990.

Zhihua Qu, Jing Wang, and Clinton Plaistedl. A new analytical solution to mobile
robot trajectory generation in the presence of moving obstacles. IEEE Transactions on
Robotics, December 2004.

Richard A. Wise and Rolf T. Rysdyk. Uav coordination for autonomous target tracking.
In Proceedings of the AIAA Guidance Navigation and Control Conference, August 2006.

Terry Huntsberger et al. Tightly-coupled coordination of multi-robot systems for mars
exploration. IEEFE Transaction on Robotics and Automation: Special Issue on Multi-
Robot Systems, April 2001.

Christopher M. Clark. Dynamic Robot Networks: A Coordination Platform for Multi-
Robot Systems. PhD thesis, 2004.

Erico Guizzo. Three engineers, hundreds of robots, one warehouse. IEFEE Spectrum,
July 2008.

Vladimir Konyukh. Strategy of automation for underground mining. In Strategic Tech-
nology, 2007. IFOST 2007. International Forum on, pages 615 —618, oct. 2007.

Mike Peasgood, Christopher M. Clark, and John McPhee. A complete and scalable strat-
egy for coordinating multiple robots within roadmaps. IEEE Transactions on Robotics,
24.2, 2008.

Ryan Luna and Kostas E. Bekris. Efficient and complete centralized multi-robot path
planning. In SOCS, 2011.

Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-finding with
completeness guarantees. In International Joint Conference on Artificial Intelligence,
pages 294-300, 2011.

38

REFERENCES REFERENCES

[11] Ryan Luna. Efficient multi-robot path planning in discrete spaces. Master’s thesis,
University of Nevada, May 2011.

39

Appendix A

Data Storage and Transfer

A.1 Data Storage

Robots store many variables describing themselves, other robots, and their environment.
While some are redundant, they are stored to avoid recomputing values unnecessarily. The

stored values are listed in table A.1.

A.2 Data Transfer

The information passed between robots is summarized in table A.2. The robot’s priority is
actually redundant given the botNum and swap, and the boxNum is redundant given X and
Y position, but both of these variables are used frequently enough that they merit being
transferred. The rest of the variables are specifically needed by the algorithm at some point.
Note that the path transmitted from robot to robot is different from the path variable that
each robot stores about itself in that the path in knowledge begins at the robot’s last node.

40

A.2. DATA TRANSFER

APPENDIX A. DATA STORAGE AND TRANSFER

‘ Variable ‘ Explanation
botNum Robot’s ID number (priority)
swap ID of this robot’s swap partner
priority | Maximum priority of this robot and swap partner
status State of this robot when swapping or pushed
leader Is this robot the leader in the swap?
visited List of unavailable branch nodes already visited
oldTwig Yend
otherSwap Swapping robot to wait for
solved Is this robot solved?
solvedBots List of all solved robots seen so far
boxNum Node nearest this robot’s current position
path Set of nodes this robot is planning to take
last Index of last node in path that this robot was on
xPos X coordinate of this robot’s position
yPos Y coordinate of this robot’s position
xGoal X coordinate of this robot’s goal
yGoal Y coordinate of this robot’s goal
goalNum Node number of this robot’s goal
theta Orientation (counter-clockwise from right, in rad)
time Simulation time
map Data type storing environment (graph and tree)
color Used for drawing this robot in the animation
knowledge Information on all other robots in C(r)
Table A.1: Stored Data
‘ Variable ‘ Explanation
botNum Robot’s ID number
xPos X coordinate of robot’s position
yPos Y coordinate of robot’s position
xGoal X coordinate of robot’s goal
yGoal Y coordinate of robot’s goal
priority Maximum priority of robot and swap partner
path Set of nodes robot is planning to take
boxNum Node nearest robot’s current position
swap Robot’s swap partner
status State of robot when swapping or pushed
solved Is this robot solved?
TimeOfReceipt Simulation time this data was generated

Table A.2: Transferred Data

41

QOO0 O Ut W+

Appendix B

MATLAB Code

B.1 animation.m

EE R EEEEEE R R R EE R E R e]

% Decentralized and Complete Multi-Robot Motion Planning %
% in Confined Spaces %
% Dexter Scobee and Adam Wiktor %
% Top-level animation code: %

% Initializes each robot. Next, calls functio to

betn

% messages n robots, has

7e them plan their paths and move, %

% and draw the map and their current locat Continues o

% looping until all rob
ST LS LLLLLLLLIISIIIIIIIIIIIIIIIIIIH%%%

s have reached their g

clear all
close all

clc

dt = 0.1; % time step

radius = 2; % radius of communication

3 initialize t

he map and robots
map = MapMaker (‘maptest.txt’, radius);
bot = BotMaker ('MapTestBo

.txt’,map);

numBots = length (bot) ;

done = 0;
while done ==

clf

hold on

% map.draw();
map.drawTree () ;
done = 1;
% each robot communicates with neighbors
for i=1l:numBots

bot (i) .getInfo (checkNeighbors (i, bot));
end

% each robot moves
for i=1:numBots
botDone = bot (i) .move (dt) ;
bot (i) .draw();
if (bot(i).solved ~= 1) || (botDone ~= 1)
done = 0; % loop again if any robot is not done
end
end

axis equal

42

48
49
50
51

© 00 ~JO Ut W+

B.2. ROBOT.M

APPENDIX B. MATLAB CODE

hold off

pause (dt/10) ;

end % while

B.2 Robot.m

R AR R R R AR R AR R R AR R A R AR R LR R L R R R R AR R R LA R LR R LAt iR L)

% Decentralized and Complete Multi-Robot Motion Planning %

% in Confined Spaces

o

% Dexter Scobee and Adam Wiktor
% Robot datatype:

o
o0 oo

o

% Datatype to represent one robot, along with methods for

% moving the robot toward its goal and avoiding collisions. %
$5%%%%% %% %% $5%%%%

classdef Robot < handle

properties

% Swap parameters

botNum = 0; % robot’s ID number

o

swap = 0; ID of the bot this bot is swapping with

oo

(0 if no swap)

o

priority = 0; priority of swap pair OR depth of goal node

o0

status = 0;
leader = 0; % 1is this bot the leader in the swap

o0

visited = 0;
oldTwig = 0;
otherSwap = 0;

branch nodes already visited

oe

twig that bot came from in a swap

o

the pair of swappers that you’re waiting for

o

solved = 0; has this bot (and all higher priority bots

o

been properly sorted

solvedBots =0; % list of solved robots seen

% Bot position and goal

boxNum = 0; % node nearest the robot’s current position
path = 0; % array of nodes for robot to travel along
last = 0; % index in path of the last node the robot was
xPos = 0; % x position

yPos = 0; % y position

xGoal = 0; % x coordinate of goal node

yGoal = 0; % y coordinate of goal node

goalNum = 0; % node number of goal

theta = 0; % orientation (ccw from right)

% Other parameters

time = 0; % simulation time

map = 0; % map

color = "b’;

knowledge = struct (’botNum’, 0, ’'xPos’, 0,...

