### Aquatic Robotics at the University of Southern California

### Marine Robotics Research Summer School 2016

Stephanie Kemna <kemna@usc.edu> July 8, 2016









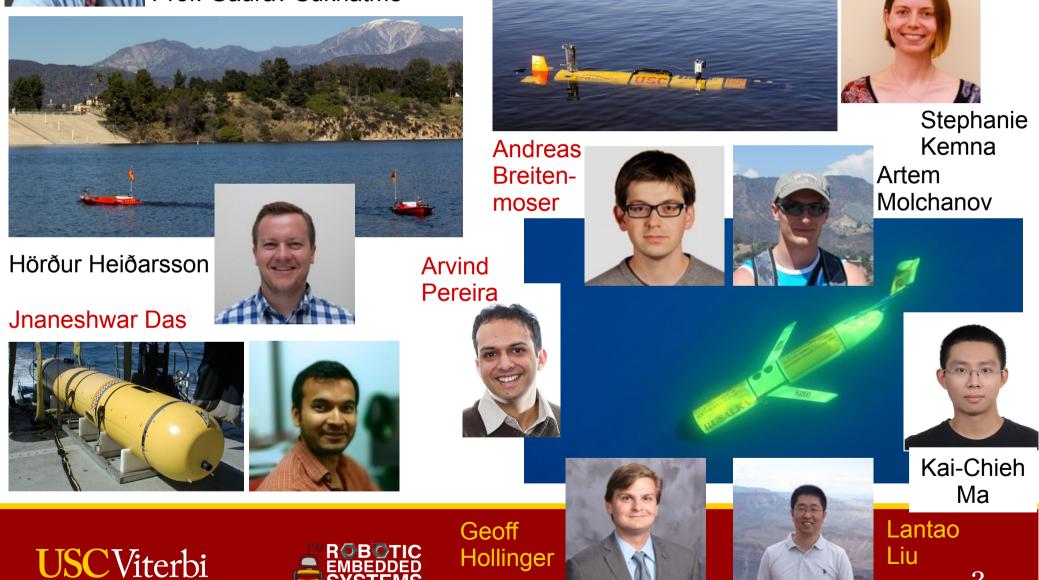
Including the works of; Arvind Pereira, Jnaneshwar Das, Geoff Hollinger, Andreas Breitenmoser, Artem Molchanov, Lantao Liu, Kai-Chieh Ma, Hordur Heidarsson



School of Engineering

### **Robotic Embedded Systems Lab**

Prof. Gaurav Sukhatme



### **Aquatic Robotics at RESL**

- Path planning & adaptive sampling approaches for
  - underwater gliders
  - active drifters
  - autonomous underwater vehicles (AUVs)
- Multi-robot coordination for autonomous underwater and autonomous surface vehicles (ASVs)
- Obstacle avoidance & sensor calibration for ASVs





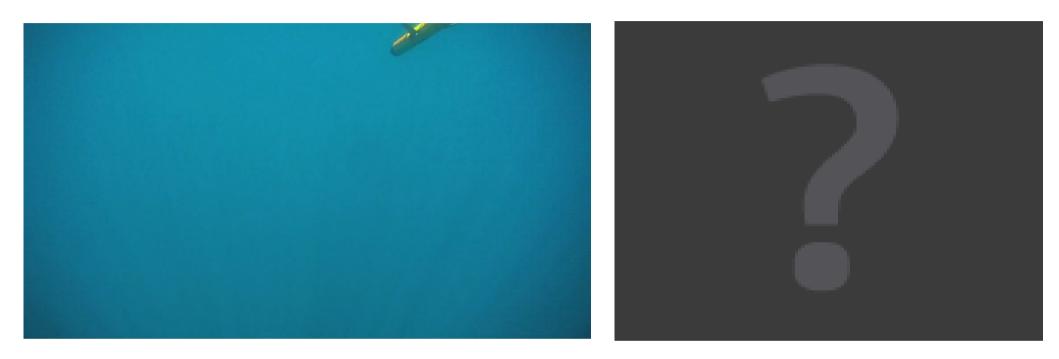
### Path planning for underwater gliders







### **Slocum gliders**



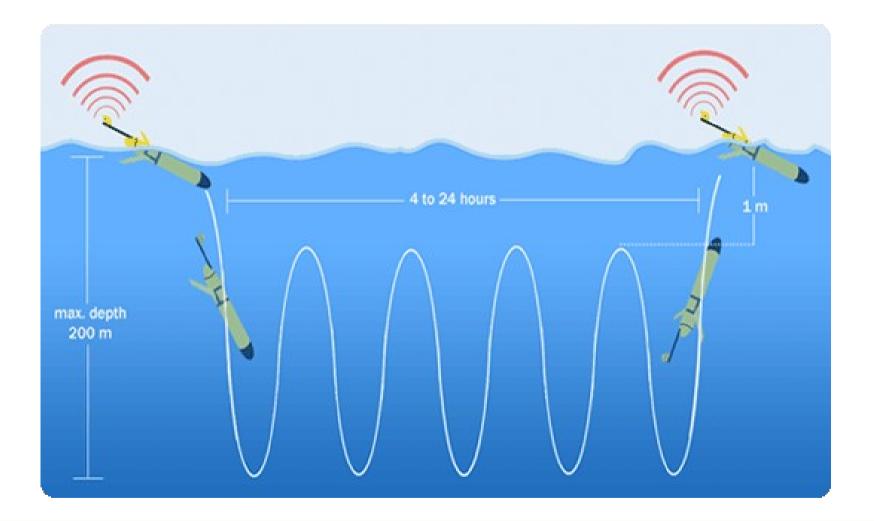
No perception: No current sensing Slow moving: 0.3 m/s

