E190Q - Lecture 9
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Spring 2014

Figures courtesy of Siegwart & Nourbakhsh
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Outline - Localization

1. Localization Tools
= Belief representation
= Map representation

2. Overview of Algorithms
3. Markov Localization



Belief Representation

= QOur belief representation refers to the method we
describe our estimate of the robot state.

= So far we have been using a Continuous Belief
representation.
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We need to know the variance of this Gaussian!

= We typically use a Gaussian distribution to model the state of the
robot.

= We can provide a description of the level of confidence
we have in our estimate.

Belief Representation
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= For example, consider modeling our robot’s position with

a 2D Gaussian:




Belief Representation

probability P

= Continuous (single hypothesis)
|

position x

= Continuous (multiple hypothesis)
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Belief Representation

= Or, we could assign a probability of being in some
discrete locations:

Grid Topological




Belief Representation

» Discretized (prob. Distribution)
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= Discretized: Particles

A0,
XK X
N
90,9 2.9.9.0.9




c
@)
S
©
i
c
Q
7))
Q
-
Q.
Q
14
(TH
o
O
o

= Discretized: Particles
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= Discretized: Particles
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Belief Representation

= Continuous
» Precision bound by sensor data
»= Typically single hypothesis pose estimate
» | ost when diverging (for single hypothesis)
= Compact representation
= Reasonable in processing power
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Belief Representation

* Discrete
» Precision bound by resolution of discretization
= Typically multiple hypothesis pose estimate
» Rarely lost (when diverges/converges to another cell).

= Memory and processing power needed (unless
topological map used)

= Aids discrete planner implementation



Belief Representation

= Multi-Hypothesis Example

nliin

Path of the robot Belief states at positions 2, 3 and 4
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Outline - Localization

1. Localization Tools
= Belief representation
= Map representation

2. Overview of Algorithms
3. Markov Localization
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Map Representation

= Similar to belief representations, there are two
main types:

= Continuous
= Discretized
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Map Representation

= Continous line-based

(a)

(b)




Map Representation

» Exact cell decomposition
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Map Representation

* Fixed cell decomposition




Map Representation

* Fixed cell decomposition

- Courtesy of S. Thrun
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Map Representation

= Adaptive cell decomposition

start

e goal




Map Representation

= Topological decomposition




Map Representation

= Topological decomposition

node

Connectivity
(arch)
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Map Representation

= Topological decomposition




Outline - Localization

1. Localization Tools

2. Overview of Algorithms
» Typical Methods
» Basic Structure

3. Markov Localization
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Methods

= Mapping Problem

» Determine the state of the environment given a
kKnown robot state.

= | ocalization Problem

= Determine the state of a robot given a known
environment state.
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Methods

= Strategy:
* |t might start to move from a known location, and
keep track of its position using odometry.
= However, the more it moves the greater the
uncertainty in its position.

» Therefore, it will update its position estimate using
observation of its environment



Methods

= Method:

» Fuse the odometric position estimate with the
observation estimate to get best possible update of
actual position

= This can be implemented with two main
functions:
1. Act
2. See
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Methods

= Action Update (Prediction)

= Define function to predict position estimate based
on previous state x, ; and encoder measurement o,
or control inputs u,

x’', = Act (o,, x,.,)

* |Increases uncertainty
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Methods

» Perception Update (Correction)

= Define function to correct position estimate x’, using
exteroceptive sensor inputs z,

x, = See (z,, x")

= Decreases uncertainty
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= Motion generally ‘ ﬂ E ﬂ
improves the position |®

estimate.
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Kalman Filtering vs. Markov

= Markov Localization

» Can localize from any
unknown position in map

= Recovers from
ambiguous situation

= However, to update the
probability of all positions
within the whole state
space requires discrete
representation of space.
This can require large
amounts of memory and
processing power.

= Kalman Filter
Localization

= Tracks the robot and is
iInherently precise and
efficient

= However, if uncertainty
grows too large, the KF
will fail and the robot will
get lost.



Kalman Filtering




Particle Filter Localization






Outline - Localization

1. Localization Tools
2. Overview of Algorithms

3. Markov Localization
= Overview
* Prediction Step
= Correction Step
= ML Example
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Markov Localization

» Markov localization uses an explicit, discrete
representation for the probability of all positions
In the state space.

