E190Q - Lecture 11
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Spring 2013

Figures courtesy of Siegwart & Nourbakhsh
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Kalman Filter Localization

* |[ntroduction to Kalman Filters
1. KF Representations
2. Two Measurement Sensor Fusion
3. Single Variable Kalman Filtering
4. Multi-Variable KF Representations

= Kalman Filter Localization



KF Representations

» \What do Kalman Filters use to represent
the states being estimated?

Gaussian Distributions!



KF Representations

= Single variable Gaussian Distribution
» Symmetrical
= Uni-modal
= Characterized by

» Mean u
= \ariance ¢*

* Properties

» Propagation of errors
* Product of Gaussians
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KF Representations

= Single Var. Gaussian Characterization

= Mean

» Expected value of a random variable with a continuous
Probability Density Function p(x)

u = E[X] = |x p(x) dx

» For a discrete set of K samples

J7 =ka/K



KF Representations

= Single Var. Gaussian Characterization

* Variance
» Expected value of the difference from the mean squared

o2 =E[(X-1)?] = f (— 1)2p(x) dx

» For a discrete set of K samples

o= (x—p /K



KF Representations

= Single variable Gaussian Properties

» Propagation of Errors

X ~N(u,0%)

= Y~N(au+b,a’c’
Y =aX +b } (s )



KF Representations

= Single variable Gaussian Properties

= Product of Gaussians

X, ~ Ny, 0-1)1
X, ~N(u,,0, )J

. . ,I o)’ o, 1
p(X) - p(X,)) ~N| 5ty +———5 I, ) )
o, +0, o, +0, o, +0,




KF Representations

= Single variable Gaussian Properties...

= We stay in the “Gaussian world” as long as we start
with Gaussians and perform only linear
transformations.
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Kalman Filter Localization

* |[ntroduction to Kalman Filters
1. KF Representations
2. Two Measurement Sensor Fusion
3. Single Variable Kalman Filtering
4. Multi-Variable KF Representations

= Kalman Filter Localization
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Fusing Two Measurements

= Example

= Given two measurements ¢, and ¢,, how do we fuse
them to obtain an estimate 7 ?

= Assume measurements are modeled as random
variables that follow a Gaussian distribution with
variance o,° and o,° respectively
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Fusing Two Measurements

= Example (cont’):
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Fusing Two Measurements

= Example (cont’):

= |Lets frame the problem as minimizing a weighted
least squares cost function:

n

S = 2 w,((} —q, )’

i =1

dS

(7(/ = _211 (q q;) = 22\\‘,([/—(/,) =0
i =1

(q
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Fusing Two Measurements

= Example (cont’):

» [fn=2and w, = 1/}

A

qg=4g, T o0
2 2
o, t o,

° (9;-9;)
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Kalman Filter Localization

» Introduction to Kalman Filters
1. KF Representations
2. Two Measurement Sensor Fusion
3. Single Variable Kalman Filtering
4. Multi-Variable KF Representations

= Kalman Filter Localization
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Single Variable KF

= Example: Fusing two Measurements

9=q,+ of (@ -q)
0-12 + 0-22

= \We can reformulate this in KF notation
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Single Variable KF

= KF for a Discrete Time System

= \Where
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AL A A
X, =x.; tK, (Zt - xt—])
— 2
K, 0 ]
2 2
O-t-] + O-Z

2 2
P 0. -K, 0.,

%, is the current state estimate

o/ is the associated variance

z/ is the most recent measurement
K is the Kalman Gain



Kalman Filter Localization

* |[ntroduction to Kalman Filters
1. KF Representations
2. Two Measurement Sensor Fusion
3. Single Variable Kalman Filtering
4. Multi-Variable KF Representations

= Kalman Filter Localization
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Representations in KF

= Multi-variable Gaussian Distribution
» Symmetrical
= Uni-modal
= Characterized by

= Mean Vector u
= Covariance Matrix X

* Properties

» Propagation of errors
* Product of Gaussians




Representations in KF

= Multi-Var. Gaussian Characterization

= Mean Vector
= Vector of expected values of n random variables

p=EX]=[uyu; ptoopt, 1

M :inp(xl) dx;
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Representations in KF

= Multi-Var. Gaussian Characterization

= Covariance
» Expected value of the difference from the means squared

0, =Cov[X, X] = E[(X,— ;) (X;— 1) ]
= Covariance is a measure of how much two random
variables change together.

" Positive ; — when variable i is above its expected value,
then the other variable j tends to also be above its

" Negative ¢; — when variable i is above its expected value,
then the other variable j tends to be below its 4,



Representations in KF

= Multi-Var. Gaussian Characterization

= Covariance
= For continuous random variables

o= |5 ) i, )y d

= For discrete set of K samples

0; —2 (X — M) (X — 1 )/K
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Representations in KF

= Multi-Var. Gaussian Characterization

= Covariance Matrix
= Covariance between each pair of random variables

000 00] o o0 00}/1
2 = 0,00, ...0;,
| 0,0 Oy --- Oy,




Representations in KF

= Multi variable Gaussian Properties

» Propagation of Errors

X~ N(u.5)

= Y ~N(4Au+B, 434")
Y = AX + B
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Representations in KF

= Multi variable Gaussian Properties

= Product of Gaussians

X, ~ N(u,. Z1)}

X, ~ ‘N(/‘::Z:)
>, > 1
= p(X,) p(X,)~N 1+ ..
p( 1) p( -) (Zl—f—zllll Zl-}-z_:/-' Zl_l—}—zzl]
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Next...

Apply the Kalman Filter to
multiple variables in the form of
a KF.
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Kalman Filter Localization

= |ntroduction to Kalman Filters
= Kalman Filter Localization

1.