Long endurance: 3-4 weeks





### **Slocum gliders – typical trajectories**



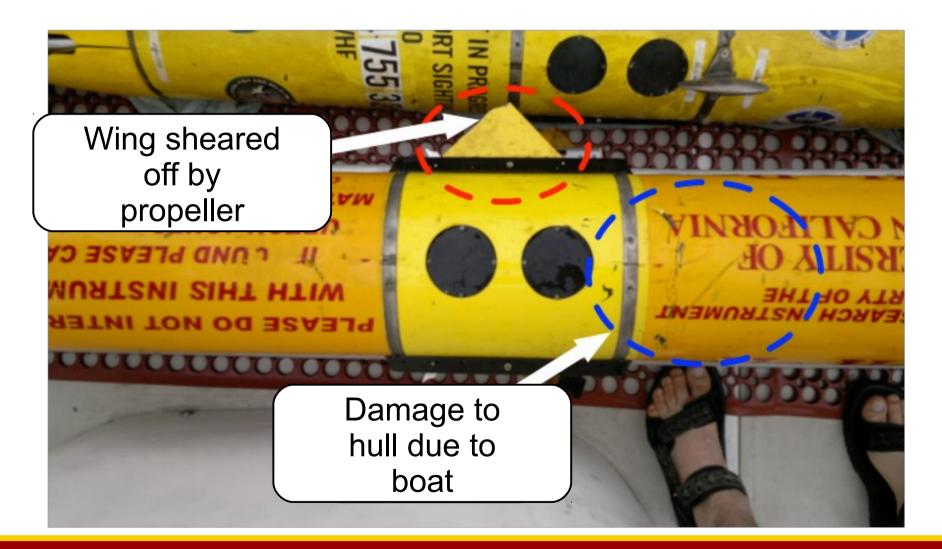




http://www.marine-knowledge.com/wpcontent/uploads/2013/10/gliderdiagram.gif

6

### **Risk-aware path planning – avoid collisions!**



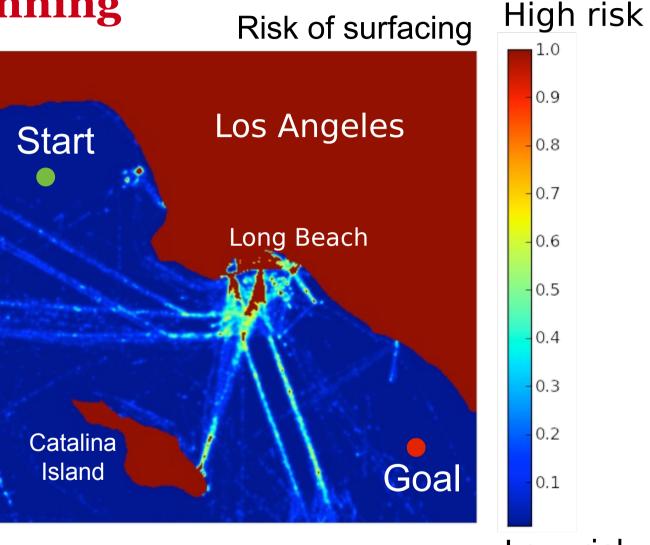




Arvind Pereira, Geoff Hollinger Picture courtesy of Carl Oberg

### **Risk-Aware Planning**

The probability of collision between ships and AUVs is proportional to ship density [Merckelbach, 2012]



Low risk





### **Minimum risk planner**

Find path P\* with surfacing waypoints *w*:

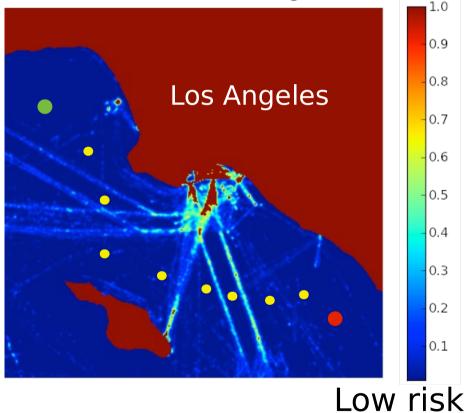
$$P^* = \underset{P}{\operatorname{argmin}} \sum_{i} risk(w_i)$$

Subject to constraint:

$$\|e(w_i, w_{i-1})\| \le d_{max}$$

i.e. max distance between waypoints is limited

### Risk of surfacing High risk







### But what if the glider is pushed off course by ocean currents?





### But what if the glider is pushed off course by ocean currents?

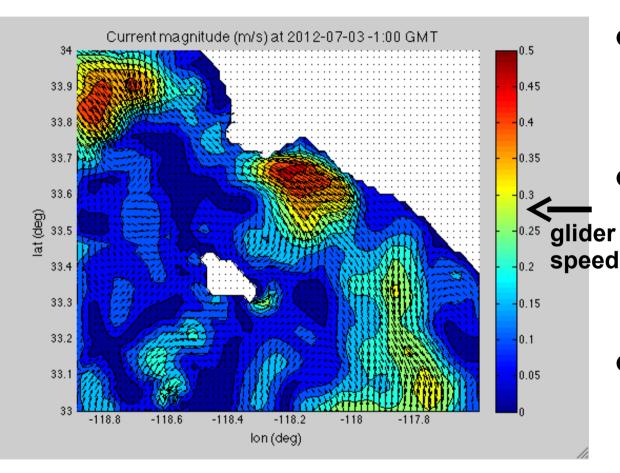








### **Ocean currents**



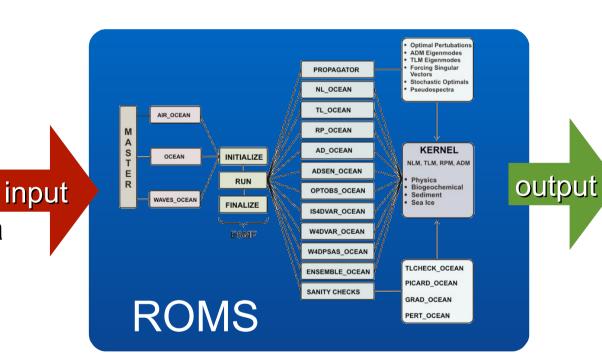
- Oceans can have strong currents
- Nearly twice the speed
   of the glider in red
   regions
  - Direction may change periodically





### **Incorporating ocean models**

- Data sources
- •HF-radar (surface currents)
- Tide gauges (sea surface height)
- Satellite data (sea surface temperature)
- AUV dataEtc.



### 72 hr forecast

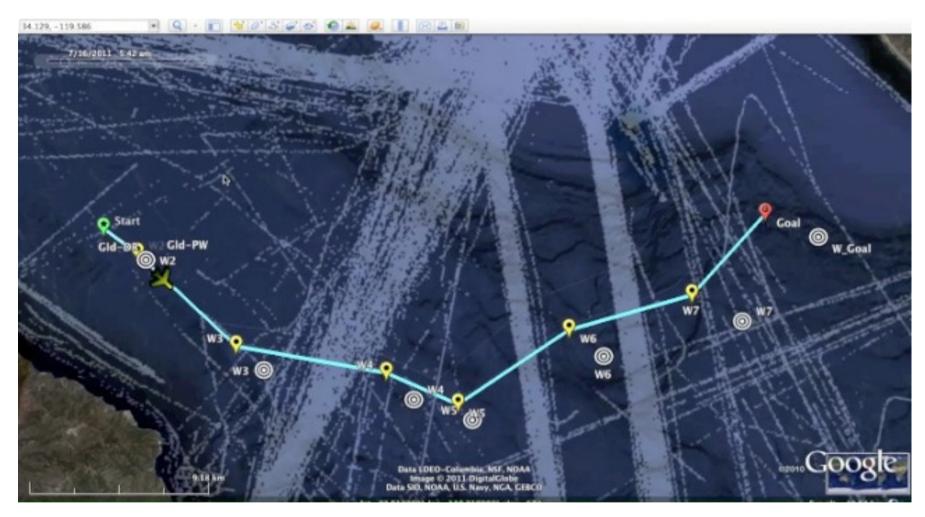
- u easting
- v northing
- w vertical
- sal salinity
- temperature
- sea-surface height



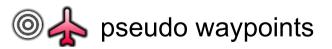


#### source: ourocean.jpl.nasa.gov

### **Minimum-Risk planner + pseudo waypoints**











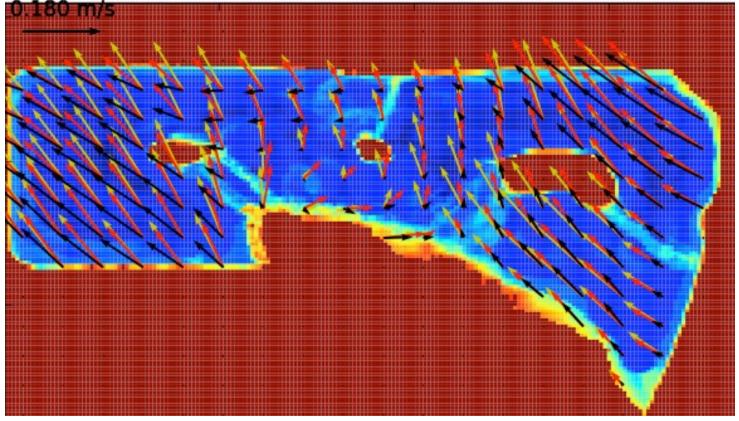
### But what if the predictions are incorrect?





