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Aquatic Robotics at RESL

  Path planning & adaptive sampling approaches for 

 underwater gliders

 active drifters

 autonomous underwater vehicles (AUVs)

  Multi-robot coordination for autonomous 
underwater and autonomous surface vehicles 
(ASVs)

  Obstacle avoidance & sensor calibration for ASVs
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Path planning for underwater gliders

Low risk

High risk

Los Angeles

Arvind Pereira, Geoff Hollinger

Risk of surfacing
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Slocum gliders

No perception:
No current sensing

Slow moving:
0.3 m/s

Long endurance:
3-4 weeks

Arvind Pereira
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Slocum gliders – typical trajectories

http://www.marine-knowledge.com/wp-
content/uploads/2013/10/gliderdiagram.gif
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Risk-aware path planning – avoid collisions!

Arvind Pereira, Geoff Hollinger
Picture courtesy of Carl Oberg

Wing sheared
off by

propeller

Damage to
hull due to

boat
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Risk-Aware Planning 

Start

Goal

Low risk

High risk

The probability of 
collision between 
ships and AUVs is 
proportional to ship 
density
[Merckelbach, 2012]

Los Angeles

Catalina
Island

Long Beach

Risk of surfacing

Arvind Pereira
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Minimum risk planner

Find path P* with surfacing 
waypoints w:

Subject to constraint:

i.e. max distance between 
waypoints is limited

Low risk

High risk

Los Angeles

Risk of surfacing

Arvind Pereira
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But what if the glider is pushed off course 
by ocean currents?
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But what if the glider is pushed off course 
by ocean currents?

Arvind Pereira

desired (standard) waypoints
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Ocean currents

 Oceans can have 
strong currents

 Nearly twice the speed 
 of the glider in red 
 regions

 Direction may change 
 periodically

glider
speed

Arvind Pereira
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Incorporating ocean models

ROMS

•HF-radar 
  (surface 
  currents)
•Tide gauges 
  (sea surface 
  height)
•Satellite data 
  (sea surface 
  temperature)
•AUV data
•Etc.

inputinputinputinput

• u - easting
• v - northing
• w - vertical
• sal - salinity
• temperature
• sea-surface 
    height

outputoutputoutputoutput

72 hr forecastData sources

source: ourocean.jpl.nasa.gov
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Minimum-Risk planner + pseudo waypoints

Arvind Pereira

pseudo waypointsdesired (standard) waypoints
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But what if the predictions are incorrect?
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Ocean current predictions are noisy!

Predicted 48 hrs earlier Predicted 24 hrs earlier
Nowcast 
(assimilated)

Arvind Pereira
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Oceans currents & prediction uncertainties

Negligible currents
(ignore predictions)

Predictable
currents

Uncertain 
predictions 
(stationary 

models)

Uncertain 
predictions

(non stationary 
models)

Arvind Pereira, Geoff Hollinger
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Path planning for different current systems

Regime Planner

Negligible currents Minimum-Risk

Predictable currents Minimum-Risk planner with 
pseudo-waypoints

Uncertain (stationary) 
currents

Minimum Expected Risk 
planner and risk-aware

Markov Decision Process 
(MDP) 

Uncertain (non-stationary) 
currents

Risk-aware Non-Stationary 
Markov Decision Process 

(NSMDP)

Arvind Pereira, Geoff Hollinger
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Learning better estimates for uncertainty in 
ocean current predictions

Gaussian Processes: estimate the value with an uncertainty 
estimate!

Arvind Pereira, Geoff Hollinger
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Learning better estimates for uncertainty in 
ocean current predictions

Gaussian Processes: estimate the value with an uncertainty 
estimate!

Arvind Pereira, Geoff Hollinger
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Planner Noise Pros Cons

Minimum-
Expected-Risk

Low variability 
currents

  + Goal-directed
  + Fast

 - Poor in strong 
currents

Stationary Finite 
Horizon MDP

Low variability 
currents

 + Trade-off 
between goal-
directed and 
risky behavior
+ Reasonably 
fast

- Stationarity 
assumption may 
be limiting

Non-stationary 
finite horizon 

MDP
High variability 

currents

+ Can take 
advantage of 
currents to cross 
risky sections

- Susceptible to 
timeouts
- Computationally 
Expensive

Arvind Pereira, Geoff Hollinger
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Field testing!