» Usually represent the environment by a finite
number of (states) positions:
* Grid
» Topological Map



Markov Localization
Grid Based Example

= Use a fixed v =[xy0]
decomposition grid by
discretizing each dof:

(x, 3, 0)

» For each location
x;=[xy0]inthe
configuration space:
» Determine probability
P(x,) of robot being in AN
that state. W. Burgard
(0.0.0)




Markov Localization

= We assume in localization the Markov Property
holds true...

= Markov Property

= A stochastic Process satisfies the Markov Property
if it is conditional only on the present state of the
system, and its future and past are independent

= The robot state x, only depends on previous state x,
and most recent actions u,and measurements z,
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Markov Localization

» Algorithm PseudoCode to update all n states

fori=1:n
P(x;) =1/n

while (true)
o = getOdometryMeasurements
z = getRangeMeasurements
fori=1:n
P(x;") = predictionStep( P(x,), o0 )
fori=1:n
P(x;) = correctionStep( P(x;’), z )

41



Markov Localization
Applying Probability Theory

1. PREDICTION Step: Updating the belief state

P(xi,t’)zp(xit|0t)
_Zp(xzt| i1 0) P (x;,)

= Map from a belief state P (x;,, ) and action o, to a
new predicted belief state P (x;, )

=  Sum over all possible ways (i.e. from all states Xiir)
in which the robot may have reached x,,

= This assumes that update only depends on previous
42 state and most recent actions/perception



Markov Localization
Grid Based Example

= Example Problem:

= Consider a robot equipped with encoders and a
perfect compass moving in a square room that is
discretized into a map of 16 cells:
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= Example Problem:

» What is the probability of being in position (2,3)
given odometry o, = (4x,4y) = (-1.0 cells, 0.0 cells),
and starting from the following distribution?

Markov Localization
Grid Based Example
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Markov Localization
Grid Based Example

= Example Solution:

» We must have a model of how well our odometry
works. For example, we could use a model for o, =
(dx,4y) = (-1.0,0.0) that looks like:

.00 1.00 |.00
.00 .00

.00 .00 |.00

(Ax,4y)
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Markov Localization
Grid Based Example

= Example Solution:

= Now apply this model to the initial state. We must
consider the following possible scenarios for
getting to position (2,3):
(3.3)=(2,3)
(2,3)— (2,3)
(3.2)—~(2,3) 4

3,4)— (2,3) '\
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Markov Localization
Grid Based Example

= Example Solution:

= Consider the first possibility:
(3.3)=> (23)

= We can calculate the probability of this happening

P (xi,t | xj,t—] ’ Ot) P (xj,t-l)
=P (x=(23)|x.,=(33),0~(-1,0)) P(x.;=(3.3)

= (0.5) (0.18)

=0.09 0

P

| [ON
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Markov Localization
Grid Based Example

= Example Solution:

= Similarly, we can calculate the probability of all other
possible ways to get to (2,3).
P(x=(2,3) | x.,=(2.3), 0~(-1,0) ) P(x,,=(2.3))
= 0.005
P(x=(23)x.,=3.2),0~(-10)) P(x.,=(32)
= 0.036

P(x=(23)|x.,=(34),0~(-1,0)) P(x. ;= (34)
=0.01
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Markov Localization
Grid Based Example

= Example Solution:

= So the probability of being at position (2,3) given the
odometry is the total probability of moving there from
each possible position:

Pa,=(23)| 0~(-1,0)) =2 P(x~(23)|x,.;, 0,~(-1,0)) P(x,,,)
=0.09 + 0.005 + 0.036 + 0.01
=(0.141
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Markov Localization
Applying Probability Theory

2. CORRECTION Step: refine the belief state
P(x;,|z) = P(z,]| xi,t’) P(xi,t’)
P(z,)

= P(x’,,): the belief state before the perceptual
update i.e. P(x,, | o,)

= P(z,|x;, ): the probability of getting measurement
z, from state x;,”

= P(z ):the probability of a sensor measurement z..
Calculated so that the sum over all states x; , from

equals /.
50 :



Markov Localization

= Critical challenge is calculation of P(z | x )

* The number of possible sensor readings and
geometric contexts is extremely large

= P(z|x)is computed using a model of the robot’ s
sensor behavior, its position x, and the local
environment metric map around x.