’ypPos’, 0,’xGoal’, 0, ’"yGoal’, 0,...
'priority’, 0, ’'path’, 0, ’"boxNum’, 0,...
’swap’, 0, ’status’, 0, ’solved’, 0, "ToR’, 0);

end

properties (Constant = true)
radius = 0.1; % robot’s radius when drawing
turn = 10; % turning speed (rad/s)

vel = 1; % velocity (units/s)

end

methods

Sk ko kK kA ok k kK ok kK ok kR kK Kk kK ok k kK ok kK kK ko kK ok kR kR kS

o

% Constructor. Takes a map, the robot’s ID number

% current x-y position, goal x-y position, and color as %
% arguments and returns a robot object. The color %
% argument is optional and defaults to blue. %

Gk ok kkh ok ok hkkkhkh kA khk kA ARk hhkkkkkkhk kA Ak hk kA Kk khkhkkkkkkhk Ak khk kA x5
function bot = Robot (map, botNum, x, y, xdest, ydest, color)

%initialize variables

43

1 if moving, -1 if can’t move, 0 if could move

B.2. ROBOT.M

APPENDIX B. MATLAB CODE

bot .botNum = botNum;
bot.xPos = x;
bot.yPos = y;
bot.xGoal = xdest;
bot.yGoal = ydest;
bot.map = map;
bot.time = 1;
bot.swap = 0;
bot.status = 0;
bot.solved = 0

i

bot.goalNum = map.xy2node (xdest, ydest) ;
bot.priority = map.nodeDepth (bot.goalNum) ;

if nargin > 6
bot.color = color;
end

bot .boxNum = map.xy2node (x,y);
bot.path = map.makePath (bot.boxNum,

bot.last = 1;

% bot.initialize (map.xy2node (xdest,ydest));
bot .botNum = bot.priority;
end

Sk ko ko kK kK kAR ko kK kK kKR kK kKK Kk kK ko kKR kK Kk Kk Kk kK kAR Kk Kk Ak S

% signal:

% robot.

% Pass bot’s current state and knowledge to a neighboring %

o

R R R R R L L L R SRt

function signal = signal (bot)

% pass bot’s current state

signal (1) = struct(...

"botNum’, bot.botNum, ...
"xPos’, bot.xPos,...

’'yPos’, bot.yPos,...

! xGoa

’

’yGoal’, bot.yGoal,...

'priority’, bot.priority,...

"path’, bot.path(bot.last:length (bot.path)),...
"boxNum’, bot.boxNum, ...

"swap’, bot.swap,...

’status’, bot.status,...

’solved’, bot.solved, ...

"ToR’, bot.time);

signal (2:1length (bot.knowledge) +1)

end

bot.xGoal, ...

bot .knowledge;

Gkkk ok kkk ok k ok kkhkkkkkk kA hkkkk kA hk h ok kkhhkkkk Ak Ak hk kX kK kK Kk kS

% getInfo:

% bot’s knowledge.

E e

function getInfo (bot, data)
bot.knowledge = data;
end

Gk ko k kKK Kk kK kKKK kK kK Kk kK KKKk kK kKK Kk kR Kk KKKk Kk kS

% draw:

% direction bot is facing.

% Receive data from neighboring robots and store it to

% Draw bot as a circle with a line indicating the

o

R]

function draw (bot)

% Draw the robot at its current position

alpha = 0:0.1:2+pi;

x = bot.xPos + bot.radiusx*cos (alpha);
y = bot.yPos + bot.radiusssin(alpha);
plot (x,y, Color’,bot.color, ’'LineWidth’,2);

bot.xPos bot.xPos+2+bot.radius«cos (bot.theta)];

[
y = [bot.yPos bot.yPos+2+bot.radius*sin (bot.theta)];
(

x =

plot (x,y,’Color’,bot.color,’LineWidth’,2);

3 Draw the goal

plot (bot.xGoal,bot.yGoal, %", ...

44

B.2.

ROBOT.M APPENDIX B. MATLAB CODE

"Color’,bot.color,’MarkerSize’,15);

axis square

R R]

% move: %
% Plans a path and moves bot along it. Takes the time %
% step as an argument and returns 1 if bot has reached %
% the goal or 0 otherwise. %

Gkkk ok ok ok kkk ok kkhkk ok kkkkkkkkk kA Kk k h ok hkhhkh kA kA Kk kk kX kX kK Kk kT
function done = move (bot, dt)

% plan bot’s path

bot.time = bot.time + 1;

done = bot.plan();

done = bot.checkLockBox (done) ;

if done == 1 % reached goa
return;
end
if done == -1 % do not move
done = 0;
return;
end
if bot.last >= length(bot.path) - 1
return;
end

next = bot.path(bot.last+1)
[nextX nextY] = bot.map.node2xy (next);
dx = nextX - bot.xPos;
dy = nextY - bot.yPos;
if (dx == 0) && (dy == 0)
nextTheta = bot.theta;
else
nextTheta = atan2 (dy,dx);
end

dTheta = nextTheta - bot.theta;
% check for shortest turning direction
if abs(dTheta - 2xpi) < abs(dTheta
dTheta = dTheta - 2*pi;
else
if abs (dTheta + 2*pi) < abs(dTheta)
dTheta = dTheta + 2%pi;
end
end
% turn
if abs(dTheta) > le-14
if abs(dTheta) <= bot.turnxdt % close enough
bot.theta = nextTheta;
return;
end
bot.theta = bot.theta + bot.turnxdtxsign(dTheta);
return;

end

s move
if (abs(dx) <= abs(bot.velxdtxcos(bot.theta))) &&
(abs (dy) <= abs (bot.velxdtxsin(bot.theta)))
% close enough
bot.xPos = nextX;
bot.yPos = nextY;
bot.last = bot.last + 1;
else
bot.xPos = bot.xPos + bot.velxdtxcos (bot.theta);

45

B.2. ROBOT.M

APPENDIX B. MATLAB CODE

bot.yPos = bot.yPos + bot.vel«dt*sin(bot.theta);
end

% check if bot has entered a different boxNum
if next ~= bot.boxNum
nextDist = bot.map.xyDist (bot.xPos, bot.yPos,...
nextX, nextY);
[lastX lastY] = bot.map.node2xy (bot.path (bot.last));
lastDist = bot.map.xyDist (bot.xPos, bot.yPos,...
lastX, lastY);
if nextDist < lastDist
bot .boxNum = next;
end

end

end % function move

% methods

methods (Access = private)

Stk ko kK kK kK Kk kK ok kK ok kK k kK ok kK ok kK ok k kK ok kK ok kK K KKk kK kS

% checkLockBox: %
% Check for lock box violations. If one is found, stop %
% moving. Otherwise continue as planned %

Gk sk ok ok kK K K KK KKK KK KK K K K Kk o o K K K K K kS
function done = checkLockBox (bot, done)
% check for lock box violations
if bot.knowledge (1) .botNum ~= 0 % know about other robots
for i = 1l:length (bot.knowledge)
if bot.knowledge (i) .boxNum == bot.path (bot.last+1)
% another robot is at bot’s next node
done = -1;

return;

Stk ko ko ok ko kK kKK Rk kK ok kK k kK ok kK ok kK ok ok kK ok Kk ko kK Kk kS

% plan:

o

Plan a path from bot’s current position to the goal,

E

% avoiding collisions if necessary. Return 1 if bot has

o

reached the goal, -1 if bot should stop moving, and 0

5 otherwise. %
Gohkkk ok ok ok ok ok k ok hkkhkkhkkkhkhk kA kKA KKK ARk hhkhkhhkk Ak k Ak kK kkkkkkkkk k5
function done = plan (bot)

done = 0;

% get this bots
bot.solved = bot.checkSolved();
waitForSwappers = 0;
getPushed = 0;

solved state

% get info on other bots in network
if bot.knowledge (1) .botNum ~= 0
for i = 1l:length (bot.knowledge)

% check if there was a high-priority swap to wait for

if bot.knowledge (i) .priority bot.otherSwap ||
(bot .knowledge (i) .swap ~= 0 &&
bot.knowledge (i) .priority < bot.otherSwap)
bot.otherSwap = 0;

end

3 check if anyone else is waiting
% for swappers to return
if bot.knowledge (i) .status == -2
waitForSwappers = 1;
end
% Only get pushed if you’re lower priority than
% the swappers OR if you’re already solved
if bot.knowledge (i) .swap ~= 0 &&
(bot .botNum > bot.knowledge (i) .priority ||
bot.solved == 1)

46

B.2.