Year Planner Field hours glider

2011 Min-Risk 408

2012 Stationary MDPs without GP 
predictions 840

2012 Minimum-Expected-Risk planner 360

2012 Stationary GP-MDP 120

2013 Non-Stationary GP-MDP 168

2011-13 Total 1896

Arvind Pereira
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Can we develop systems that utilize the 
currents?
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Can we develop systems that utilize the 
currents?

Microstar drifter, Pacific Gyre
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Active drifters

“Choose the current to take you where you want to go”

Added benefits:

Artem Molchanov, Andreas Breitenmoser

Easy deployment Efficient recovery
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Simulation experiments using ROMS 

Artem Molchanov, Andreas Breitenmoser

When to pick a new current ?
 Track angle between desired direction of movement 

and the current movement

How to pick a new current?
 Pick depth where current at desired direction

How to coordinate?
 Closely located drifters can share current estimates
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Simulation results: can collect drifters in 
few clusters. Aggregation performance 

over 100 simulations
Example deployment

Land

Ocean

Artem Molchanov, Andreas Breitenmoser
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What if there is no appropriate sensor, and 
the biology needs to be analyzed in the lab?
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Ex-situ sampling

Lab analysis of physical samples, 
labeled offline in batches

lab 
analysis

MBARI Dorado AUV
Ten 1.8 L gulpers

can fill once!

organism 
abundance

Jnaneshwar Das
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Given a limited number of gulpers, 
when to sample?
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Learn from previous data when to sample
Training data
[temp, salinity,...][b]

(re)learn organism niche model

z = [temperature, salinity]

Utility function

Sampling policy

Jnaneshwar Das

Lab 
analysis

...

k water samples
Online
Best-Choice
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Online best-choice problem

abundance (O.D.)

time

depth (m)
Zooplankton abundance prediction from PN model,

for an AUV survey from 2005

How to choose k samples to maximize the sum 
of utility from all samples?

Jnaneshwar Das
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Optimal Stopping Theory

Choose when to take a particular action.

The Hiring Problem:

  N candidates arrive for an interview i.i.d, and ranked

  Goal: choose single best candidate, in an online fashion

  Hiring decision is irrevocable!        

Jnaneshwar Das

→ can only gulp once!
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Optimal Stopping Theory

Choose when to take a particular action.

The Hiring Problem:

  N candidates arrive for an interview i.i.d, and ranked

  Goal: choose single best candidate, in an online fashion

  Hiring decision is irrevocable!

Solution:

  Observe first N/e (36.7 %) candidates, then hire next best

  If there is no better candidate, hire the last person

  Guarantee: Probability choosing best candidate = 1/e  (~36.7 %)

Jnaneshwar Das

→ can only gulp once!
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Selecting k candidates, online

Submodular hiring problem

 N candidates arrive for an interview, i.i.d, and rated

 Goal: choose best k candidates, online (best sum of 
rating)

 Hiring decisions are irrevocable

Jnaneshwar Das

→ can only gulp once!
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Selecting k candidates, online

Submodular hiring problem

 N candidates arrive for an interview, i.i.d, and rated

 Goal: choose best k candidates, online (best sum of rating)

 Hiring decisions are irrevocable

Solution

 Split total window into k segments 

 Apply hiring algorithm in each segment

 Guaranteed competitive-ratio of at least (1 - 1/e)/11, ~0.05

Jnaneshwar Das

→ can only gulp once!
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Field trial

Santa Cruz

Monterey

MBARI

Monterey canyon

Trial site

depth 
(m)

Dorado AUV on R/V Rachel 
Carson with the gulper bay 
open (Monterey Bay)

 1 km x 1 km Lagrangian surveys
 depth ~30 m, duration ~4.5 hr

Jnaneshwar Das
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Field trial set-up

Goal : Acquire high abundance samples of pseudo-
nitzschia (PN), a potentially toxinogenic alga

