E190Q - Lecture 12
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Spring 2014

Figures courtesy of Probabilistic Robotics (Thrun et. Al.)
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= |ntroduction to SLAM
= | andmark based SLAM
» Occupancy Grid based SLAM



Methods

= Mapping Problem

» Determine the state of the environment given a known
robot state.

= | ocalization Problem

= Determine the state of a robot given a known
environment state.

» SLAM - Simultaneous Localization and Mapping

» Simultaneously determine the state of a robot and
4 state of the environment.



SLAM

» Full SLAM

» Estimates entire path of robot and across all time.

p(‘xl:t?m | Zl:tﬁul:z‘)

= On Line SLAM

= Estimates current pose of the robot and map.
= [ntegrations typically done one at a time

p(‘xﬂ 7 | Zl:f’ Z‘/1:1)



= |ntroduction to SLAM
= | andmark based SLAM
» Occupancy Grid based SLAM



SLAM

= andmark based SLAM

= Features

» Observable parts or characteristics of objects in the
environment.

= E.g. corners, colors, walls, etc.

= Landmarks
» Static and easily recognizable features.
» E.g. Orange cones



= Landmark based S

Vehicle-Feature Relative
Observation

= Given:
* The robot’s odometry u
= Observations of nearby
features z
= Estimate:

= Robot States x
= Landmark States M

Mobile Vehicle

Global Reference Frame



EKF SLAM

= To start, lets recall our EKF
Localization...



EKF Localization

* |[n our example, the state vector to be
estimated, x, was a 3x1 vector

e.g. X

X=1Y
0

sAssociated Covariance, P

Oex ny 050

P = Oy Oy Opg

Oox O, Ogp
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EKF Localization

Prediction
1. x’ :f(xt-l ) ut)

2. P,=F P F, P F,.Q, Fu’tT
Correction
3. Ziexp,t = h(x',, M)
4. v, =1z,- Zoxp,t
5 ElN,t _ Hix’,tP,t Hix’,tT + Rit
6. K, =P’ Hx’,tT(ZIN,t )!
7. x,=x",+K,v,
11 8. P,=P’-K, X, K'



EKF SLAM



EKF SLAM

= The covariance Matrix P



Robot path error correlates errors in the map



Robot path error correlates errors in the map



Robot path error correlates errors in the map



Landmark Based Example

Robot path error correlates errors in the map
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* The matching between observations and landmarks is unknown
* WWrong data associations can have catastrophic consequences



EKF SLAM

Prediction
1. x’ :f(xt-l ) ut)
2. P,=F, P, Fx,t-lT +F,,Q, Fu,tT
Correction
Ziexp,t - hi(x’t)
ViT 2~ Loy,
Ling = Hix’,t P’ Hix’,tT + R/,
K, =P’ Hx’,tT (X, )
x,=x"+K, v,
P,=P° - K, 2N K/

© X kAW



Prediction Step

= | ocalization Motion model

x| [ 4s,cos@®,, +40,/2)
X’ =f(Xppo W) =| Y| +| ds,sin,, +46,/2)
0., A0,
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Prediction Step

Xe1
X = Ve
0,
Xf1t-1

Vfir1

XNt-1

YL

= SLAM Motion Model

_|_

As, cos(,., +46,/2)
As, sin(6,., +46,/2)
A0,
0




Prediction Step

= Covariance
= Recall, we linearize the motion model fto obtain

P’ =F_ P F

x,t-1 x,t-1

T
+ Fu,t Qt Fu,t

where
Q, = Motion Error Covariance Matrix

F, .1 = Derivative of f with respect to state X ;

F, . = Derivative of f with respect to control u,

u,t
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Prediction Step

= Covariance

y — T T
P t Fx,t—] Pt-IFx,t-I + Fu,t Qt Fu,t



= Covariance

Prediction Step

] dxt/dxt_] dxt/dyt_] Cl’X/d(gt_J dx,/dxﬂt_] coe

dy/dx,; dyydy., dy/do,, dy/dx,.; ..
dbydx,; d0sdy,, dO0/do,, dbsdx,, ; ..