ROBOT.M

getPushed = 1;

end

C ck for solved bots to add to solvedBots
goal = bot.map.xy2node (bot.knowledge (i) .xGoal, ...
bot.knowledge (i) .yGoal) ;
if bot.knowledge (i) .solved ==
if bot.solvedBots ==
bot.solvedBots = goal;
continue;
end
foundGoal = 0;
for j=1:length (bot.solvedBots)

if bot.solvedBots(j) == goal
foundGoal = 1;
break;

end

if bot.map.nodeDepth (bot.solvedBots(j)) >
bot .map.nodeDepth (goal)
solvedList =
zeros (1, length (bot.solvedBots) +1) ;
if 3 > 1
solvedList (1:j-1) =
bot.solvedBots (1:j-1);
end
solvedList (j) = goal;
solvedList (j+1l:end) =
bot.solvedBots (j:end);
bot.solvedBots = solvedList;

foundGoal = 1;

break;
end
end
if ~foundGoal
bot.solvedBots (end+1l) = goal;
end
elseif bot.solvedBots ~= 0

s remove any unsolved bots in solvedBots
unsolvedBot = 0;
for j=length (bot.solvedBots):-1:1
if bot.map.nodeDepth(goal) <=
bot .map.nodeDepth (bot .solvedBots (j))
unsolvedBot = j;
else
break;
end
end
if unsolvedBot > 1
bot.solvedBots =
bot.solvedBots (l:unsolvedBot-1);
elseif unsolvedBot ==
bot.solvedBots = 0;

end

if bot.otherSwap ~= 0
done = bot.getStopped();
return;

end
if bot.status == -2

bot.status = 0;
end

if waitForSwappers

done = -1;
return;
end
% check if there is a higher priority bot to ith

APPENDIX B. MATLAB CODE

B.2.

ROBOT.M

APPENDIX B. MATLAB CODE

[swapBotl swapBot2] = bot.c
if bot.botNum == swapBotl
if bot.swap ~= swapBot2

suppress new sw

belowSolved = 0;

for i = 1l:length(bot.solvedBots)
if bot.solvedBots ==

break;
end
goal = bot.solvedBots (i);
goalPriority = bot.map.nodeDepth (goal);
if bot.botNum < goalPriority
break;

end

node = bot.boxNum;
nodePriority = bot.map.nodeDepth (node);
while nodePriority < goalPriority

if goal == bot.map.tree (node)

belowSolved = 1;

end

node = bot.map.tree (node);

nodePriority = bot.map.nodeDepth (node);
end

end

if ~belowSolved
bot.resetSwap();
bot.priority = min([swapBotl swapBot2]);
bot.swap = swapBot2;
else
getPushed = 0;
bot .resetSwap () ;

end
end
elseif bot.botNum == swapBot2

if bot.swap ~= swapBotl
suppress new swaps if below a solved bot
belowSolved = 0;
for i = 1l:length(bot.solvedBots)
if bot.solvedBots ==
break;
end
goal = bot.solvedBots(i);
goalPriority = bot.map.nodeDepth (goal);
if bot.botNum < goalPriority
break;

end

node = bot.boxNum;
nodePriority = bot.map.nodeDepth (node);
while nodePriority < goalPriority

if goal == bot.map.tree(node)

belowSolved = 1;

end

node = bot.map.tree (node);

nodePriority = bot.map.nodeDepth (node);
end

end

if ~belowSolved
bot.resetSwap();
bot.priority = min([swapBotl swapBot2]);
bot.swap = swapBotl;
else
getPushed = 0;
bot .resetSwap () ;
end
end
elseif bot.swap ~= 0
bot.resetSwap () ;
end

48

B.2.

ROBOT.M

% if I need to

P

if bot.swap ~= 0 && bot.swap ~= bot.botNum

% enter swap mode
done = bot.getSwapped();
return;

end

% if I don’t need to swap

if bot.swap == bot.botNum
bot.status = 0;
done = 0;
return;

end

if getPushed
% enter get pushed mode
done = bot.getPushed();
return;

end

% in normal mode

% (this rev

if bot.knowledge (1) .botNum ~= 0

ses the ’‘push’)

for i = 1l:length (bot.knowledge)
if bot.boxNum > bot.knowledge (i) .boxNum
for j = l:length (bot.knowledge (i) .path)

if bot.knowledge (i) .path(1l) ~=

bot .knowledge (i) .boxNum

continue;
end

if bot.knowledge (i) .path(j) ==

break;

end

if bot.knowledge (i) .path(3j) ==
bot.path (bot.last+1)

done = -1;
return;
end
end
end
end
end
% at this point, bot is not involved in any swaps
[xDest yDest] = bot.map.node2xy (bot.path(end));
if (bot.xPos == xDest) && (bot.yPos == yDest)
% reached last node on current path
if (bot.xPos == bot.xGoal) && (bot.yPos ==
done = 1; % reached goal
return;
end

% plan a new path to the goal

bot.initialize (bot.map.xy2node (bot.xGoal,bot.yGoal));

end

end % function plan

% want to give right of way to bots on higher priority branch

bot . boxNum

bot .yGoal)

R R]

% checkSolved:

% Checks to see if a robot and subtree are solved

Gkkkkkkk ok k ok kkhkk ok kk kK kkkkk kA Kk h ok h kA h Ak kk kA kA kK kKX kXA K Kk kT

function solved = checkSolved (bot)
solved = bot.solved;

if (bot.xPos == bot.xGoal) && (bot.yPos == bot.yGoal)
solved = 1; % reached goal

end

if bot.knowledge (1) .botNum ~= 0

for i=1:length (bot.knowledge)

if bot.knowledge (i) .botNum < bot.botNum

49

APPENDIX B. MATLAB CODE

B.2.

ROBOT.M

APPENDIX B. MATLAB CODE

&& bot.knowledge (i) .solved == 0
solved = 0;

Sk kK kKR kK ko Kk ok Rk Kk Kk Kk Kk kKR kK Kk Ak S

% chec

p: %
% Checks to see if a robot needs to

R R]

function [swapBotl swapBot2] = checkSwap (bot)
if bot.knowledge (1) .botNum ==
swapBotl = 0;
swapBot2 = 0;
return;
end

botList = bot.signal();
botRank = zeros(size(botList));
botNumList = zeros(size(botList));
for i=1:length (botList)
botNumList (i) = botList (i) .botNum;
botRank (i) = botList (i) .priority;
end

% first sort by botNum so this bot is in the right order
[~,I] = sort (botNumList);

botList = botList (I);

botRank = botRank (I);

% next sort by priority
[~,I] = sort (botRank);
botList = botList (I);

for i = 1l:length(botList)
% if highest priority robot who needs to swap is already
% swapping with someone, let them continue
if (botList (i) .swap ~= 0) &&
(botList (i) .swap ~= botList (i) .botNum)
swapBotl = botList (i) .botNum;
swapBot2 = botList (i) .swap;

return;

for j = i+l:length(botList)
% Jj must be adjacent to i for them to swap
if ~bot.checkAdjacent (botList (i),botList (Jj))
continue;
end

[splitl, split2, onPathlG, onPath2G] =

bot.checkSplit (botList (i),botList (J));

if (splitl && split2) || (splitl && onPath2G) |
(split2 && onPathlG) ||
(botList (i) .swap == botList (i) .botNum &&
splitl && botList (Jj).status == -1)

3> assumes knowledge is ordered
% with highest priority bots first
swapBotl = botList (i) .botNum;

swapBot2 = botList (j).botNum;

return;
end
end
if botList (i).solved ~= 1
swapBotl = botList (i) .botNum;
swapBot2 = botList (i) .botNum;

return;
end

end

swapBotl = 0;

20

B.2.