### **Ocean current predictions are noisy!**

Roms currents Sunday 2012-07-29 00:00:00 PST

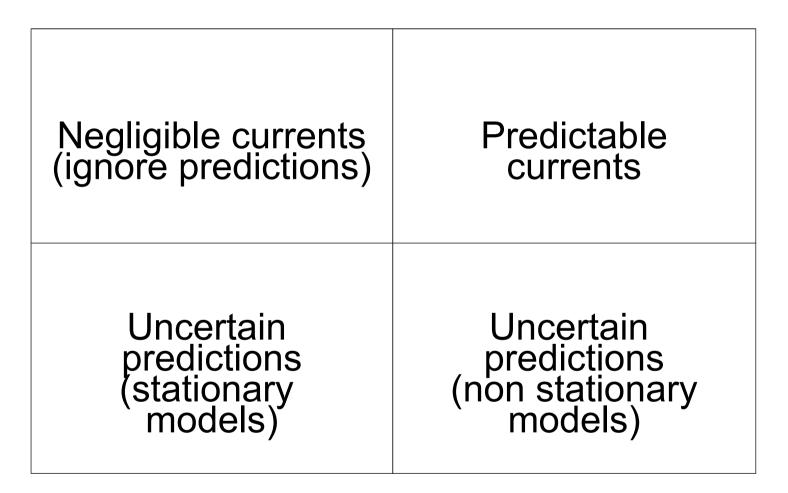


Predicted 48 hrs earlier Predicted 24 hrs earlier (assimilated)





### **Oceans currents & prediction uncertainties**







### Path planning for different current systems

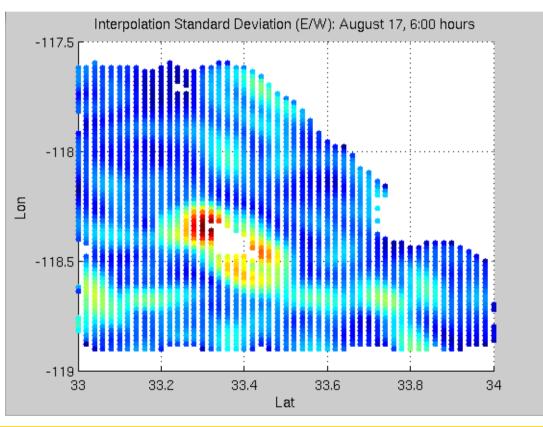
| Regime                                 | Planner                                                                             |  |
|----------------------------------------|-------------------------------------------------------------------------------------|--|
| Negligible currents                    | Minimum-Risk                                                                        |  |
| Predictable currents                   | Minimum-Risk planner with pseudo-waypoints                                          |  |
| Uncertain (stationary)<br>currents     | Minimum Expected Risk<br>planner and risk-aware<br>Markov Decision Process<br>(MDP) |  |
| Uncertain (non-stationary)<br>currents | Risk-aware Non-Stationary<br>Markov Decision Process<br>(NSMDP)                     |  |





## Learning better estimates for uncertainty in ocean current predictions

Gaussian Processes: estimate the value with an uncertainty estimate!

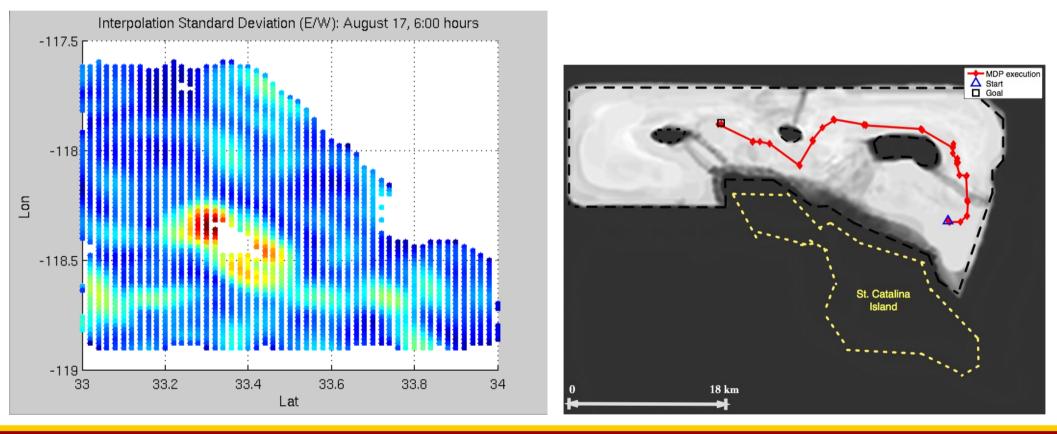






## Learning better estimates for uncertainty in ocean current predictions

Gaussian Processes: estimate the value with an uncertainty estimate!







| Planner                                 | Noise                       | Pros                                                                                   | Cons                                                                           |
|-----------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Minimum-<br>Expected-Risk               | Low variability currents    | + Goal-directed<br>+ Fast                                                              | - Poor in strong currents                                                      |
| Stationary Finite<br>Horizon MDP        | Low variability<br>currents | + Trade-off<br>between goal-<br>directed and<br>risky behavior<br>+ Reasonably<br>fast | - Stationarity<br>assumption may<br>be limiting                                |
| Non-stationary<br>finite horizon<br>MDP | High variability currents   | + Can take<br>advantage of<br>currents to cross<br>risky sections                      | <ul> <li>Susceptible to timeouts</li> <li>Computationally Expensive</li> </ul> |





### **Field testing!**

| Year    | Planner                                | Field hours glider |
|---------|----------------------------------------|--------------------|
| 2011    | Min-Risk                               | 408                |
| 2012    | Stationary MDPs without GP predictions | 840                |
| 2012    | Minimum-Expected-Risk planner          | 360                |
| 2012    | Stationary GP-MDP                      | 120                |
| 2013    | Non-Stationary GP-MDP                  | 168                |
| 2011-13 | Total                                  | 1896               |





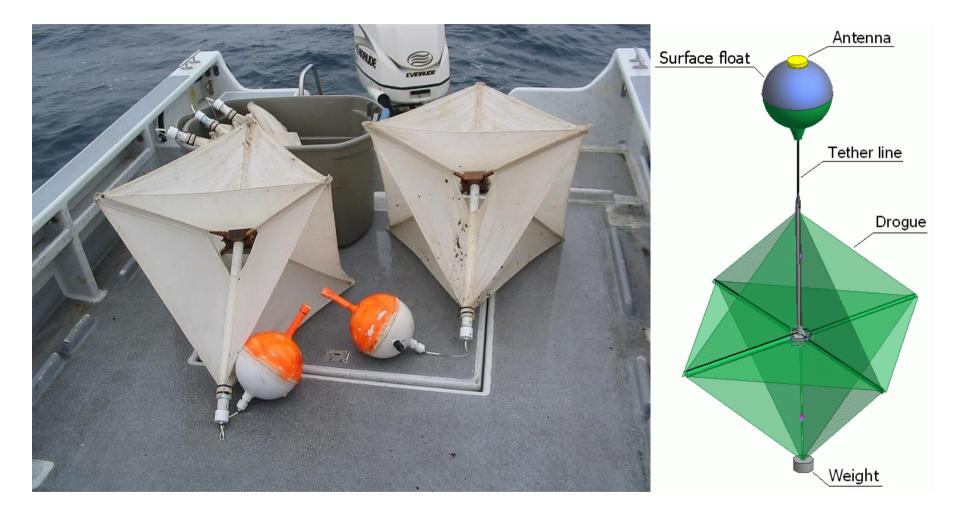


## Can we develop systems that utilize the currents?





## **Can we develop systems that utilize the currents?**





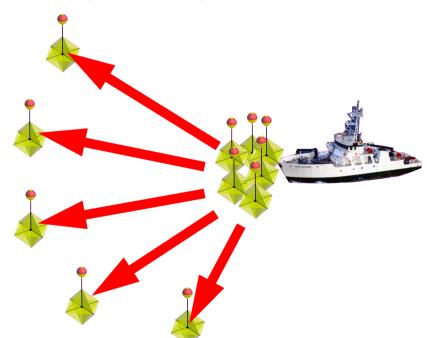


#### Microstar drifter, Pacific Gyre

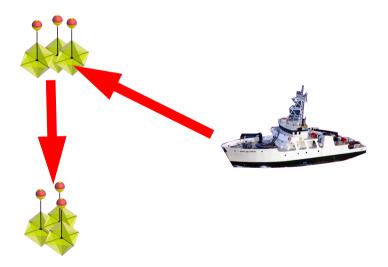
### **Active drifters**

"Choose the current to take you where you want to go" Added benefits:

