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E190Q – Lecture 11 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Spring 2013 

Figures courtesy of Siegwart & Nourbakhsh 
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Control Structures 
Planning Based Control 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 

!
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 

§  Kalman Filter Localization 
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KF Representations 

§  What do Kalman Filters use to represent 
the states being estimated? 

 
 

  Gaussian Distributions! 
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KF Representations 

§  Single variable Gaussian Distribution 
§  Symmetrical 
§ Uni-modal 
§ Characterized by 

§  Mean µ 
§  Variance σ2 

§  Properties 
§  Propagation of errors 
§  Product of Gaussians 
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KF Representations 

§  Single Var. Gaussian Characterization 
§ Mean 

§  Expected value of a random variable with a continuous 
Probability Density Function p(x) 

   µ = E[X] =  x p(x) dx 
 

§  For a discrete set of K samples 

  µ = Σ xk /K   

 

    K 
 
 
k=1 
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KF Representations 

§  Single Var. Gaussian Characterization 
§  Variance 

§  Expected value of the difference from the mean squared 

   σ2 =E[(X-µ)2] =  (x – µ)2p(x) dx 
 

§  For a discrete set of K samples 
  σ2 = Σ (xk – µ )2/K   

 

    K 
 
 
k=1 
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KF Representations 

§  Single variable Gaussian Properties 

§  Propagation of Errors 
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KF Representations 

§  Single variable Gaussian Properties 

§  Product of Gaussians 
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KF Representations 

§  Single variable Gaussian Properties… 

§  We stay in the “Gaussian world” as long as we start 
with Gaussians and perform only linear 
transformations.  
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 

§  Kalman Filter Localization 
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Fusing Two Measurements 

§  Example 

§  Given two measurements q1 and q2, how do we fuse 
them to obtain an estimate q ?  

§  Assume measurements are modeled as random 
variables that follow a Gaussian distribution with 
variance σ1

2 and σ2
2  respectively  

 

⌃
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Fusing Two Measurements 

§  Example (cont’): 



14 

Fusing Two Measurements 

§  Example (cont’): 
§  Lets frame the problem as minimizing a weighted 

least squares cost function: 
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Fusing Two Measurements 

§  Example (cont’): 

§  If n=2 and wi = 1/σi
2  

  q = q1 +     σ1
2       (q2 - q1 ) 

                σ1
2 + σ2

2 

 

⌃
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 

§  Kalman Filter Localization 
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Single Variable KF 

§  Example: Fusing two Measurements 
  q = q1 +     σ1

2       (q2 - q1 ) 

                σ1
2 + σ2

2 

§  We can reformulate this in KF notation 
    
   xt = xt-1 + Kt (zt - xt-1 ) 

   Kt =     σt-1
2 

            σt-1
2 + σz

2 
 

 

⌃ ⌃ ⌃

⌃
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Single Variable KF 

§  KF for a Discrete Time System 
   xt = xt-1 + Kt (zt - xt-1 ) 

   Kt =     σt-1
2 

            σt-1
2 + σz

2 

   σt
2=  σt-1

2 -Kt σt-1
2 

 

§  Where 
  xt is the current state estimate 

   σt
2 is the associated variance 

   zt
2 is the most recent measurement 

   K is the Kalman Gain 

 

⌃ ⌃ ⌃

⌃
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 

§  Kalman Filter Localization 
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Representations in KF 

§  Multi-variable Gaussian Distribution 
§  Symmetrical 
§ Uni-modal 
§ Characterized by 

§  Mean Vector µ 
§  Covariance Matrix Σ 

§  Properties 
§  Propagation of errors 
§  Product of Gaussians 
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Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Mean Vector 

§  Vector of expected values of n random variables 

   µ = E[X] = [ µ0  µ1  µ2 … µn  ]T 

  µi =  xi p(xi) dxi 
 



22 

Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Covariance 

§  Expected value of the difference from the means squared 

        σij
 =Cov[Xi, Xj] = E[(Xi – µi ) (Xj – µj) ]  

§  Covariance is a measure of how much two random 
variables change together. 