ROBOT.M

APPENDIX B.

MATLAB CODE

swapBot2 = 0;
end

Sokkkkkk kA Ak hkhhhhhhhkkkkkk kA KAk khkhhhkhhkhkkkkkk kA KAk kkk kAKX S
% checkSplit: %
% Checks to see if two robots split eachother from their %

% goals.

o

splitX = 1 if bot (X) is separted from his goal

onPathXG = 1 if bot (X)’s goal is on the path between

bot (Y) and bot (Y)’s goal

R R]

o

function [splitl, split2, onPathlG, onPath2G] =
checkSplit (bot, botl, bot2)

botlGoal = bot.map.xy2node (botl.xGoal, botl.yGoal);
bot2Goal = bot.map.xy2node (bot2.xGoal, bot2.yGoal);

pathBot = bot.map.makePath (botl.boxNum, bot2.boxNum) ;
pathGoall = bot.map.makePath (botl.boxNum, botlGoal);
pathGoal2 = bot.map.makePath (botl.boxNum, bot2Goal);

if (pathBot (2) ~= pathGoal2(2)) || (botl.boxNum == bot2Goal)
split2 = 1;

else
split2 = 0;

end

if ~isempty (find(pathGoall == bot2Goal, 1))
onPath2G = 1;

else
onPath2G = 0;

end

pathBot = bot.map.makePath (bot2.boxNum, botl.boxNum);
pathGoall = bot.map.makePath (bot2.boxNum, botlGoal);
pathGoal2 = bot.map.makePath (bot2.boxNum, bot2Goal);

if (pathBot (2) ~= pathGoall(2)) || (bot2.boxNum == botlGoal)
splitl = 1;

else
splitl = 0;

end

if ~isempty (find(pathGoal2 == botlGoal, 1))
onPathlG = 1;

else

onPathlG = 0;
end
end

Gohkkkkk kA A Ak hhh kAR hkkkk ok k kAR A Ak hhh kA Ak hkkkkh kAR KA Kk k kA KA KT

% checkAdjacent: %
% Check if two robots are on adjacent nodes %

Stk ko ko ok ko kKR kK ok ok kK ok kK ok kK ok kK ok kK ok ok kK ok kK ok ko kK kA kS

function isAdjacent = checkAdjacent (bot, botl, bot2)
% check if bot2 is on botl’s parent
if bot.map.tree(botl.boxNum) == bot2.boxNum
isAdjacent = 1;
return;

end

%check if botl is on bot2’s parent

if bot.map.tree (bot2.boxNum) == botl.boxNum
isAdjacent = 1;
return;

end

isAdjacent = 0;

end

ko kK kK kR ko Kk ok kK ko kK ko Kk ko ko ko Kk

% getPushed: %

ol

B.2.

ROBOT.M

APPENDIX B. MATLAB CODE

% Robot moves out of the way of swapping b
kkk ok ko k ok ok k ko k ok ok k ok ok ok ok ok ok ok ok ok k ok kk ok kkkkkkkkkkkkkk ok ok kkkkhkkhkk kG

function done = getPushed (bot)

if bot.knowledge (1) .botNum ~= 0

s find the

pping pair with highest priority
swapCheck = 0;
for i=1:length (bot.knowledge)

if bot.knowledge (i) .swap ~= 0
if swapCheck == % first pping pair found
swapBots (1) = bot.knowledge (i);
swapCheck = 1;
elseif bot.knowledge (i) .botNum == swapBots (1) .swap
swapBots (2) = bot.knowledge (i);
end

% set otherSwap to keep track of highest priority
=0

% 1if swapBots(l) is higher priority bot and bot is

if swapCheck

% in direct communication with swapBots (1)

if swapBots(l).botNum == swapBots(l).priority &&...
swapBots (1) .ToR == bot.time - 1
bot.otherSwap = 0;
if bot.botNum == 14
a=1;
end

% check if swapBots(l) is at a parent of his goal
node = bot.map.xy2node (swapBots (1) .xGoal, ...
swapBots (1) .yGoal) ;

atParent = 0;
foundFirstNode = 0;

while node ~= bot.map.root
if (node == swapBots (1l).path(1l)) ||
(node == swapBots (1) .path(2)) &&...
~foundFirstNode
foundFirstNode = 1;
end
if (node == swapBots(l).path(1l)) ||
(node == swapBots(l).path(2)) &&...
foundFirstNode
atParent = 1;
break;
end

node = bot.map.tree(node);

% if s

apBots (1) is heading up the tree
if bot.map.tree (swapBots (1) .path(l)) ==
swapBots (1) .path(2) &&
swapBots (1) .path (1) ~= bot.map.root
if atParent
bot.otherSwap = swapBots (1) .botNum;
end
else % if swapBots(l) is not heading up the tree
if ~atParent

bot.otherSwap = swapBots (1) .botNum;

% add pushed robots

to swapBots array
for i=1l:length (bot.knowledge)
if (bot.knowledge (i) .status == 1)

0
swapBots (end+1) = bot.knowledge (1i);

&& (bot.knowledge (i) .swap
swapCheck = 1;

end

end

52

ROBOT.M

APPENDIX B. MATLAB CODE

if swapCheck ==
bot.status = 0;
done = 0;
return

end

freeNodes = zeros(bot.map.n,1);

check if bot is on the path of the swapping robots

for i=1l:length (swapBots)
if ~isempty (find(swapBots (i) .path(2:end) ==...
bot .boxNum, 1))
for j=1:length (swapBots (i) .path)

if swapBots (i) .path(l) ~= swapBots (i) .boxNum

continue;
end
freeNodes (swapBots (i) .path(j)) = 1;
if swapBots (i) .path(j) == bot.boxNum
break;
end

1ed destination

% check if bot has rea

[xDest yDest] = bot.map.nodeZxy (bot.path(end));
if bot.xPos == xDest && bot.yPos == yDest
bot.status = 0;
end
if freeNodes (bot.boxNum) == 0 % bot is not in the wa

bot.initialize (bot.boxNum) ;
if bot.status ==
done = 0;
return;
else
bot.status = 0;
done = -1;
return;
end
end
% check for nodes that are free

for i=1:length (bot.knowledge)

if bot.knowledge (i) .status == -1 ||
bot.knowledge (i) .status ==
freeNodes (bot .knowledge (1) .boxNum) = 1;
end
end
index = 1;
% add a children to neighbors

for i=1l:bot.map.n

if (bot.map.tree(i) == bot.boxNum) &&
(i ~= bot.map.root)
neighbors (index) = i;

index = index + 1;
end
end
% add parent to neighbors
if (bot.boxNum ~= bot.map.root)
neighbors (index) = bot.map.tree (bot.boxNum) ;

end

% sort neighbors ba on node depth
[~,I] = sort(-bot.map.nodeDepth (neighbors));
neighbors = neighbors(I);

dest = 1;
if bot.status == 1

23

B.2. ROBOT.M

APPENDIX B. MATLAB CODE

end

end

if freeNodes (bot.path (bot.last+l)) ==
done = 0;
return;

else % need to find new destination

currentDest = find(neighbors ==...