#### Easy deployment



#### **Efficient recovery**







Artem Molchanov, Andreas Breitenmoser

### **Simulation experiments using ROMS**

When to pick a new current?

 Track angle between desired direction of movement and the current movement

How to pick a new current?

• Pick depth where current at desired direction

How to coordinate?

Closely located drifters can share current estimates

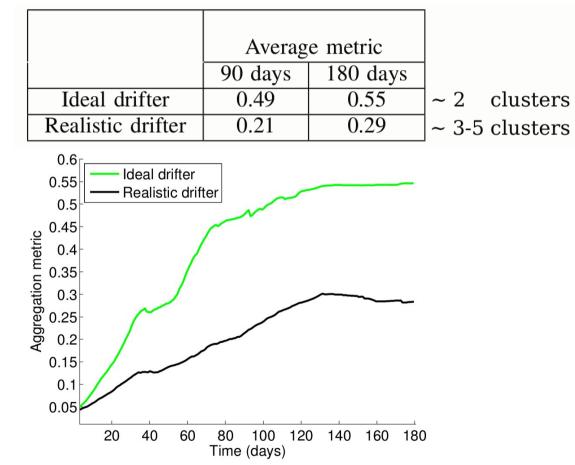




# Simulation results: can collect drifters in<br/>few clusters.Aggregation performance

#### **Example deployment** Day=18 Mode= Spreading Drifters lost/total = 0 / 30 Aggr. metric = 0.63 44 42 Land 40 38 at 36 34 Ocean 32 30 -128 -126 -124 -122 -120 -118 -116 Lon

### Aggregation performance over 100 simulations







Artem Molchanov, Andreas Breitenmoser

## What if there is no appropriate sensor, and the biology needs to be analyzed in the lab?





### **Ex-situ sampling**

### Lab analysis of physical samples, labeled offline in batches







**MBARI** Dorado AUV Ten 1.8 L gulpers can fill once! lab Abundance analysis (O.D) 1.00 0.80 0.60 0.40 organism 0.20 abundance Zooplankton type

USC Viterbi School of Engineering

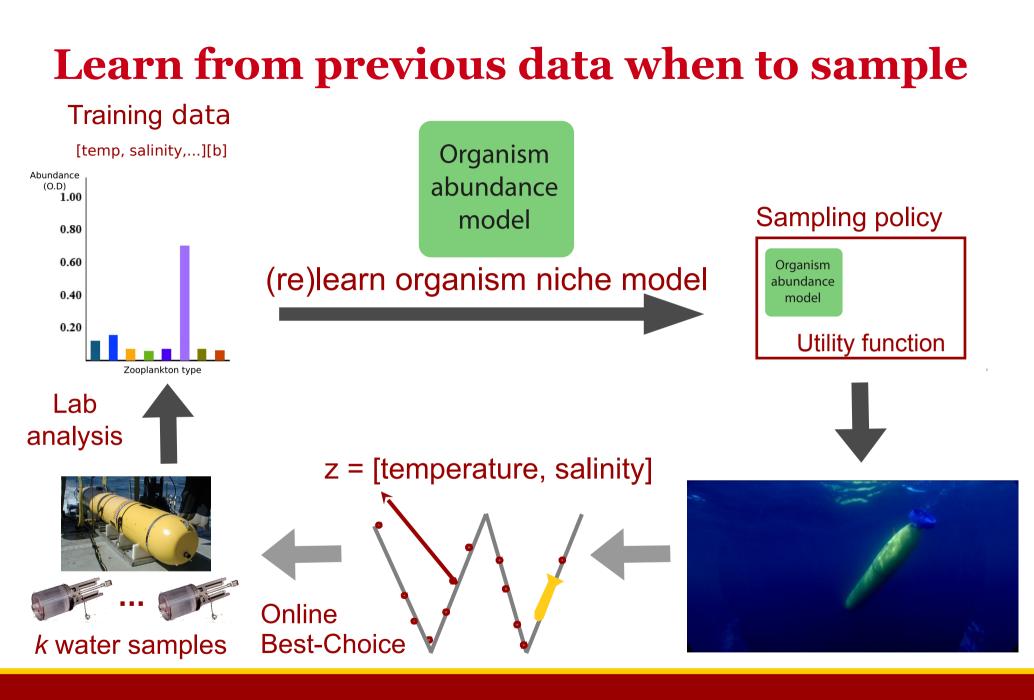


Jnaneshwar Das

## Given a limited number of gulpers, when to sample?





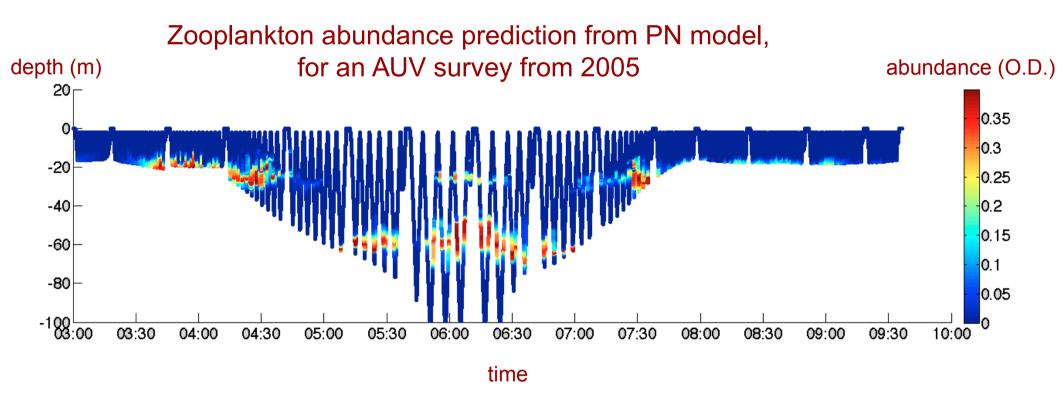






Jnaneshwar Das

### **Online best-choice problem**



How to choose *k* samples to maximize the sum of utility from all samples?





Jnaneshwar Das

### **Optimal Stopping Theory**

Choose when to take a particular action.

The Hiring Problem:

- N candidates arrive for an interview i.i.d, and ranked
- Goal: choose single best candidate, in an online fashion
- Hiring decision is irrevocable!

 $\rightarrow$  can only gulp once!





### **Optimal Stopping Theory**

Choose when to take a particular action.

The Hiring Problem:

- N candidates arrive for an interview i.i.d, and ranked
- Goal: choose single best candidate, in an online fashion
- Hiring decision is irrevocable!