§  Positive σij – when variable i is above its expected value, 
then the other variable j tends to also be above its µj 

§  Negative σij – when variable i is above its expected value, 
then the other variable j tends to be below its µj 
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Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Covariance 

§  For continuous random variables 

         σij
 =    (xi – µi ) (xj – µj ) p(xi , xj ) dxi dxj 

§  For discrete set of K samples 
        σij

 = Σ (xi,k – µi )(xj,k – µj )/K   
    K 
 
 
k=1 
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Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Covariance Matrix 

§  Covariance between each pair of random variables 

              σ00
  σ01

   … σ0n
  

   Σ   =   σ10
  σ11

   … σ1n
  

    : 
              σn0

  σn1
   … σnn  

s 

    Note:  σii
 =σi

2 
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Representations in KF 

§  Multi variable Gaussian Properties 

§  Propagation of Errors 
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Representations in KF 

§  Multi variable Gaussian Properties 
 
§  Product of Gaussians 
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Next… 

 
 Apply the Kalman Filter to 
 multiple variables in the form of 
 a KF. 
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
§  Kalman Filter Localization 

1.  EKF Localization Overview 
2.  EKF Prediction 
3.  EKF Correction 
4.  Algorithm Summary 



29 

Extended Kalman Filter 
Localization 

§  Robot State Representation 
§  State vector to be estimated, x 

 e.g.      x  
     x =  y  
    θ  

§  Associated Covariance, P 
           σxx

  σxy
  σxθ

  
   P =  σyx

  σyy
  σyθ

  
           σθx  σθy  σθθ  
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Extended Kalman Filter 
Localization 

1.  Robot State Representation 
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Extended Kalman Filter 
Localization 

§  Iterative algorithm 
1.  Prediction – Use a motion model and 

odometry to predict the state of the robot 
and its covariance 

   x’t    P’ t 
2.  Correction - Use a sensor model and 

measurement to predict the state of the 
robot and its covariance 
   xt     Pt 
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
§  Kalman Filter Localization 

1.  EKF Localization Overview 
2.  EKF Prediction 
3.  EKF Correction 
4.  Algorithm Summary 
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EKFL Prediction Step 

§  Motion Model 
§  Lets use a general form of a motion model 

as a discrete time equation that predicts the 
current state of the robot given the previous 
state xt-1 and the odometry ut 

   x’t = f(xt-1, ut )  
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EKFL Prediction Step 

§  Motion model 
§  For our differential drive robot… 

      xt-1  
     xt-1 = yt-1  
    θt-1  

 
     ut =   Δsr,t

  
    Δsl,t
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EKFL Prediction Step 

§  Motion model 
§  And the model we derived… 

       xt-1          Δst cos(θt-1 +Δθt /2 )  
   x’t = f( xt-1 , ut ) =   yt-1    +    Δst sin(θt-1 +Δθt /2 )  

      θt-1                       Δθt 

 
        Δst   =   (Δsr,t+Δsl,t )/2 
        Δθt   =   (Δsr,t - Δsl,t )/b 
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EKFL Prediction Step 

§  Covariance 
§  Recall, the propagation of error equation… 
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EKFL Prediction Step 

§  Covariance 
§  Our equation f() is not linear, so to use the 

property we will linearize with first order 
approximation 

  x’t = f( xt-1 , ut )  
       ≈ Fx,t xt-1 + Fu,t ut     

 
 where 
     Fx,t = Derivative of f with respect to state xt-1 

     Fu,t = Derivative of f with respect to control ut 
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EKFL Prediction Step 

§  Covariance 
§  Here, we linearize the motion model f to obtain 

  P’t = Fx,t Pt-1Fx,t
T + Fu,t Qt Fu,t

T   
  
 where 
     Qt    = Motion Error Covariance Matrix   
     Fx,t = Derivative of f with respect to state xt-1 

     Fu,t = Derivative of f with respect to control ut 
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EKFL Prediction Step 

§  Covariance 

     Qt    =   k |Δsr,t |      0        
              0        k |Δsl,t |       
      
     Fx,t =   df/dxt  df/dyt  df/dθt 

 
     Fu,t   =   df/dΔsr,t    df/dΔsl,t 
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EKFL Prediction Step 

1.  Motion Model 

x’t 
 
 
    xt-1 
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
§  Kalman Filter Localization 

1.  EKF Localization Overview 
2.  EKF Prediction 
3.  EKF Correction 
4.  Algorithm Summary 
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EKFL Correction Step 

§  Innovation 
§  We correct by comparing current measurements zt 

with what we expect to observe zexp,t  given our 
predicted location in the map M. 