bot.path (bot.last+1),1);
if ~isempty (currentDest)

dest = currentDest + 1;

while dest <= length(neighbors)

if freeNodes (neighbors(dest)) == 0
bot.initialize (neighbors(dest));
bot.status = 1;
done = 0;
return;

end

dest = dest + 1;

end

% no free nodes available
bot.status = -1;
bot.initialize (bot.boxNum) ;
done = -1;

return;

0

current path is still good, continue

moving

Gkkkkkkk ok k ok k ok h ok kkkk kA hkkkk kA Kk k h ok hk kA ko kkk kA kA kK kKX KKKk Kk kS

% getsSto

% Robot

pped:

moves out of the way of swapping bots

%5k ok ok ok ok ok ok ok ok K kK ok Kk ok kK ok Kk kK ok K kK Kk Kk k Rk Kk ok k kK k ok kK Kk kKK kK k kS

function
bot.
done
retu

end

done = getStopped (bot)
status = -2;
= -1;

rn;

Sk kK kK kK kK ko Kk Kk Rk Kk Kk ko Kk Kk kK ok kK K kS

% getSwa

% Robot

pped:

swaps with another robot

R R]

function

bot.

if b

end

if b

end

if b

end

end

done = getSwapped (bot)

solved = 0;

ot.status == % find a new branch point
done = bot.startSwap();

return;

ot.status ==
done = bot.continueSwap () ;

return;

ot.status ==
done = bot.endSwap () ;

return;

Gk ok kk ok k ok kk ok kh ok kkk kK kA ok kA kA Ak Ak h kA kK kk kA kA kX kKX KK KKKk kT

% startSwap:
% Initialize the swap, picking a branch point and planning%
% a path.
ok sk ok ok ok ok o K K K K K K K K K K K Kk kK ok o K K K K K K K K S
function done = startSwap (bot)

foundPartner = 0;

bot.leader = 0;
bot.oldTwig = 0;

count = bot.map.findBranches();

o4

B.2. ROBOT.M

APPENDIX B.

MATLAB CODE

for i=2:length (bot.visited)

if bot.visited(i) ~= 0
count (bot.visited(i)) = 0;
end
end
priorityBot = bot; % bot with higher ID number

otherBot = bot;

if bot.knowledge (1) .botNum ~= 0
for i=1l:length (bot.knowledge)
if bot.knowledge (i) .botNum == bot.swap
foundPartner = 1;

otherBot = bot.knowledge (i) ;
end
% find lower ID bot
if (bot.swap == bot.knowledge (i) .botNum) &é&
(bot.swap < bot.botNum)
priorityBot = bot.knowledge (i) ;
otherBot = bot;
end
end

end

$revert to normal mode if partner not found during
$branch reassignment
if ~foundPartner

bot.resetSwap();

done = 0;

return;

end

minLength = inf;
goBranch = 0;

noTwig = 0;

for i=1l:length (count)
if count (i) >= 3 % node is a viable branch
route = bot.map.makePath (priorityBot.boxNum,1i);
if length(route) < minLength
minLength = length (route);
goBranch = 1i;
if length(route) > 2
noTwig = route (end-2);
else
noTwig = 0;

end

end

%didn’t find available branch; visited and try

if goBranch ==
bot.visited = 0;

done = 0;
return;
end
%$%%%if here, you are in contact with your partner, and
%$%%% there are branch points available
bot.visited(end+l) = goBranch;
% remove t next "parent bra " from visited
branch = goBranch;
while branch ~= bot.map.root
found = find(bot.visited == bot.map.tree(branch),1);

if ~isempty (found)
bot.visited(found) = 0;
break;

end

branch = bot.map.tree (branch);

25

B.2. ROBOT.M

APPENDIX B.

MATLAB CODE

%if priorityBot was on the chosen branch point, look at
%otherBot
route = bot.map.makePath (otherBot.boxNum, goBranch);
if noTwig ==
if length(route) > 2
noTwig = route(end-2);
end
else
if length(route) > 2
%if robots are on opposite sides of a branch point
if route(end-2) ~= noTwig

noTwig(2) = route(end-2);

%lower priority bot waits on his t
if bot.botNum == otherBot.botNum
bot.initialize (noTwig(2));
bot.leader = 1;
bot.status = 1;
bot.oldTwig = noTwig(l);
done = 0;

return;

% build list of twigs b

N

anch point

add parent to

if goBranch ~= bot.map.root &&

isempty (find (noTwig == bot.map.tree(goBranch), 1))
twigList = bot.map.tree (goBranch);
else
twigList = [];
end

for j=l:bot.map.n

if bot.map.tree(j) == goBranch &&
isempty (find (noTwig==3,1)) &&
j ~= bot.map.root
twigList (end+l) = j;

end

end

if ~isempty (find(route (2:end)==priorityBot.boxNum, 1)

$priorityBot is leader

if bot.botNum == priorityBot.botNum % bot is priorityBot
bot.initialize (twigList(1));
done = 0;
bot.leader = 1;
bot.status = 1;
bot.oldTwig = noTwig(end);
return;
else % non-split case, pick second twig

bot.initialize (twigList (2));
done = 0;

bot.leader = -1;

bot.status = 1;

bot.oldTwig = noTwig(1l);
return;

end

else %otherBot is leader
if bot.botNum == otherBot.botNum % bot is otherBot
bot.initialize (twigList (1));
done = 0;
bot.leader =
bot.status =

bot.oldTwig = noTwig(1l);

1;
1;

return;
elseif length(noTwig) > 1 % bot is priorityBot

% split case, pick first tw

bot.initialize (twigList(1));
done = 0;

bot.leader = -1;

bot.status = 1;

o6

ROBOT.M

APPENDIX B. MATLAB CODE

bot.oldTwig = noTwig(1l);
return;
else % non-split case, pick second twig
bot.initialize (twigList (2));
done = 0;
bot.leader = -1;
bot.status = 1;
bot.oldTwig = noTwig(1l);

return;

1tinues to unles it has reached its %

ation or there are other bots blocking the path %
5ok ok ok ok kK ok ok ok kK ok ok ok ok K ok ok ok ok K K ok ok ok K K ok ok ok K ok ok ok K Rk ok ok K Kk ok ok kK k ok ok ok Kk kxS

function done = continueSwap (bot)

done = 0;
foundPartner = 0;
if bot.knowledge (1) .botNum ~= 0
for i=1l:length (bot.knowledge)
if bot.knowledge (i) .botNum == bot.swap
foundPartner = 1;
swapPartner = bot.knowledge (i)
break;
end
end
end

if regaining

munication with partner, need to

einitialize al

p parameters (oldTwig, visi

s becuase he may have already cleared them
if foundPartner && swapPartner.swap ~= bot.botNum

bot.visited = 0;

bot.status = 0;

% call immediately to avoid confusion
done = bot.startSwap();

return;

if partner is picking a new branch while he knows

% he’s apping with you
if foundPartner && swapPartner.status == 0
&& swapPartner.swap == bot.botNum
bot.leader = 0;

bot.status = 0;

call start swap right away so partner

s doesn’t misinterpret

done = bot.startSwap();

return;

% check 1f bot hs reached destination twig

[xDest yDest] = bot.map.node2xy (bot.path (end));

if bot.xPos == xDest && bot.yPos == yDest
bot.status = 2;

done = -1;

return;

, make sure that destination

% i 111 available, else, choose a different twig.
if bot.knowledge (1) .botNum ~= 0
for i = l:length (bot.knowledge)
if (bot.knowledge (i) .status == -1 ||
2) &&
bot .knowledge (i) .boxNum == bot.path (end)

bot.knowledge (i) .status

% build list of twigs off of branch point

% add parent to list of twigs

57

B.2.

