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Aquatic Robotics at RESL

 Path planning & adaptive sampling approaches for
e underwater gliders
 active drifters
e autonomous underwater vehicles (AUVSs)

e Multi-robot coordination for autonomous

underwater and autonomous surface vehicles
(ASVSs)

e (QObstacle avoidance & sensor calibration for ASVs
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Path planning for underwater gliders

Low risk
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Slocum gliders

No perception: Slow moving: Long endurance:

No current sensing 0.3 m/s 3-4 weeks
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Slocum gliders — typical trajectories
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Risk-aware path planning — avoid collisions!
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Risk-Aware Planning

Risk of surfacing HilQDh risk
0.9
The probability of Los Angeles ID8
collision between .
ships and AUVs is 107
proportional to ship Long Beach J0.6

e, .

density
[Merckelbach, 2012]
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Catalina
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Low risk
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Minimum risk planner

Find path P* with surfacing Risk of surfacing High risk
waypoints w: I
P* = argmin Z T?:Sk(’wi) ., Los Angeles 1
P - : —0.7
1

0.6

10.5

Subject to constraint:
He(w’i?w’i—l)u < dmaz

410.4

0.3
0.2

l.e. max distance between
waypoints is limited
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But what if the glider is pushed off course
by ocean currents?
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But what if the glider is pushed off course
by ocean currents?

USC Viterbi = Buigtonis

Arvind Pereira
D)
School of Engineering =1 SYSTE MS

11



lat {dec)

Ocean currents

® (Oceans can have
strong currents
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Incorporating ocean models

Data sources 72 hr forecast
®* HF-radar ®* u - easting
(surface = * v - northing
currents) EETTE * w - vertical
* Tide gauges j e=3 | ® sal - salinity
(sea surface e o X * temperature
height) N e ® sea-surface
* Satellite data =— height
(sea surface e e e
temperature) B ==
* AUV data
*Etc.
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Minimum-Risk planner + pseudo waypoints

@%}; desired (standard) waypoints pseudo waypoints

USC Viterbi = Euseones
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But what if the predictions are incorrect?
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Ocean current predictions are noisy!
Roms currents Sunday 2012-07-29 00:00:00 PST

N
L el t Predicted 24 hrs earlier § oo

(assimilated)
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Oceans currents & prediction uncertainties

Negligible currents Predictable
(ignore predictions) currents
Uncertain Uncertain
redictions predictions
stationary (non stationary
models) models)
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Path planning for different current systems

Regime Planner

Negligible currents Minimum-Risk

Minimum-Risk planner with

Predictable currents pseudo-waypoints

Minimum Expected Risk

Uncertain (stationary) lanner and risk-aware
currents arkov D(Ievc|:5||:§>)n Process

Uncertain (non-stationary) Rnhsa"r'l?é’i’/aéi c';{gghsé,argggggy

currents (NSMDP)

0 d Pereira, Geo ollinge
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Learning better estimates for uncertainty in
ocean current predictions

Gaussian Processes: estimate the value with an uncertainty
estimate!

Itplt n Standard Deviatio EfWAgH?‘EDDh

el Im I"I "l“"""lm
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Learning better estimates for uncertainty in
ocean current predictions

Gaussian Processes: estimate the value with an uncertainty
estimate!

Itplt n Standard Deviatio EfWAgH?‘EDDh
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Minimum-

_ Low variability
Expected-Risk

currents

SICHNERWARIEY Low variability
Horizon MDP currents

Non-stationary
finite horizon
MDP

High variability
currents
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Pros

+ Goal-directed
+ Fast

+ Trade-off
between goal-
directed and
risky behavior
+ Reasonably

fast

+ Can take
advantage of
currents to cross
risky sections

Cons

- Poor in strong
currents

- Stationarity
assumption may
be limiting

- Susceptible to
timeouts

- Computationally
Expensive




Field testing!

Year Planner Field hours glider

2011 Min-Risk 408

2012 Stationar%/rg/ld[i)g% r\4\gthout GP 840

2012 Minimum-Expected-Risk planner 360

2012 Stationary GP-MDP 120

2013 Non-Stationary GP-MDP 168
2011-13 Total 1896

MS
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Can we develop systems that utilize the
currents?
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Can we develop systems that utilize the
currents?