= Assumptions

= Measurement error can be described by a distribution with
a mean

= Non-zero chance for any measurement
51 = Sensor is located at center of robot



Markov Localization
Grid Based Example

= Example Problem:

» What is the probability of being in state x = (2,3)
given we have range measurement z =0.8m ?

Px, = (23)2,=0.8) = P=0.8)x,=(2.3) Px,=(2.3)
Pz, =0.8)
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Markov Localization
Grid Based Example

= Example Solution:

= We can use the probability px,’=(2,3)) = 0.141 from
the previous example.

» The interesting term Is P(z=0.8 | x,"=(2,3)).
= Using the map, we can calculate the expected value of the
range sensor measurement.

= [fthe robot is at (2,3) and facing to the left, it should get a range
measurement between Im and 2m.

» Recall that we can use the probability density function
representing the sensor characteristics, and that the expected
value is between 1 and 2.



Markov Localization
Grid Based Example

= Example Solution:

» For Ultrasound, P(z|x) can be taken from the
following distribution:

P(z|x)
0.10 —

0.05 — P(z=0.8|1<x<2)

0.00 |
0.0 0.2 1.2
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Markov Localization
Grid Based Example

= Example Solution:
= Often, we approximate

P(z|x)
0.10 —

0.05 —

P(z=0.8|1<x<2) ~ 0.0] |—0
0.00 |
0.0 0.7
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Markov Localization
Grid Based Example

= Example Solution:

= Now we can calculate the numerator for
p(x,=(2,3)z,=0.8)

= p (=081 x,=(2,3)) p(x, =(23)

p(z,=0.38)
= (0.01) (0.141)

p(z,=03)
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Markov Localization
Grid Based Example

= Example Solution:

= Finally, we can calculate the denominator by
ensuring the sum of all probabilities is 1.

/= ZP(xlt|Z =0.8)

—ZP(Z =0.8| x;,” ) P(x;,”)
P(z,= 0.8)

Therefore:
P(z,=0.8) =2 P(z=0.8|x;,”) P(x;,’)
57



Markov Localization
Grid Based Example

* Here are some typical sensor distributions:
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Outline - Localization

1. Localization Tools
2. Overview of Algorithms

3. Markov Localization
= Overview
* Prediction Step
= Correction Step
= ML Example
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ML Example 1

= Smithsonian Navigation

= Time steps taken from ML example
of the robot Minerva navigating
around the Smithsonian.

* |n the following figures:

= | eft side shows belief state. Darker
means higher probability.

= Right side shows actual robot position
and sensor measurements.



ML Example 1

= [aser Scan 1 of Museum

N

10w rot-1.,1

Figures courtesy of W. Burgard
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ML Example 1

= [aser Scan 2 of Museum

Figures courtesy of W. Burgard
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ML Example 1

= [aser Scan 3 of Museum
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Figures courtesy of W. Burgard
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ML Example 1

= [aser Scan 13 of Museum

Figures courtesy of W. Burgard
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ML Example 1

= Laser Scan 21 of Museum

Figures courtesy of W. Burgard

65



ML Example 2

= [ane State
Estimation

= (Semi) Autonomous
Highway Systems will
benefit from lane
position optimization

= Vehicles must need to

know what lane they
are in.




ML Example 2

= Multiple vehicles driving down a
highway.
= (Can we estimate what lane they are in?
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ML Example 2

Assume vehicles have

Inter-Vehicle Communication (IVC)
GPS

GPS satellite GPS satellite
N— —
SN— o

\ —
. Talk to car 2 Talk to car 1
GPS receiver Car 1 A A Car 2 GPS receiver
__________ —— L ot S
_________ Position filter : : N Position filter
Butterworth Pamcle}__‘ | I Particle Butterworth
filter I | filter | I filter filter
g | 4 Position estimates | =
Markov |« |  from car 2 : Markov
localization I " . | localization
unit | Positionestimatesp, - unit
______________ | from car 1 |_______________________|
Lane Lane

positions positions



ML Example 2

= Baye’s Filter - Prediction Step

Fitted arc

Moving direction at
time step -1
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ML Example 2

= Baye’s Filter - Correction Step

P(vit = la,v2,t = lp|2t)

(~t\L1 t = lg, V2, gt = lb)P(l*l,t — la:«UQ,t — lb)

P(z)

Vehicle 1

Vehicle 2



ML Example

= Results
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ML Example 2

= Results