ROBOT.M

APPENDIX B. MATLAB CODE

goBranch = bot.path(end-2);

if goBranch ~= bot.map.root

twiglList = bot.map.tree (goBranch);
else

twiglList = [];
end

for j=l:bot.map.n

if bot.map.tree(j) == goBranch &&
j ~= bot.map.root
$isempty (find (noTwig==7j,1)) &&
twigList (end+1l) = j;
end
end
% -~ twig should only appear once
% in twigList

current = find(twigList == bot.path(end));
if current < length(twigList)
if twiglList (current+l) ~= bot.oldTwig
bot.initialize (twigList (current+1));
return;
elseif current+l < length(twigList)
bot.initialize (twigList (current+2));

return;

or rema

% move on to next branch

if foundPartner
bot.status = 0;
bot.leader = 0;
done = 0;
return;

end

bot.resetSwap () ;

done = 0;
return;
end
end
end
end
Sk kKKK Kok ok ok ok ok ok kKKK K K K K KKK Kok kkkkkkkkkkkkkkkkkhkhkkhkhkkhkk Ak kx k%%

Kokokkok ok ok k ok ok ok kk ok Kk D

function done = endSwap (bot)

foundPartner = 0;

if bot.knowledge (1) .botNum ~= 0
for i=1l:length (bot.knowledge)
if bot.knowledge (i) .botNum == bot.swap
foundPartner = 1;

swapPartner = bot.knowledge (i)

break;
end
end
end
if bot.leader == 1 $ bot is the leader
if bot.oldTwig == bot.path(end) % heading to oldTwig
% follower has reached
[xDest yDest] = bot.map.node2xy (bot.path(end));
if bot.xPos == xDest && bot.yPos == yDest

s bot is at oldTwig
if foundPartner

[xBranch yBranch] = ...

bot .map.node2xy (bot.visited(end));

if swapPartner.xPos == xBranch...

o8

B.2.

ROBOT.M

APPENDIX B. MATLAB CODE

&& swapPartner.yPos == yBranch...
&&
bot.visited (end)

pPartner.path(end) == ...

s follower is at branch, end swap

ap is complete!

> Huzzah, Huzzah for Charter Club!
bot.resetSwap () ;
done = 0;
return;
end
% follower is not at branch, wait
done = -1;
return

end

% no communication, return to normal mode
bot.resetSwap () ;
done = 0;
return;
else
% heading to oldTwig
% check if oldTwig is blocked
if bot.knowledge (1) .botNum ~= 0
for i=1:length (bot.knowledge)
if bot.knowledge (i) .status == -1 &&
bot.knowledge (i) .boxNum == ...
bot.oldTwig
bot.status = 0;
bot.leader = 0;
done = 0;

return;

% at twig, check if other bot is in position

if foundPartner
% check if other bot needs new branch

if swapPartner.status == 0

bot.status = 0;

bot.leader = 0;

% call start = > right away so partner
% doesn’t misinterpret status = 0

done bot.startSwap () ;

return;

end

check if other bot is at his twig

[xTwig yTwig] = bot.map.node2xy apPartner.path(end));
if swapPartner.xPos == xTwig &&
swapPartner.yPos == yTwig

bot.initialize (bot.oldTwig);

done = 0;

return;
else

done = -1;

return;

end

else % bot is the follower
if bot.visited(end) == bot.path(end) % heading to branch
[xDest yDest] = bot.map.node2xy (bot.path(end));

if bot.xPos

xDest && bot.yPos == yDest

% swap is complete
bot.resetSwap () ;
done = 0;

return;

29

B.2. ROBOT.M

APPENDIX B. MATLAB CODE

end
% heading to branch
done = 0;

return;

end

if foundPartner

[xTwig yTwig] = bot.map.node2xy (bot.ol

if swapPartner.xPos == xTwig &&

swapPartner.yPos == yTwig

eader is at oldTwig
bot.initialize (bot.visited(end));
done = 0;
return;

else

s check if other bot needs new branch

if swapPartner.status == 0
bot.status = 0;
bot.leader = 0;

art

call s

doesn’t misinterpret status = 0

done = bot.startSwap();

return;
end
end
done = -1;
return;
end
end
% at this point, no communication with swap partner

bot .resetSwap () ;
done = 0;

ok kK kK K Kk Kk ok ok kK ok K Kk K Kk Kk Kk Kk ok ok kK ok Kk kK K Kk Kk Kk ok ok ok ok ok ok ok ok ok Kk

Kok ko ok ok kK kK S

function resetSwap (bot)

bot.swap = 0;

bot.visited = 0;
bot.status = 0;
bot.leader = 0;
bot.oldTwig = 0;

bot.initialize (bot.goalNum);
bot.priority = bot.botNum;

s initialize:

% Initializes bot’s path.

%ok K kK Kk Kk ok ok ok ok K ok K ok ok K kK kK Kk ek ok ok ke ok ok K Kk K ok ok ok kK ok kK Kk kA S

function initialize (bot, destNode)
startNodel = bot.path (bot.last);
startNode2 = bot.path (bot.last+1)

pathl = bot.map.makePath (startNodel, destNode);
path2 = bot.map.makePath (startNode2, destNode);
if pathl(2) == path2(1)
bot.path = pathl;
else
bot.path = path2;
end
bot.last = 1;
end
end % private methods

end % classdef

60

wap right away so partner

* ok kK Kk kk ok ok ok ok ok ok ok ok ok kK Kk ok kK ok ok ok ok ok kK K Kk kK K K KK Kok ok ok ok ok ok k kKKK KK KT

QO o0 ~JO Ut W

B.3. MAP.M

APPENDIX B. MATLAB CODE

B.3 Map.m

AR R R AR R R R AR R R AR A R AR R LR AR L R R R LAt R LR LRt E LAt i E L)

o

$T%%%%%% %%% %%%

Decentralized and Complete Multi-Robot Motion Planning %

in Confined Spaces %
Dexter Scobee and Adam Wiktor %

o

Map datatype:

e

o0

Datatype to store the map that robots travel on. Consists of

o

nodes and the edges that connect them.

XX EE AT

classdef Map < handle

properties
nX = 0; % number of nodes along X axis
nY = 0; % number of nodes along Y axis
n = 0; % total number of nodes
graph = 0; % matrix storing connections between nodes
tree = 0; % tree
root = 0; % root of the tree
nodeDepth = 0; % matrix containing the depth of each node
rho = 0;
comm = 0;
end
properties (Constant = true)
dx = 1; % X distance between nodes
dy = 1; % Y distance between nodes
end
methods

R

% Constructor. Takes the number of x nodes and the number

o

* of y nodes as arguments, and returns a map object

o

%k ok Kk ok Kk ok Kk ok K ok ok K ok ok Kk K ok Kk kK ok kK ok ok ok ok k ko kK Kk K Kk Rk ok ok k ko kR Kk R K
function map = Map(x, y)

map.nY = y;

map.nX = X;

map.n = map.nX*map.nY;

map.graph = zeros (map.n, map.n);

map.root = map.xy2node (ceil (map.nX/2), ceil (map.nY¥/2));
map.tree = map.bfs (map.root);
map.dfs (map.root, 1);
map.makeComm () ;
end
Sk ok Kk KKk Kk ok Kk ok K kK ok K ok K ok Kk ok Kk ok Kk kK kK K KK K Kk ok Kk ok ok Kk ok Kk K K

% addEdge:

o o

o

* Adds an edge to the map. Takes the x and y coordinates

% of each node to be connected.