Antenna
Surface float

Tether line
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Active drifters

“Choose the current to take you where you want to go”
Added benefits:

Easy deployment Efficient recovery

MS
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Simulation experiments using ROMS

When to pick a new current ?
* Track angle between desired direction of movement
and the current movement

How to pick a new current?
* Pick depth where current at desired direction

How to coordinate?
* Closely located drifters can share current estimates
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Simulation results: can collect drifters in

few clusters.

Example deployment

Day=18 Mode= Spreading
Drifters lostftotal = 0/ 30 Aggr. metric = 0.63

Aggregation performance
over 100 simulations

Average metric
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90 days 180 days
Ideal drifter 0.49 0.55 ~ 2 clusters
Realistic drifter 0.21 0.29 ~ 3-5 clusters
0T Ideal drift
|| — Ideal drifter
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What if there is no appropriate sensor, and
the biology needs to be analyzed in the lab?
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Ex-situ sampling

Lab analysis of physical samples, | N e
labeled offline in batches MBARI| Dorado AUV

Ten 1.8 L gulpers
A /%9 can fill once!

o
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Given a limited number of gulpers,
when to sample?
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Learn from previous data when to sample
Training data

[temp, salinity,...][b] Organism
ey abundance
o model Sampling policy
0.60 . . Organism
(re)learn organism niche model sbundance
— Utility function

Zooplankton type

Lab
analysis

T T i

k water samples Best-Choice

z = [temperature, salinity]

\V. W,
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Online best-choice problem

Zooplankton abundance prediction from PN model,
depth (m) for an AUV survey from 2005 abundance (O.D.)

20—
0 IO.35
r 103

201 L 10.25
40+ - 10,2

r 1015

'60 — 1 WL o om
R L 0.1
8o 0.05
| | | | | | | | | | | | | 0

-188:00 03:30 04:00 0430 0500 0530 06:00 0630 07.00 0730 0800 0830 09:00 0930 1000

time

How to choose k samples to maximize the sum
of utility from all samples?
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Optimal Stopping Theory

Choose when to take a particular action.

The Hiring Problem:

N candidates arrive for an interview i.i.d, and ranked

Goal: choose single best candidate, in an online fashion

Hiring decision is irrevocable!

» m-

— can only gulp once!



Optimal Stopping Theory

Choose when to take a particular action.

The Hiring Problem:

* N candidates arrive for an interview i.i.d, and ranked

* Goal: choose single best candidate, in an online fashion

* Hiring decision is irrevocable!

Solution:

— can only gulp once!

* Observe first N/e (36.7 %) candidates, then hire next best

* |f there is no better candidate, hire the last person

* Guarantee: Probability choosing best candidate = 1/e (~36.7 %)

» m-




Selecting k candidates, online

Submodular hiring problem

' ViIBEDDED

N candidates arrive for an interview, i.i.d, and rated

Goal: choose best k candidates, online (best sum of
rating)

Hiring decisions are irrevocable =~ — can only gulp once!

MS 9




Selecting k candidates, online

Submodular hiring problem

Solution

N candidates arrive for an interview, i.i.d, and rated
Goal: choose best k candidates, online (best sum of rating)

Hiring decisions are irrevocable — can only gulp once!

Split total window into k segments
Apply hiring algorithm in each segment

Guaranteed competitive-ratio of at least (1 - 1/e)/11, ~0.05

ViIBEDDED
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Field trial

Dorado AUV on R/V Rachel 1 km x 1 km Lagrangian surveys
Carson with the gulper bay depth ~30 m, duration ~4.5 hr
open (Monterey Bay)

MS




Field trial set-up

Goal : Acquire high abundance samples of pseudo-
nitzschia (PN), a potentially toxinogenic alga

87 analyzed samples from October 2010 CANON
experiment used to learn niche model for pseudo-
nitzschia

Cross-validation to pick input variables and GP kernel
parameter

Mission in North Monterey Bay to acquire 9 samples
(1 gulper was non-functional)
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Predictions of trained pseudo-nizschia

model
~ Prediction (mean) Uncertainty (variance)

3 =0.25
0.2
Q.15

“ PN abundance

11 12 13 14
PN abundan:
temperature (C) (mean) temperature (variance)

* circle size proportional to measured abundance

fluorescence (raw)
fluorescence (raw)

MS 10




Samples acquired

AUV transect data
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Ex-situ sampling contributions