87 analyzed samples from October 2010 CANON 
experiment used to learn niche model for pseudo-
nitzschia

Cross-validation to pick input variables and GP kernel 
parameter

Mission in North Monterey Bay to acquire 9 samples 
(1 gulper was non-functional)

Jnaneshwar Das
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Predictions of trained pseudo-nizschia 
model

* circle size proportional to measured abundance

Prediction (mean) Uncertainty (variance)

Jnaneshwar Das
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Samples acquired

41

Jnaneshwar Das
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Ex-situ sampling contributions

  Stochastic, online constrained sampling

  Model is geography agnostic

  Closes autonomy loop on ecosystem monitoring – 
 first data-driven experiment of this type in 
 marine robotics

  Allow domain experts to task vehicles at a high(er) 
 level (“bring me the harmful microbe!”)

Jnaneshwar Das
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In-situ adaptive sampling

Lantao Liu, Kai-Chieh Ma, Stephanie Kemna
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Online, adaptive sampling

  Adapt the vehicle movements based on its 
measurements, as the vehicle is sampling

  Create/update a model of the environmental 
phenomena

Lantao Liu, Kai-Chieh Ma, Stephanie Kemna
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Informative Path Planning

  Gather the most informative data: 
Adaptive sampling using information-theoretic 
optimization criteria, such as entropy or mutual 
information

  Create the best model

Lantao Liu, Kai-Chieh Ma, Stephanie Kemna
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Gaussian Process Regression Intro

A Gaussian process is a collection of random 
variables, any finite number of which have a joint 
Gaussian distribution.

[Rasmussen & Williams, 2006]



47

GP model selection

  choice of covariance function/kernel

 common choice: squared exponential

  choice of hyperparameters

 length scale

 noise variance

 signal variance

  → hyperparameter optimization, using prior data

Lantao Liu, Kai-Chieh Ma, Stephanie Kemna
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GP prior & posterior

[Rasmussen & Williams, 2006]
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Imagine; any location within your survey 
space can be represented by a Gaussian

Stephanie Kemna, MOOS-IvP



50

Imagine; any location within your survey 
space can be represented by a Gaussian

Predictive mean Predictive variance

Stephanie Kemna
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Metrics on GP output for determining 
quality of the environmental model

Quantify the uncertainty in the model,
and calculate the information that can be 
gained for prospective sampling locations:

  Squared error

  Entropy

  Mutual Information

  Etc.

Lantao Liu, Kai-Chieh Ma, Stephanie Kemna
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Path planning, given metric

  Greedy [Guestrin'05, Krause'08, Kemna]

  local greedy [Low'12]

  Recursive Greedy; plan path from S to T  
 [Binney'10, Krause'07, Singh'09]

  Dynamic Programming [Low'08/'09, Hitz'14, Ma/Liu]

  Branch & bound [Binney'12]

eMIP [Singh'06/'07/'09]

Lantao Liu, Kai-Chieh Ma, Stephanie Kemna
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Informative path planning for AUVs

Ocean monitoring Potential sampling points Planned paths Informative sampling

Lantao Liu, Kai-Chieh Ma
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Informative 
path planning 
for 
underwater 
glider – 
hierarchical 
planner

Lantao Liu, Kai-Chieh Ma
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Adaptive versus 
standard surveys ?

Simulated data field

adaptivelawnmower patterns

Choice of vehicle trajectories:

Stephanie Kemna
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Benefits of informative path planning

Average
RMSE

 ↑

→ Timesteps (x 600s)

Stephanie Kemna
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How to make sure the vehicle can operate 
safely in a previously unexplored 
environment?
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Obstacle detection from overhead imagery 
using self-supervised learning

  Deploy robots in new environments with 
 low risk

  Obstacle maps not available

  Need maps to plan paths

  Want to generate relevant maps without
 human labor

Hörður Heiðarsson
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Combining aerial & sonar data

Sonar dataAerial imagery

+Feature
extraction

Training labels
generation

Prediction & 
smoothing

obstacle, transient, free space

Aerial imagery: ©2011 Microsoft Corporation
Available exclusively by DigitalGlobe, © 2010 NAVTEQ

Hörður Heiðarsson
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What about in-field obstacle avoidance?