 $\rightarrow$  can only gulp once!

Solution:

- Observe first N/e (36.7 %) candidates, then hire next best
- If there is no better candidate, hire the last person
- Guarantee: Probability choosing best candidate = 1/e (~36.7 %)





### Selecting k candidates, online

Submodular hiring problem

- N candidates arrive for an interview, i.i.d, and rated
- Goal: choose best k candidates, online (best sum of rating)
- Hiring decisions are irrevocable → can only gulp once!





# Selecting k candidates, online

Submodular hiring problem

- N candidates arrive for an interview, i.i.d, and rated
- Goal: choose best k candidates, online (best sum of rating)
- Hiring decisions are irrevocable  $\rightarrow$  can only gulp once!

Solution

- Split total window into k segments
- Apply hiring algorithm in each segment
- Guaranteed competitive-ratio of at least (1 1/e)/11, ~0.05





# **Field trial**



Dorado AUV on R/V Rachel Carson with the gulper bay open (Monterey Bay)

1 km x 1 km Lagrangian surveys depth ~30 m, duration ~4.5 hr

-122.1





-500 ~ -1000 ~ -1500 ~ -2000 ~ -2500 ~ -3000 ~

Jnaneshwar Das

-121.75

-121.8

-121.85

-121.9

-121.95

-122

-122.05

# **Field trial set-up**

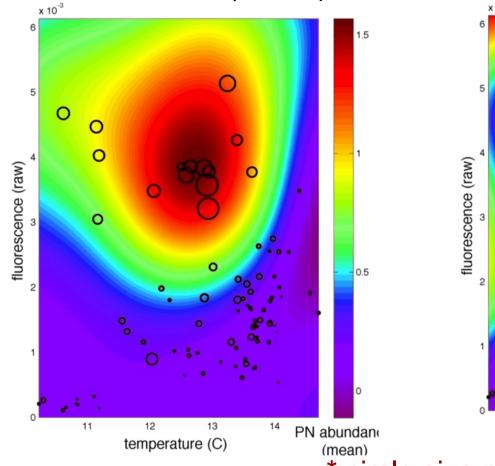
- Goal : Acquire high abundance samples of pseudonitzschia (PN), a potentially toxinogenic alga
- 87 analyzed samples from October 2010 CANON experiment used to learn niche model for pseudonitzschia
- Cross-validation to pick input variables and GP kernel parameter
- Mission in North Monterey Bay to acquire 9 samples (1 gulper was non-functional)



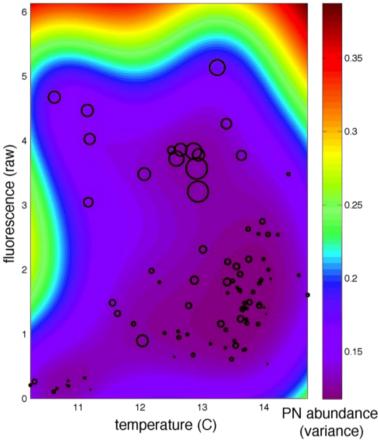


#### **Predictions of trained pseudo-nizschia model**

Prediction (mean)



#### Uncertainty (variance)



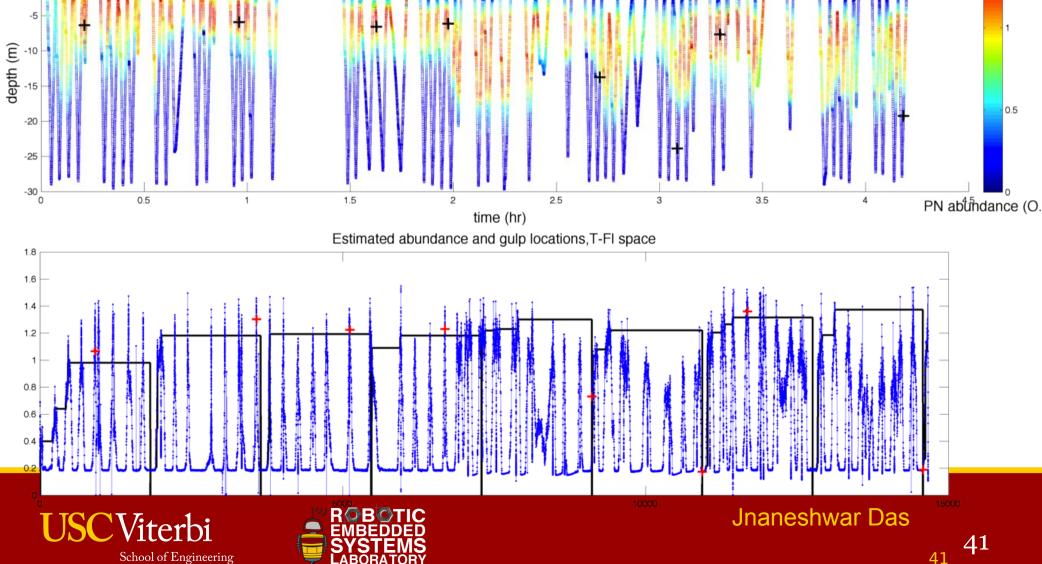
circle size proportional to measured abundance





Jnaneshwar Das

# Samples acquired AUV transect data



1.5

8

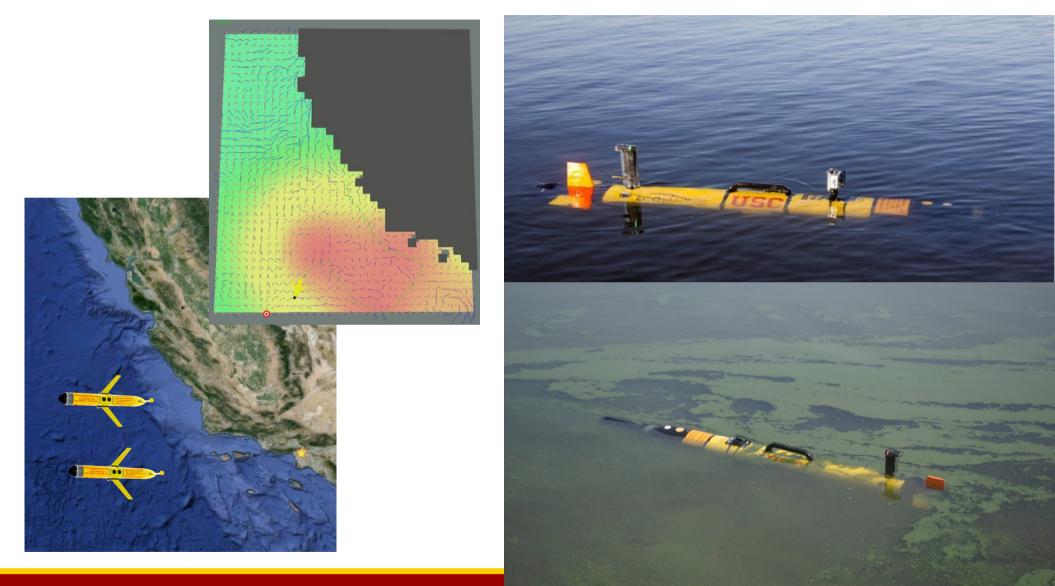
# **Ex-situ sampling contributions**

- Stochastic, online constrained sampling
- Model is geography agnostic
- Closes autonomy loop on ecosystem monitoring first data-driven experiment of this type in marine robotics
- Allow domain experts to task vehicles at a high(er) level ("bring me the harmful microbe!")