* Stochastic, online constrained sampling
* Model is geography agnostic

* Closes autonomy loop on ecosystem monitoring -
first data-driven experiment of this type in
marine robotics

 Allow domain experts to task vehicles at a high(er)
level (“bring me the harmful microbe!”)
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In-situ adaptive sampling
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Online, adaptive sampling

Adapt the vehicle movements based on its
measurements, as the vehicle is sampling

Create/update a model of the environmental
phenomena

ABORATOR



Informative Path Planning

* Gather the most informative data:
Adaptive sampling using information-theoretic
optimization criteria, such as entropy or mutual
Information

e Create the best model
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Gaussian Process Regression Intro

A Gaussian process is a collection of random
variables, any finite number of which have a joint
Gaussian distribution.

A Gaussian process is completely specified by its mean function and co-
variance function. We define mean function m(x) and the covariance function
k(x,x") of a real process f(x) as

m(x) = E[f(x]].

, , , (2.13)
k(x.x) = E[(f(x) — m(x))(f(x) —m(x))],
and will write the Gaussian process as
F(x) ~ GP(m(x), k(x,x")). (2.14)
: TIC Ra en & Willia 006
- YSTEWS
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GP model selection

e choice of covariance function/kernel

e common choice: squared exponential

* choice of hyperparameters

* length scale
* noise variance
* signal variance

— hyperparameter optimization, using prior data

MS




GP prior & posterior

.
......

input, x

(a), prior

VIS

_5 0 5
input, x

(b), posterior
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Imagine; any location within your survey
space can be represented by a Gaussian
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Imagine; any location within your survey
space can be represented by a Gaussian

Predictive mean Predictive variance
40
34 089 “““ 30 34.089
S
20 3
ss T 34.088% 858
i 10
34.087 0 34.087F | | |
117.809-117.808-117.807-117.806 -117.809117.808117.807117.806
longitude
CTD \i DDED =10 C C C

MS
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Metrics on GP output for determining
quality of the environmental model

Quantify the uncertainty in the model,
and calculate the information that can be
gained for prospective sampling locations:

e Squared error

* Entropy

 Mutual Information
 Etc.
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Path planning, given metric

» Greedy [Guestrin'05, Krause'08, Kemnal
> local greedy [Low'12]

» Recursive Greedy; plan path from Sto T
Binney'l0, Krause'O7, Singh'09]

» Dynamic Programming [Low'08/'09, Hitz'14, Ma/Liul
» Branch & bound [Binney'12]
eMIP [Singh'06/'07/'09]
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Informative path planning for AUVs

Ocean monitoring Potential sampling points Planned paths Informative sampling
» = C O C C C
a VIBEDDED
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001 O 21ncec 2 ABORA OR




s ¥
w [ /H v\,w.\ n\\
W ol R
S
.
Sy ﬁnM,_‘
IrbA.ﬁﬁh /m.Jx
= W e,
o L
b A S
R b b s
R N
Aﬁﬂxrﬁfﬁx@,wkl\/&
L e A e S
5 b R
e A 5%\5\‘?
M./Jaﬂrjxlrnnﬂ.ﬁxﬂ.ﬁl\:fk/\fx\r!u
s S AT

/\»xw[....vﬂ?_.lf.lf.ﬂwlvlv. |?+A.|/v pici A o — i
_Ivr.vlvlvﬂe,___le.kv.ﬁl.—r.nr - ~ gt
\.r.,lvl.li.Aan.ervf x&uﬁ /,/f}/,.r.kt

ﬁ\xs,,lalf;,a.w\ﬁr %ﬂ o e N e e S R
-vﬂﬂﬁ”””i-v }+h\ F/Nwhf/[\l\,mw»ffv/;\/l?\f\

=D ,N.
Sy A‘A. ffﬁ, \/.\.mw.,\ﬁ.rﬁjf\f\%\/]
Hr.._r/ﬂﬂ,“&m\é@@r WY,, x‘«& / R S e e
1?&&rf4ﬂl+4éixr +t\,\A A/ e P A s B e
\Ivffvlvnr/lvr/\n}f/;”‘.livht\&\mﬂ(h.l\? /.h.___\qx&,.(\& .A«N/r_/__rﬁw/ﬂﬂ/ffrﬂ/ffﬂ_.f__
el SO R A beve e s t A
/?ﬂf/ﬂ/.l,/\«i e nﬂm;\«\ §{45¢/¥&\A4mnvﬁnw\f/ Hffmfaff\z
= (waw&n\r\ \.\MM/(,&T aFTVPPﬁ/mvaN/qu
k e Gl b e b > . =
PR e e e T R S
.\fvx{x»\q%limh»vxﬂﬂwxix ol Ul e S
»,i,\m»;hm_,%»”HWJ,wﬂ

Informative
path planning

for
hierarchical

underwater
planner

glider —

C

MS

VIE




Adaptive versus

standard surveys ?