dxp/dx,; dxg/dy,; dxg/dO, ; dxg/dxg,; ... dxg/dyy,

deJ/ dx, dJ/ﬂ/ dy,.; dYﬂ/ do, dyf]r/ dxﬂz—]

dx,/ dyth-I
dy/dy NE-1
do/ dyﬂ\/t-l

dyf]/dyﬂw—]

dJ/ﬂv/ dx, dyth/ dy,., dyﬂ\/r/ do, dJ/ﬂv/ dxﬂt—] e dyﬂ\/r/ dJ/ﬂw-z




Prediction Step

= Covariance
P’ = Fx,t-l Pt—IFx,t-IT + Fu,t Q, Fu,tT

Q, =|klds,,| 0 }

0 k |ds;,|

F,, { dfds,, df/dAsU}



= Covariance

Prediction Step

— dx,/dAds,, dx/dds,,

dysdds,, dy/dAs,,
do/das,, do/dAs,,
dx;/dAs, , dx,/dAs,,
dy/das,, dy,/das,,

dyw/dAs,., dyy/dAs,,



EKF SLAM

Prediction

1. X,t :f(xt_]Jut)
2. P’= Fx,t—l P, Fx,t-IT + Fu,t Q, Fu,tT

Correction
3. Ziexp,t = h(x’)
4. v, =1z,- Zoxp,t
5. Xy, =H PP H_,T+R,
6. x,=x’,+K,v,
7. P,=P° —K, ZIN,t KtT
8. K,=P’ H, (X, )’




Correction Step

» Measurement of it" landmark
A Txy,]

/

pi/
/
/

28



29

Correction Step

= Expected Measurement calculation
Ziexp,t — aiexp,t
piexp,z‘
= h(x')

= | atan(y;-y’;, x;-x') =0, }
((yﬁ'y,t)2 _I'(xﬁ -x’ )7 )0



Correction Step

= |nnovation calculation

— I _ ol
at a exp,t

] ]
PP exp,t



Correction Step

= |nnovation covariance calculation
Yy =H,, PP H,, T+R,
where

R!, = Feature Measurement Error Covariance Matrix

H',., = Derivative of h with respect to state X’,
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Correction Step

= |nnovation covariance calculation
X = H P H TR

H.,, =|da' /dx’, do! /dy’, doi,/d0’, dal /dx’y, ... dot,/dy
dp',/dx’, dp',/dy’, dp',/dO’, dp' /dx’,, ... dp',/dy’p,



Correction Step

= |nnovation covariance calculation
Y =H, P H TR,

R, =|d7° 0
0 o2

p




Correction Step

= For N features ...
ARk

ZN

2 T
exp,t Z exp,t °*° exp,t]



Correction Step

= For N features...



Correction Step

= For N features ...

|
Hx’,t H x’,t
2
H x’,t
N
_H x’,t




Correction Step

= For N features ...

— T
ZIN,t o Hx’,t Pt Hx’,t + Rt



EKF SLAM

Prediction

1. X’t :f(xt-lf ut)

2. P =F, P, Fx,t-IT +F,,Q Fu,tT
Correction

3 Ziexp’t = hi(x’,)

4 Vt - Zt B Zexp,t

5. Zi,Mt = Hix,’tP’t Hix,’tT + Rit

6. Kt — P’t Hx’,tT(ZIN,t )-1

7. x,=x" +K,v,

8 Pt — P,t - Kt 2IN,t KtT



EKF SLAM

1 1 |

J. Langalaan — Penn State



EKF SLAM



= |ntroduction to SLAM
= | andmark based SLAM
= Occupancy Grid based SLAM



Localization & Mapping

Occupancy Grid Mapping
= Doesn’t require knowledge of features!