Gk ok kK kK kK Kk kk kK ok k ok hkk kA Kk h ok kkkk kA kh kA kA kA khk kK Ak khk kA hk Kk kK xS
function addEdge (map, x1, yl, x2, y2)

v = map.xy2node (x1,yl);

w = map.xy2node (x2,y2);

map.graph(v,w) = 1;

map.graph(w,v) = 1;
end

Sk ko kK kK ok k kK ok kK ok ok Kk kK Kk kK ok kK ok ok ko kK kK kR kR kR kS

makePath: s

o

Calculates the shortest path between the start node and %

o

destination node using breadth-first search. Takes the %

o

start node and destination node numbers as arguments %

o

and returns an array of nodes representing the path. %
R R R e R R R R R R e T
function path = makePath (map, startNode, destNode)

% Build a tree using BFS with startNode as the root

s = startNode;

i=1;

while (map.tree(s(i)) ~= s(i))

61

B.3. MAP.M

APPENDIX B. MATLAB CODE

s(i+l) = map.tree(s(i));

1= i+l1;

d = destNode;

i=1;

while (map.tree(d(i)) ~= d(i))
d(i+l) = map.tree(d(i));
i = i+1;

end

for i=1:length(d)
pathD (i) = d(length(d)-i+1);

for i=1l:length(s)
for j=1l:length (pathD)
if s(i) == pathD(J)
break;
end
end
if s(i) == pathD(J)
break;
end

end
path = s(1l:1i);

path(i+l:i+ (length(pathD)-3)) =

path(end+1l) = path(end);
end

Sokk ok k ok k ok ok ok k ok ok h ok kkkk Ak kkk ok k ok h ok k ok kkkh ok kkkk kA kk ok ok kkkkkkkkk kS

Gk ko k ok ok kK kK ok ok Kk Kk ok kk Kk ok k kK kA Kk Kk Kk ok Kk kA kkkkkk Kk k Kk kkk Ak kk kD

function draw (map)
hold on
for i=l:map.n
% draw the nodes

[x1 y1] = map.node2xy (i)

plot (map.dx*x1l,map.dy*yl,’ .k’, MarkerSize’,10);

% draw the edges
for j=l:map.n
if (map.graph(i,j) == 1)
[x2
plot (map.dx=*[x1l x2],

end
end

end

axis ([0 map.dx* (map.nX+1l) 0 map.dy* (map.n¥Y+1)]);

axis square

Kk kkhkkkhkhk kA Kk khhkhkkkkhk kA Ak hk kA Ak khhkkkkkhkhk Ak k kA Ak Kk k kKK k k5

% drawTree:

Draws only edges that are part of

pathD (j+1

y2] = map.node2xy (Jj);

rend) ;

map.dy* [yl y2],"k");

the tree

R R

function drawTree (map)
hold on
for i=l:map.n

% draw the nodes

[x1 y1] = map.node2xy (i);

plot (map.dx*x1,map.dy*yl,’ .k’,’MarkerSize’,10);

% draw the edges
for j=l:map.n
if j == map.root
continue;

end

62

B.3. MAP.M

APPENDIX B. MATLAB CODE

[x1 y1] = map.node2xy (J);

[x2 y2] = map.nodeZxy (map.tree(j));

plot (map.dxx[x1 x2], map.dy=*[yl y2],"k");
end

end

axis ([0 map.dx* (map.nX+1l) 0 map.dy* (map.n¥Y+1)]);
% axis square

end

Gohkok ok kk ok kkkk Kk Kk ok Ak khhkhkkhkk kA kKA KR A ARk hhkkhhk Ak kA hk kK kkkkkkkkk*F
% makeTree: %
% Build the tree using BFS %
Gohkokkkk ok kk ok ok k ok ok kkkkkkkkkkkhk Ak kkk Ak khhkkhhkkkhkkkhkhkkkkkkkkk k5
function makeTree (map)

map.tree = map.bfs (map.root);
end

Stk ko kK kK Rk Kk kK kK ok kK Rk Kk kK Kk kK ok kK Kk kK ok kK K kK kK kS

% findBranches: %
% Find branch nodes in the tree %

Dk kK K KKK K KKK KKKk Kk ko ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K Kk A S
function count = findBranches (map)
count = ones(map.n, 1);
for i=l:map.n
if i ~= map.root
count (map.tree(i)) = count (map.tree(i)) + 1;
end

end

count (map.root) = count (map.root) - 1;
end

%ok ok ok ok ok ok ok ok K ok ok ok ok K K ok ok ok K K ok ok ok K o ok ok ok K K K ok ok ok K K ok ok ok K K ok ok ok K K ok ok kK K ok kK K

o

% xy2node:

5 Converts the x-y coordinates of a node to a node

o

% number.

Dk kK K KK KKK KKK Kk Kk ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K kK kK K Kk A S
function node = xy2node (map, X,y)

node = (y-1)*map.nX + x;
end

R R]
% node2xy: %

% Converts a node number to x-y coordinates. %

Gk ok kk ok kkkkkk ok kh ok kkk kK kA ok kA kA KXk Ak kAR Ak k kA kA kA kKK KK KKKk kT

function [x y] = node2xy (map,node)
y = floor((node-1)/map.nX)+1;
x = node - (y-1)*map.nX;

end

Stk ko ko kK kK Kk kR kK ok kK ok kK kK Kk kK ok kK ok kK ok kK K kK kK kS

% nodeDist: B
% Calculates the cartesian distance between two nodes %
% given the node numbers. %

Gk ok ko k kKK KR kKKK KKk kKKK kKK KKKk kKKK Kk kKK KKKk Kk kS

function distance = nodeDist (map, nl, n2)
[x1 y1] = map.node2xy (nl)
[x2 y2] = map.node2xy (n2);
xDist = x1 - x2;

yDist = yl - y2;

distance = sqrt (xDistsxDist + yDistxyDist);

Dk kK K K ko ko ok kK A A A A S
% testMap: %
% Adds edges to a sample map. Requires a map at least 5x4 %
% nodes. 5

Sk kK kKR Kk Kk Kk Kk Kk kK Kk Kk kKR Kk Kk Kk Ak S

63

B.3. MAP.