Choice of vehicle trajectories:

lawnmower patterns
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Simulated data field pata vale
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Benetfits of informative path planning

Average 5;
RMSE - T ——1auv lawnmower
T 4l ---1auv adaptive
3
L
\\
2—:_ \\\.-
n )
0

2 4 6 8 10 12
— Timesteps (x 600s)
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How to make sure the vehicle can operate
safely in a previously unexplored
environment?

MS




Obstacle detection from overhead imagery
using self-supervised learning

* Deploy robots in new environments with
low risk

 Obstacle maps not available
* Need maps to plan paths

 Want to generate relevant maps without
human labor

DED
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Combining aerial & sonar data

Sonar data

Feature Training labels
extraction generation

Combined map, smoothed

o L Prediction &
| smoothing

50 100 150 200 250

obstacle, , free space

B . ) .




What about in-field obstacle avoidance?
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Different sensors for different parts of the
environment

VIE
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RL- Wall
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-GPS
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Autonomous sensor calibration

e Determine transformations between our different
Sensors:

e Laser - Sonar:
2D affine transform: translation, rotation,

scaling

e (Camera - Water plane:
6 DOF rigid body transform

 Actively gather data for calibration using existing
features as calibration targets

MS
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Suitable calibration targets

* Sloped targets not suitable

 Straight edges give ambiqguity
e Use corner features

e (Can be detected by our
different sensors

 Rarely sloped

e (Can be detected
from overhead
Imagery

ABORATOR



Feature extraction

For all sensors:

e |ine extraction

e Find corners

 Run optimization
to find best match
between sensors

MS 9




Results: laser & sonar

Laser-Sonar Alignment

10
(O Sonar returns, before alignment
@ sSonar returns, after alignment
@ Laser returns
5 -
2 o
0o g
g s
ASV ° S "
= | E== .
L
>ﬁ (]
o
o
] 3
°
—10}
°
-15 ] ] I ] I
0 10 15 20 25
x [m]
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Multi-robot approaches

Multi-robot: run in parallel or
coordinate?

3.51

Average RMSE

= 2auvs lawnmower auv2

e~ 2auvs parallel auv2

——2auvs lawnmower auvi

-=-2auvs parallel auv1

-+ 2auvs timed data sharing auv1
------- 2auvs timed data sharing auv2

1 2 3 4 5
timesteps (per 600s)

VIE

MS

Orienteering solution from
transformed matching graph

6 67




Buoys

ASV starting positions

m :b Cl = C




What goes into getting overhead imagery
at a lake...

USC viceron :s“'\}cs";i?%“nﬁ§ Hordur Heidarsson, Jnaneshwar Das 70
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What goes into
getting overhead

imagery at a lake...
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http://robotics.usc.edu/resl/
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Planning to do aquatic robot experiments?

Remember to:

* always bring a towel

* Use a canopy

* bring sunscreen & a cap

* bring an extra sweater, even in sunny SoCal!

* bring a rescue vehicle, e.qg. kayak

* be prepared to talk football with the fishermen

* bring the internet

m'. -. - ) )
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More publications are on our website!
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People Research

Aquatic Robotics

Description:
Aquatic robotics concerns robotics research using autonomous surface and underwater vehicles (ASVs and AUVs). This
research can involve development of (robust) algorithms for vehicle control, autonomy, sensing and navigation

Often, we fry and push the boundaries of computer science research, while applying our algorithms in applications that
aid biologists and cceanographers. A good example is the work we have been doing to help study the Southern California
coastal ocean, with an emphasis on the assessment and prediction of harmful algal blooms, in collaboration with the
Caron Lab and USCLab.

People: Robots:

RAmLEw BN

» Filippo Arrichiello + Jonathan Binney » Jnaneshwar Das
» Geoff Hollinger + Jonathan Kelly + Arvind Pereira
» Ryan Neal Smith

Publications:

2015
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