# **In-situ adaptive sampling**







Lantao Liu, Kai-Chieh Ma, Stephanie Kemna

# **Online, adaptive sampling**

- Adapt the vehicle movements based on its measurements, as the vehicle is sampling
- Create/update a model of the environmental phenomena





## **Informative Path Planning**

- Gather the most informative data: Adaptive sampling using information-theoretic optimization criteria, such as entropy or mutual information
- Create the best model





### **Gaussian Process Regression Intro**

#### A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its mean function and covariance function. We define mean function  $m(\mathbf{x})$  and the covariance function  $k(\mathbf{x}, \mathbf{x}')$  of a real process  $f(\mathbf{x})$  as

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$$
  

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))],$$
(2.13)

and will write the Gaussian process as

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')).$$
 (2.14)





[Rasmussen & Williams, 2006]

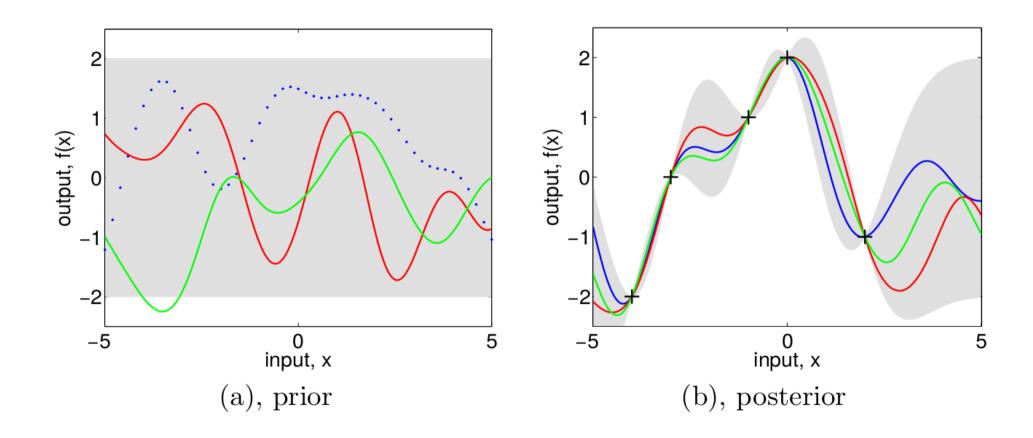
### **GP model selection**

- choice of covariance function/kernel
  - common choice: squared exponential
- choice of hyperparameters
  - length scale
  - noise variance
  - signal variance
  - $\rightarrow$  hyperparameter optimization, using prior data





#### **GP prior & posterior**







[Rasmussen & Williams, 2006]

# Imagine; any location within your survey space can be represented by a Gaussian

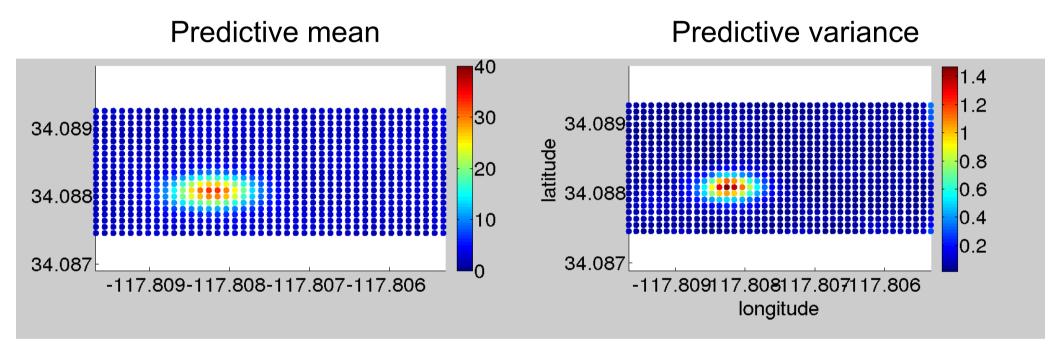






Stephanie Kemna, MOOS-IvP

### Imagine; any location within your survey space can be represented by a Gaussian







Stephanie Kemna

## Metrics on GP output for determining quality of the environmental model

Quantify the uncertainty in the model, and calculate the information that can be gained for prospective sampling locations:

- Squared error
- Entropy
- Mutual Information
- Etc.





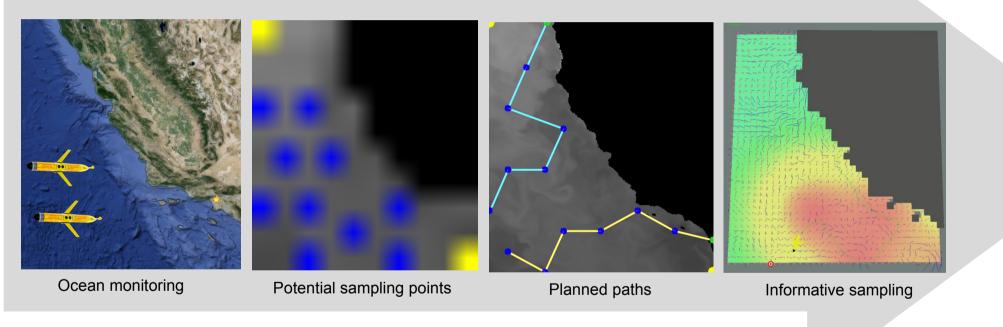
# Path planning, given metric

- Greedy [Guestrin'05, Krause'08, Kemna]
  - Iocal greedy [Low'12]
- Recursive Greedy; plan path from S to T [Binney'10, Krause'07, Singh'09]
- Dynamic Programming [Low'08/'09, Hitz'14, Ma/Liu]
- Branch & bound [Binney'12] eMIP [Singh'06/'07/'09]