* The environment is discretized into a grid of equal
sized cells, M = {c,}

= Each cell (i, j) is assigned a likelihood P(c,) € [0,1] of
being occupied

» FastSLAM- [Thrun et al., 2005]



Localization & Mapping

What is a Particle?

» A particle is an individual state estimate.
* |n our SLAM, a particle i has three components

(XMW

State Map Weight
1. The stateis x=[xyzO0uvrw]

2. The map is an occupancy grid M
3. The weight w that indicates it’'s likelihood of being the correct state.
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FastSLAM for Occupancy Grids

Algorithm (Loop over time step ¢ ):

1.
2
3.
4.
5
6

Fori=1..N
Pick x,_,// from X,
Draw x /7 with probability P(x/7 | x,_,/V, o,)
Calculate w// = P(z, | x/7, M/Y)
Update M/
Add x /1 to X Fredict

Forj=1..N
Draw x [/ from X Fredictwith probability w /7
Add x 7/ to X,




FastSLAM for Occupancy Grids

= Step 3: Draw x /¥ from P(x/7 | x, /7, o,)
» The state vector is propagated forward in time to reflect the ROV
motion based on control inputs and uncertainty

* The dynamic model is used to propagate particle states

X, =f(x, u. ., + r\andn(O,ol'u))

Experimentally Determined
Process Noise

f(x, u,,,+randn)

Xy Xit1



FastSLAM for Occupancy Grids
= Step 3: Draw x /¥ from P(x/7 | x, /7, o,)

Xy =Jf(x, U, +randn)




FastSLAM for Occupancy Grids

= Step 4: Calculate weights w/¥ = P(z, | x /i, M.[i])

» Particle weights are calculated by comparing probabilities of
cell occupation from actual sonar measurements with current

map cell probabilities

= Sonar measurements come in the for

z=[ps"s! ... s8]

Sl
sonar Strength of returns
angle for increasing range B

{‘7,



FastSLAM for Occupancy Grids

= Step 4: Calculate weights w/7 = P(z, | x// M /7 )
» Given the state of the particle within a map, we can project
which map cells the sonar would overlap

» This set of map cells will have existing map probabilities
Pexp(clj)

Expected Map
Probabilities

ARELEN



FastSLAM for Occupancy Grids

= Step 4: Calculate weights w/7/ = P(z, | x /I, M/ )

» Given the actual sensor signal strengths s corresponding to
each map cell, one can calculate a probability of a cell being
occupied.

P(c;), = K;s

Where K _ is a scalar that maps signal strength to probability.
(e.g.=1/s

max )



FastSLAM for Occupancy Grids

Step 4: Calculate weights w// = P(z, | x// M/ )

= To calculate the particles weight w///, we compare the expected
map probabilities P, (c,) based on the current map, with the
sensor based probabilities P(c;),

Wil = P(z | xt, M) /L

|
P(cij)z Pexp(cij)




FastSLAM for Occupancy Grids

Step 5: Update M /¥

= Modify the occupancy likelihood of each cell P(c;;) using sonar
measurement z. We convert signal strength to a probability,
and then add with the log odds!!!




FastSLAM for Occupancy Grids

Swimming Pool Trial



Malta Cistern Deployment

Results Il: SLAM while moving
= SLAM with no tether mc




Malta Cistern Deployment

Results Il: SLAM while moving
* Original model

-\'tk = (-\’r-.lk, Uy
= New model

xf=f (xéc—l' u,(1+n) —eu,(1+ 7'2))
e = {0 ifr; < /1}

1 else

= Where r, and r, are normally distributed random variables and
r; is a uniformly distributed random variable



Malta Cistern Deployment

Results Il: SLAM while moving




Malta Cistern Deployment

» Results Ill: SLAM with stationary scans




Malta Cistern Deployment

Results |V: Localization with unknown start




Malta Cistern Deployment

Results |V: Localization with unknown start
location s \
i

(3]

N

- error(m) o

v
-——’-—dri
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FastSLAM for Occupancy Grids

Results |V: Localization with unknown start
location