§  The amount we correct our state is proportional to 
the innovation vt 
   vt = zt - zexp,t  
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EKFL Correction Step 

§  The Measurement 
§  Assume our robot measures 

the relative location of a wall 
i extracted as line 

  zi
t =  αi

t        Ri
t =   σi

αα,t
  σi
αr,t

  
           ri

t                   σi
rα,t

  σi
rr,t
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EKFL Correction Step 

§  The Measurement 
§  Assume our robot measures the relative 

location of a wall i extracted as line 
  zi

t =  αi
t   =g(ρ1, ρ2,…, ρn, β1, β2,…, βn)      

           ri
t                     

β β 

β β 

β 

β 

β 
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EKFL Correction Step 

§  The Measurement 
  Ri

t =   σi
αα,t

  σi
αr,t

  
  σi

rα,t
  σi

rr,t
  

 

          = Gρβ,t Σz,t Gρβ,t T 
 

 where 
     Σz,t   = Sensor Error Covariance Matrix   
     Gρβ,t = Derivative of g() wrt measurements ρt , βt 
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EKFL Correction Step 

 
 
 
 
 
 
  zi

exp,t   =  hi( x’t , M)  =          αi
M – θ’t  

         ri – x’t cos(αi
M) – y’ t sin(αi

M) 
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EKFL Correction Step 

xcos(α) 

x ysin(α) 

y 
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EKFL Correction Step 

§  The covariance associate with the 
innovation is  
 

  ΣIN,t = Hi
x,t P’t Hi

x,t
T + Ri

t    
 

 where 
     Ri

t    = Line Measurement Error Covariance Matrix  
     Hi

x,t = Derivative of h with respect to state xt 
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EKFL Correction Step 

§  Final updates 
§  Update the state estimate         

      xt = x’t + Kt vt 

§  Update the associated covariance matrix       
      Pt = P’t – Kt  ΣIN,t Kt

T 

§  Both use the Kalman gain Matrix       
      Kt = P’t  Hx’,t

T ( ΣIN,t  )-1 
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EKFL Correction Step 

§  Compare with single var. KF 
§  Update the state estimate  

   xt = xt-1 + Kt (zt - xt-1 ) 

§  Update the associated covariance matrix       
   σt

2=  σt-1
2 -Kt σt-1

2 

 
Both use the Kalman gain Matrix   

   Kt =     σt-1
2 

            σt-1
2 + σz

2 

    

⌃ ⌃ ⌃
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EKFL Correction Step 

§  Final updates 
§  By fusing the 

prediction of robot 
position (magenta) 
with the innovation 
gained by the 
measurements (green) 
we get the updated 
estimate of the robot 
position (red) 
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Kalman Filter Localization 

§  Introduction to Kalman Filters 
§  Kalman Filter Localization 

1.  EKF Localization Overview 
2.  EKF Prediction 
3.  EKF Correction 
4.  Algorithm Summary 
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EKFL Summary 

Prediction 
  1.   x’t = f( xt-1 , ut ) 
  2.   P’t = Fx,t Pt-1 Fx,t

T + Fu,t Qt Fu,t
T 

Correction 
  3.   zi

exp,t   =  hi( x’t , M) 
  4.   vt = zt - zexp,t   
  5.   ΣIN,t = Hi

x’,t P’t Hi
x’,t

T + Ri
t 

  6.   xt = x’t + Kt vt 

  7.   Pt = P’t – Kt  ΣIN,t  Kt
T 

  8.   Kt = P’t  Hx’,t
T ( ΣIN,t  )-1 
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EKFL Example 

 
  
    

 

http://www.youtube.com/watch?v=8mYWutaCaL4 