## **Informative path planning for AUVs**

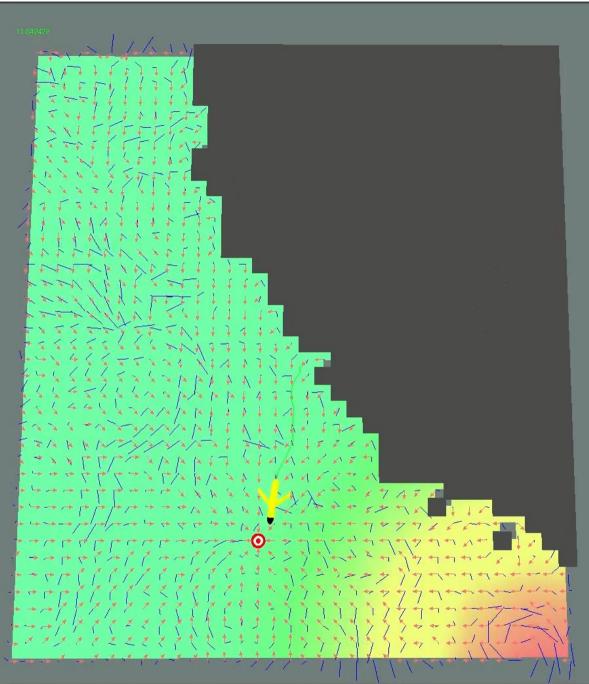






Lantao Liu, Kai-Chieh Ma

### Informative path planning for underwater glider – hierarchical planner

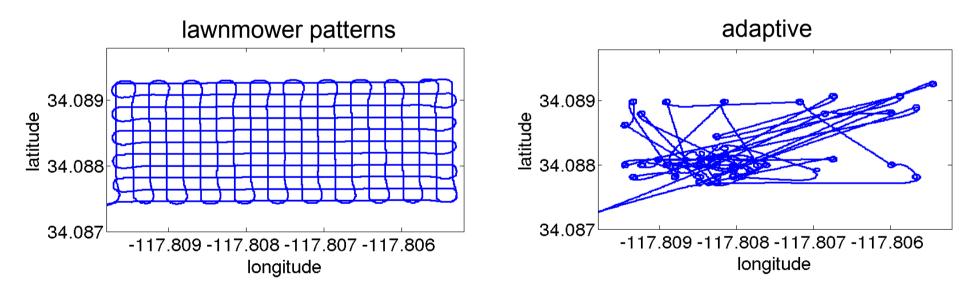






# Adaptive versus standard surveys ?

#### **Choice of vehicle trajectories:**







Stephanie Kemna 55

Data Value

40

30

20

10

0

Simulated data field

-117.809117.808117.807117.806 longitude

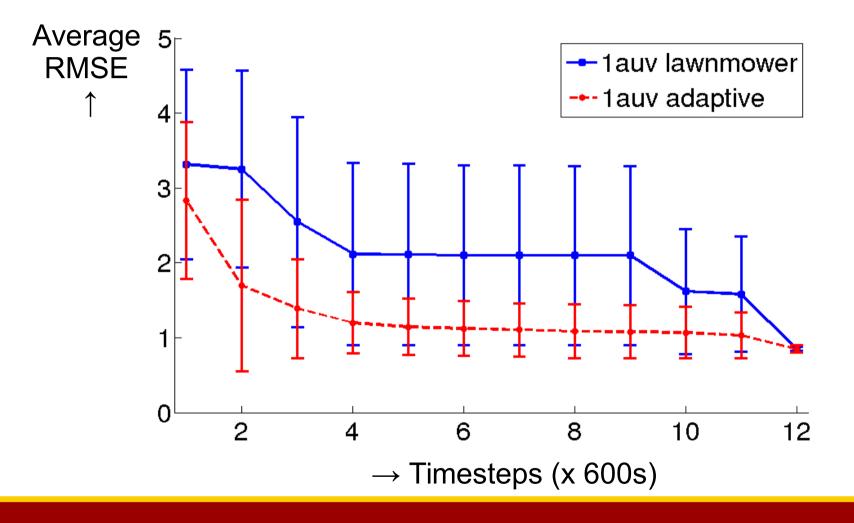
34.089

34.088

34.087

latitude

# **Benefits of informative path planning**







Stephanie Kemna \_56

#### How to make sure the vehicle can operate safely in a previously unexplored environment?





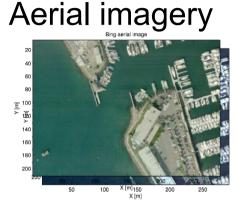
# **Obstacle detection from overhead imagery using self-supervised learning**

- Deploy robots in new environments with low risk
- Obstacle maps not available
- Need maps to plan paths
- Want to generate relevant maps without human labor





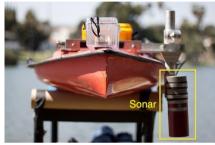
# **Combining aerial & sonar data**

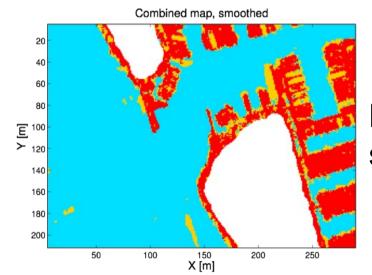


Feature \_\_\_\_\_

Training labels generation







Prediction & smoothing

#### obstacle, transient, free space





Hörður Heiðarsson

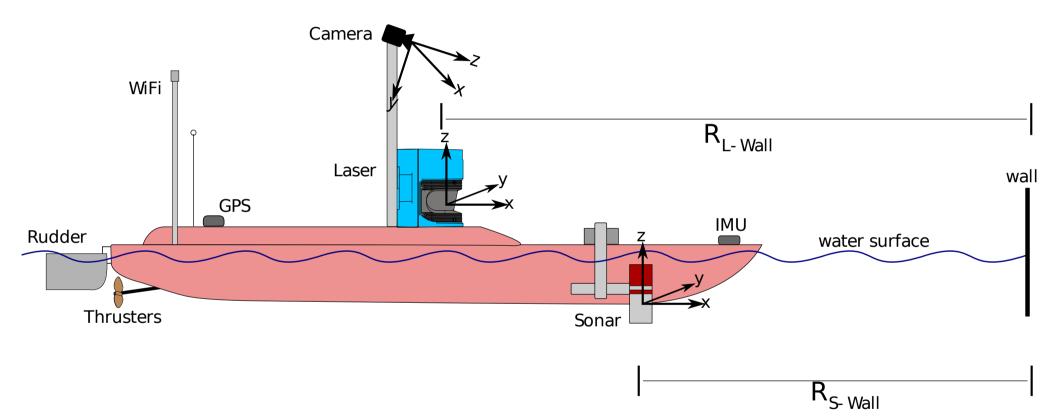
Aerial imagery: ©2011 Microsoft Corporation Available exclusively by DigitalGlobe, © 2010 NAVTEQ

### What about in-field obstacle avoidance?





### **Different sensors for different parts of the environment**









· T·O

SICK



Hörður Heiðarsson Stephanie Kemna

### **Autonomous sensor calibration**

- Determine transformations between our different sensors:
  - Laser Sonar: 2D affine transform: translation, rotation, scaling
  - Camera Water plane:
     6 DOF rigid body transform
- Actively gather data for calibration using existing features as calibration targets





# **Suitable calibration targets**

- Sloped targets not suitable
- Straight edges give ambiguity
- Use corner features
  - Can be detected by our different sensors
  - Rarely sloped
  - Can be detected from overhead imagery

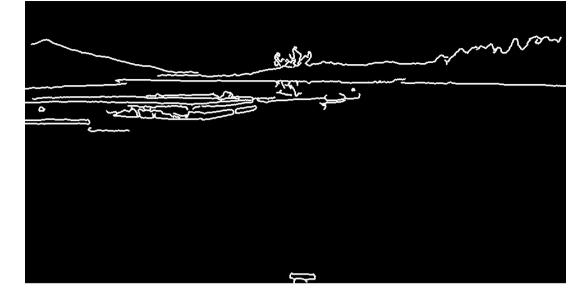




#### **Feature extraction**

For all sensors:

- Line extraction
- Find corners
- Run optimization to find best match between sensors