Hörður Heiðarsson
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Different sensors for different parts of the 
environment  

Hörður Heiðarsson

y

z

x

y

z

xGPS

WiFi

Rudder

Thrusters

Camera

Laser

Sonar

IMU

RS- Wall

RL- Wall

water surface

wall
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Hörður Heiðarsson
Stephanie Kemna
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Autonomous sensor calibration

  Determine transformations between our different 
sensors:

 Laser – Sonar: 
2D affine transform: translation, rotation, 
scaling

 Camera - Water plane:
6 DOF rigid body transform

  Actively gather data for calibration using existing 
features as calibration targets

Hörður Heiðarsson
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Suitable calibration targets

  Sloped targets not suitable

  Straight edges give ambiguity

  Use corner features

 Can be detected by our
different sensors

 Rarely sloped

 Can be detected 
from overhead 
imagery

Hörður Heiðarsson



65

Feature extraction

For all sensors:

 Line extraction

 Find corners

 Run optimization
to find best match
between sensors

Hörður Heiðarsson
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Results: laser & sonar

Hörður Heiðarsson
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Hörður Heiðarsson
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Multi-robot approaches 
Orienteering solution from 
transformed matching graph

Multi-robot: run in parallel or 
coordinate?

Lantao Liu, Kai-Chieh Ma, Stephanie Kemna
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S.Kim, S.Bhattacharya, H. Heidarsson, 

G. S. Sukhatme, V. Kumar
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What goes into getting overhead imagery 
at a lake...

Hordur Heidarsson, Jnaneshwar Das
Supreeth Subbaraya, Stephanie Kemna
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What goes into 
getting overhead 
imagery at a lake...
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Thank you!

Prof. Gaurav Sukhatme

Hörður Heiðarsson

Jnaneshwar Das

Arvind
Pereira

Andreas
Breiten-
moser

Artem
Molchanov

Geoff
Hollinger

Lantao
Liu

Stephanie
Kemna

Kai-Chieh 
Ma

http://robotics.usc.edu/resl/
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Planning to do aquatic robot experiments?

Remember to:

• always bring a towel

• use a canopy

• bring sunscreen & a cap

• bring an extra sweater, even in sunny SoCal!

• bring a rescue vehicle, e.g. kayak

• be prepared to talk football with the fishermen

• bring the internet

Hörður Heiðarsson
Stephanie Kemna



74

References
[Merckelbach, 2012] L. Merckelbach, “On the probability of underwater glider loss due to collision with a ship,” 

Journal of Marine Science and Technology, June 2012.

[Rasmussen & Williams, 2006] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. 
The MIT Press, 2006.

Arvind Pereira, “Risk-aware path planning for autonomous underwater vehicles”, PhD Thesis, USC, 2013.

G. A. Hollinger, A. A. Pereira, J. Binney, T. Somers, G.S. Sukhatme, “Learning Uncertainty in Ocean Current 
Predictions for Safe and Reliable Navigation of Underwater Vehicles”, JFR 33(1), 2016.

A. Molchanov, A. Breitenmoser and G. S. Sukhatme. "Active Drifters: Towards a Practical Multi-Robot System for 
Ocean Monitoring". IROS, 2015. 

Jnaneshwar Das, “Data-driven robotic sampling for marine ecosystem monitoring”, PhD Thesis, USC, 2014.

Hordur Heidarsson, “Obstacle Detection from Overhead Imagery using Self-Supervised Learning for Autonomous 
Surface Vehicles”, IROS, 2011.

Hordur Heidarsson, “Active Online Calibration of Multiple Sensors for Autonomous Surface Vessels”, ISER, 2014.

K. Ma, L. Liu, G. S. Sukhatme, “A Hierarchical Informative Path Planning Method for Ocean Monitoring.”, SCR, 2016.

S. Kim, S. Bhattacharya, H. Heidarsson, G. Sukhatme, V. Kumar, “A Topological Approach to Using Cables to 
Separate and manipulate Sets of Objects”, RSS 2013, IJRR 2015.



75

More publications are on our website!

Scroll
Down
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