M

APPENDIX B. MATLAB CODE

function
map.
map
map.
map.
map.
map.
map.
map.
map.
map.
map.
map.
map.
map.
map.
map.
map
map.
map.
map.

end

.addEdge (2,1,2,2

.addEdge

testMap (map)
addkdge (1,1,2,1

i

i

addEdge (2,2,1,2

(
(i
addEdge (1,2,1,3);
addEdge (1, 3,2,3);
addEdge (
addEdge (
addEdge (
addEdge (
addEdge (
addEdge (
(

(

(

(

(

(

(

(

(

i

ra,1,4)5

r272,3)7

rlr3,2)5

r2,4,2) 5

)i
)i
)i
)i
)i
)i
)i
)i
)i
)i
’)i
)i
)i
)i
)i
)i
)i
)i
)i
)i

4y

addEdge
addEdge
addEdge
addEdge
addEdge

2,
2,4,1
3,2,2
3,1,3
3,2,4
4,2,4
4,1,5,1);
3,2,3
3,2,4,
3,3,3
3,4,4
4,4,4
4,3,5
5,3,5
5,3,5

13

i

r3r30%) 7

rRr5r%) G

P&y

BN W WA W W R NN WS

i

addEdge
addEdge
addEdge

r3r9,3) 7

r3r9,2)70

r3r9,4%) 7

Sk kK kKR kR ko Kk kR Kk kR Kk ko Kk K Kk Kk Ak S

makeCo

Perfor

commun

mm :
ms breadth-first search to complete the

ication matrix

R

function
r =
map.

for

makeComm (map)
ceil (map.rho);
comm = zeros(map.n, map.n);

i=l:map.n

map.bfsComm (i, r);

end
end

Sk ok ok ok ok kK Kk k ok ok kKK Kk ok ok ok ok ok ok kK kK Kk k kK kR K Kk ok ok ok ok ok ok ok kK kK kK ok kK kK kK S

% Perfor

% start

5 bfsComm:

ms breadth-first search to build a tree from the

node to every other node on the map.

Sk Kk Kk kK ko Kk Kk Kk Kk kK Rk Kk kKR K Kk Kk Ak S

function

q =
a(l)
pos
len
dist

whil

bfsComm(map, startNode, r)

zeros (1,map.n);
= startNode;

1
- 1;

= zeros(l,map.n);

e (len > 0 && dist(g(pos)) <= r)
v = q(pos);
map.comm(startNode, v) = 1;

pos = pos+l;
len = len - 1;

for i=l:map.n

if i ~= v && ((map.tree(i) == v)
|| map.tree(v) == i) && dist (i)
dist (i) = dist(v) + 1;
q(pos + len) = i;

len = len + 1;

end

Skk ok k ok k ok ok ok k ok ok k ok kkkkkkk ok kk kA hkk ok kkkh ok kkkk Ak k Kk ok kk Kk ok kkk kS

% bfs:

% Perfor

s start

ms breadth-first search to build a tree from

node to every other node on the map

the

Stk ko ko kK ok kK ok kK ok ko kK ok kK kK Kk kK ok k kK ok Kk ok kK kK Kk kS

function
tree

tree

tree = bfs(map, startNode)
= zeros(l,map.n);
(startNode) = startNode;

64

© 00 ~JO Ut W

B.4. CHECKNEIGHBORS.M

APPENDIX B. MATLAB CODE

g = zeros(l,map.n);

q(l) = startNode;
pos = 1;
len = 1;

while (len > 0)
v = g(pos);
pos = pos+l;
len = len-1;
for i=l:map.n
if (map.graph(v,i) == 1) &&
g(pos + len) = i;
len = len + 1;

tree(i) = v;

end
end

(tree (i)

I
I
=)

Stk ko ko kK ok kK ok kKR kK Kk kK ok kR kK Kk kK ok kK ok kK ok kK K kK kK kS

% dfs:

% priority ranking ("depth") of each node

Performs depth-first search to determine

the

in the tree

a0

Sk kK kKR kR ko Kk kR Kk ok Kk Kk Kk Kk kKR Kk Ak S

function depth = dfs(map, parent, depth)

for i=l:map.n

if (map.tree(i) == parent) && (i ~= parent)

depth = map.dfs (i, depth);
end
end

map.nodeDepth (parent) = depth;
depth = depth+l;
end

end % public methods

methods (Static)

Gkk ko k ok kA KKk ok ok kKA Kk ok ok kA A Kk ok ok k kA kk kA A Ak ok kK kA Ak ok kxS

% xyDist:

% the map given cartesian coordinates.

% Calculates the cartesian distance between two points on

o

o

R R]

function distance = xyDist (x1l, yl, x2, y2)

xDist = x1 - x2;

yDist = yl1 - y2;

distance = sqrt (xDistsxDist + yDistxyDist);

end

end % static methods

end % classdef

B.4 checkNeighbors.m

SRR AR R R AR AR R R R R R R R AR LR R LR E R LA iR LR L it]

% Decentralized and Complete Multi-Robot Motion Planning

% Dexter Scobee and Adam Wiktor

% checkNeighbors function:

o qo 9 o0 oe

o

Returns the array of data from neighboring robots, or

in Confined Spaces

% Checks if a given robot has neighbors close enough to
communicate with, and collects data from any close neighbors.
Takes the radius of communication, the botNum of the given

robot, and the array of all robots as input arguments.

a

structure with a botNum of 0 if there are no neighbors.

$E5T%%%%%

L

e

S555555TEEEEEE5%%%%% EEEEEEEE R %5555 555%5%%%

function data = checkNeighbors (botIndex, bot)

65

B.4. CHECKNEIGHBORS.M

APPENDIX B. MATLAB CODE

neighbor = 1;

for i=1l:length (bot)
if i == botIndex
continue; % do not check if a robot is its own neighbor

end

% check if the robots are close enough to communicate

if bot (botIndex) .map.comm (bot (botIndex) .boxNum,bot (i) .boxNum) ==

signal = bot(i).signal(); % get data from robot i
tempData (neighbor:neighbor+length(signal)-1) = signal;
neighbor = neighbor + length(signal);

end

end % for

if neighbor == 1 % no neighbors found, return an empty struct
data = struct ('botNum’, 0, ’"xPos’, 0,...
’ypPos’, 0,’xGoal’, 0, ’"yGoal’, 0,...
'priority’, 0, ’'path’, 0, ’"boxNum’, 0,...

’swap’, 0, ’status’, 0, ’solved’, 0, "ToR’, 0);

else % neighbors were found

% check for duplicate information in tempData

botNumList = zeros(l,length (tempData));
torList = zeros(l,length(tempData));
for i=1l:length (tempData)

botNumList (1) = tempData (i) .botNum;
torList (1) = tempData (i) .ToR;

end

[Y I] = sort(-torList);

botNumList = botNumList (I);
tempData = tempData(I);

[Y I] = sort (botNumList);

tempData = tempData(I);

checkBot = zeros(1l,bot (botIndex) .map.n);
if bot (botIndex) .knowledge (1) .botNum ~= 0

for i=1l:length (bot (botIndex) .knowledge)
checkBot (bot (botIndex) .knowledge (i) .botNum) =...
bot (botIndex) .knowledge (1) .ToR;
end

end

index = 2;
num = 1;
while tempData (num).botNum == [
tempData (num) .botNum == bot (botIndex) .botNum ||...
(tempData (num) .ToR <= checkBot (tempData (num) .botNum)
&& (checkBot (tempData (num) .botNum) ~=
bot (botIndex) .time - 1)

num = num + 1;

data(l) = tempData (num);

for i = num+l:length (tempData)
if tempData(i).botNum ~= tempData (i-1).botNum &&
tempData (i) .botNum ~= bot (botIndex) .botNum &&
tempData (i) .botNum ~= 0 &&...
(tempData (i) .ToR > checkBot (tempData (i) .botNum)
|| (checkBot (tempData (i) .botNum) ==

bot (botIndex) .time - 1))
data(index) = tempData(i);
index = index + 1;
end
end
end % if

end % function checkNeighbors

66

This paper represents our own work in accordance with

University regulations.

67