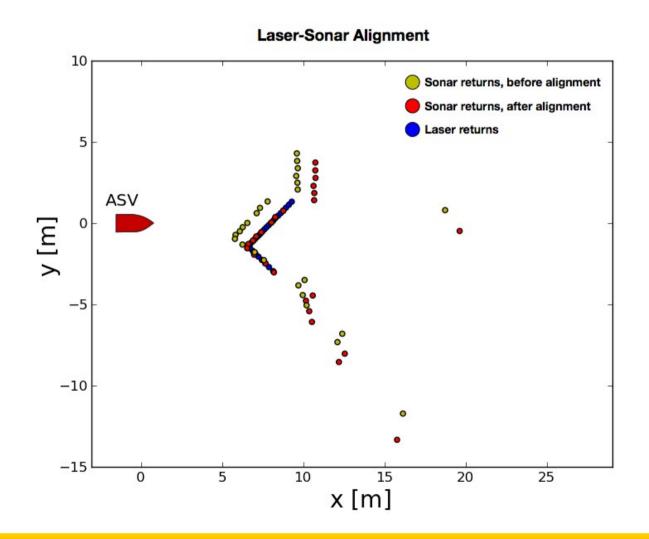








#### **Results: laser & sonar**



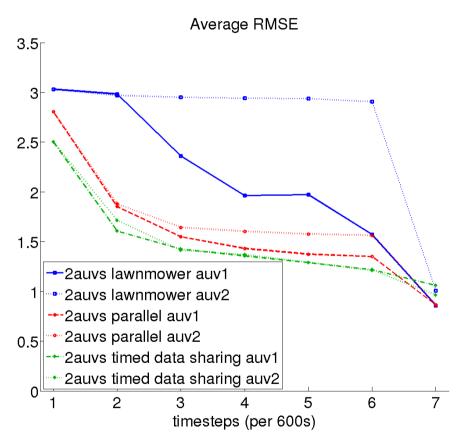




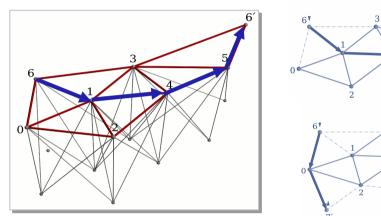


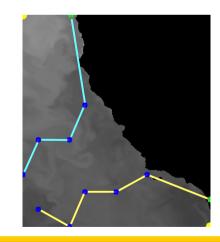
# **Multi-robot approaches**

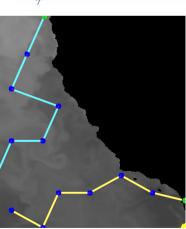
# Multi-robot: run in parallel or coordinate?



*Orienteering* solution from transformed matching graph



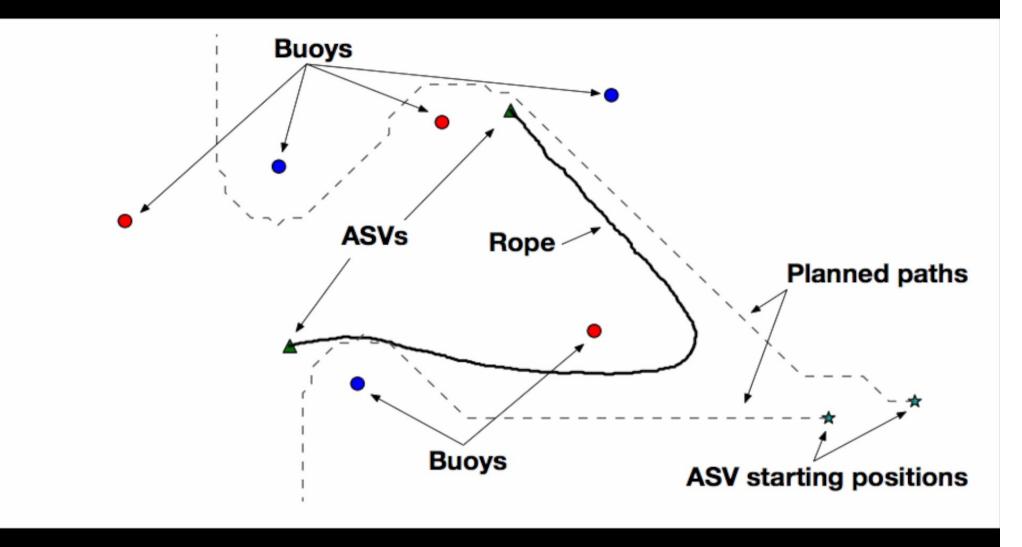








Lantao Liu, Kai-Chieh Ma, Stephanie Kemna







S.Kim, S.Bhattacharya, H. Heidarsson, G. S. Sukhatme, V. Kumar 69

# What goes into getting overhead imagery at a lake...







Hordur Heidarsson, Jnaneshwar Das Supreeth Subbaraya, Stephanie Kemna

70

### What goes into getting overhead imagery at a lake...





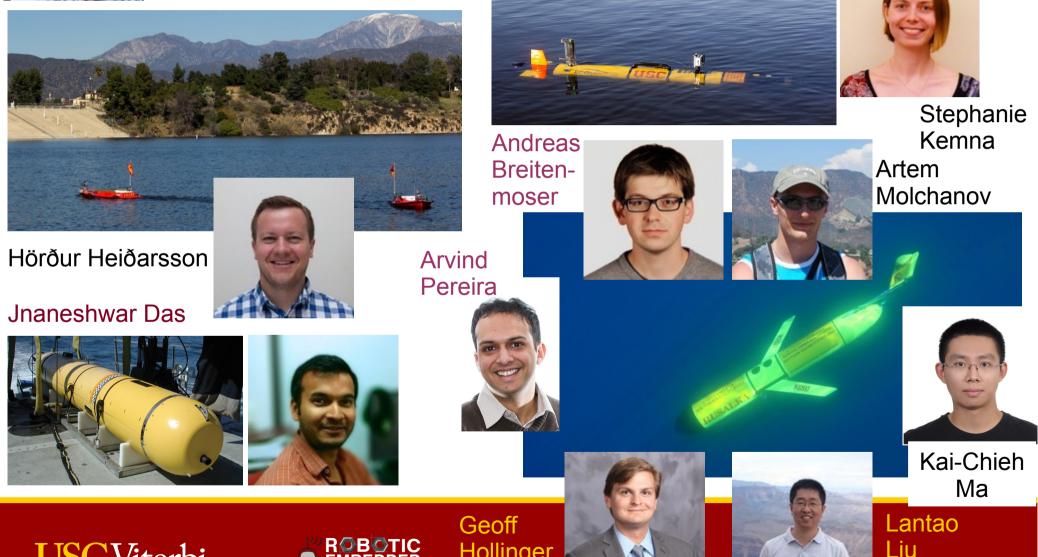




# **Thank you!**

#### http://robotics.usc.edu/resl/

#### Prof. Gaurav Sukhatme







Hollinger





72

# Planning to do aquatic robot experiments?

Remember to:

- always bring a towel
- use a canopy
- bring sunscreen & a cap
- bring an extra sweater, even in sunny SoCal!
- bring a rescue vehicle, e.g. kayak
- be prepared to talk football with the fishermen
- bring the internet





#### References

- [Merckelbach, 2012] L. Merckelbach, "On the probability of underwater glider loss due to collision with a ship," Journal of Marine Science and Technology, June 2012.
- [Rasmussen & Williams, 2006] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. The MIT Press, 2006.

Arvind Pereira, "Risk-aware path planning for autonomous underwater vehicles", PhD Thesis, USC, 2013.

- G. A. Hollinger, A. A. Pereira, J. Binney, T. Somers, G.S. Sukhatme, "Learning Uncertainty in Ocean Current Predictions for Safe and Reliable Navigation of Underwater Vehicles", JFR 33(1), 2016.
- A. Molchanov, A. Breitenmoser and G. S. Sukhatme. "Active Drifters: Towards a Practical Multi-Robot System for Ocean Monitoring". IROS, 2015.

Jnaneshwar Das, "Data-driven robotic sampling for marine ecosystem monitoring", PhD Thesis, USC, 2014.

Hordur Heidarsson, "Obstacle Detection from Overhead Imagery using Self-Supervised Learning for Autonomous Surface Vehicles", IROS, 2011.

Hordur Heidarsson, "Active Online Calibration of Multiple Sensors for Autonomous Surface Vessels", ISER, 2014.

- K. Ma, L. Liu, G. S. Sukhatme, "A Hierarchical Informative Path Planning Method for Ocean Monitoring.", SCR, 2016.
- S. Kim, S. Bhattacharya, H. Heidarsson, G. Sukhatme, V. Kumar, "A Topological Approach to Using Cables to Separate and manipulate Sets of Objects", RSS 2013, IJRR 2015.





# More publications are on our website!