2.
3.
4

EKF Localization Overview
EKF Prediction

EKF Correction

Algorithm Summary



Extended Kalman Filter
Localization

= Robot State Representation
= State vector to be estimated, x

e.g. X

X=|y

0

= Associated Covariéncé, P

Oxx O-xy 06

P = Oy Oy Oy

Oox Oy Ogo
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Extended Kalman Filter
Localization

1. Robot State Representation

&

- X
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Extended Kalman Filter
Localization

= |terative algorithm

1. Prediction — Use a motion model and
odometry to predict the state of the robot
and its covariance

x’t P’t
2. Correction - Use a sensor model and

measurement to predict the state of the
robot and its covariance

x P

t t
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Kalman Filter Localization

= |ntroduction to Kalman Filters
= Kalman Filter Localization

1.

2.
3.
4

EKF Localization Overview
EKF Prediction

EKF Correction

Algorithm Summary



EKFL Prediction Step

= Motion Model

= Lets use a general form of a motion model
as a discrete time equation that predicts the
current state of the robot given the previous
state x, , and the odometry u,

X’ = f(X.p 0,)
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EKFL Prediction Step

= Motion model
= For our differential drive robot...

X1

Xe 1 7 Ve

5
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EKFL Prediction Step

= Motion model

= And the model we derived...

X = (X, 0,) =

As,

A0,
35

x| [ d4s,cos, ,+46,/2)]
v | t| 4s,sin@,_, +40,/2)

A0,

(ASM‘FAS iy )/2
(Asm - s, )/b



EKFL Prediction Step

= Covariance
» Recall, the propagation of error equation...

X - *V(/Ja Z)

= Y ~N(Au+B,A3A")
Y = AX +B
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EKFL Prediction Step

= Covariance

= QOur equation f() is not linear, so to use the
property we will linearize with first order
approximation

X’ =f(Xeq, 4,

=F  x;+tF,,

where

F,, = Derivative of f with respect to state X,

37 F . = Derivative of f with respect to control u,

u,t



EKFL Prediction Step

= Covariance
= Here, we linearize the motion model f'to obtain

P’ = Fx,t Pt—IFx,tT + Fu,t Q, Fu,tT

where
Q, = Motion Error Covariance Matrix

F,, = Derivative of f with respect to state X,

F, . = Derivative of f with respect to control u,
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EKFL Prediction Step

= Covariance

Q =k |ASr,t| 0

0 k |ds,,|
F., = df/dx, df/dy, df/do,
F,, =| di/d4s,, df/d4s,,
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EKFL Prediction Step

1. Motion Model

X, 1
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Kalman Filter Localization

= |ntroduction to Kalman Filters
= Kalman Filter Localization

1.

2.
3.
4

EKF Localization Overview
EKF Prediction

EKF Correction

Algorithm Summary
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EKFL Correction Step

= |nnovation

= We correct by comparing current measurements z,
with what we expect to observe z,,,, given our
predicted location in the map M.

» The amount we correct our state is proportional to
the innovation v,

Vt - Zt - Zexp,t
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EKFL Correction Step

= The Measurement

= Assume our robot measures
the relative location of a wall

| extracted as line

----------

____
———————————————




EKFL Correction Step

= The Measurement

= Assume our robot measures the relative
location of a wall i extracted as line

Zit { ait} =8P Po s P B Py B

i
rl‘

[ Swisin2 - 25w, p,c08 sin
o = =—atan 5 " ’
D WPy cos2h— =3 B wwp,p,cos(f+ )

D WP, cos| p.—a)
44 T ij




EKFL Correction Step

= The Measurement
R\, =| ¢

1 !
o ro,t o rr,t

I
oo, t 9 or,t

_ T
- Gpﬂ,t z“z,t Gpﬂ,t

where
Zz,t

G, = Derivative of g() wrt measurements p,, p,

= Sensor Error Covariance Matrix
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Ziexp,t = h(x’, M) = o'y — 0,
r'—x’, cos(ol,,) —y’, sin(ol,,)



EKFL Correction Step

Y

47 X X




EKFL Correction Step

= The covariance associate with the
Innovation Is

Jp— s i T .
Z‘IN,t o Hlx,tP tHlx,t + th

where

R!, = Line Measurement Error Covariance Matrix
t

H', = Derivative of h with respect to state X,
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EKFL Correction Step

* Final updates
» Update the state estimate

— b
Xt_xt+KtVt

» Update the associated covariance matrix
P, =P’ - K, 2‘IN,t KtT

= Both use the Kalman gain Matrix
K, =P’ Hx’,tT(EIN,t )!
49



EKFL Correction Step

= Compare with single var. KF
» Update the state estimate

/\ N\ \
X, =x.; tK, (Zt - xt-])

» Update the associated covariance matrix

2_ 2 2
o/= 0, -K, 0.

Both use the Kalman gain Matrix

— 2
K, Oy

2 2
50 O-t—] + O-Z




EKFL Correction Step

* Final updates
» By fusing the
prediction of robot
position (magenta)
with the innovation

gained by the
measurements (green)
we get the updated
estimate of the robot
position (red)
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Kalman Filter Localization

= |ntroduction to Kalman Filters
= Kalman Filter Localization

1.

2.
3.
4

EKF Localization Overview
EKF Prediction

EKF Correction

Algorithm Summary



EKFL Summary

Prediction

1- X,t :f(xt-l ’ ut)
2. P,=F_,P_ F T+F,QF,T

Correction
3. 2oy = H(X'(, M)
4. v,=1z,- Zoxp,t
5. EIN,t — Hix’,t P’ Hix’,tT + R,
6. x,=x",+K v,
7. Pt — P,t - Kt ZIN,t KtT
53 8. K, =P’ H, ()"



EKFL Example

54 http://www.youtube.com/watch?v=8mY WutaCalL4



