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E190Q – Lecture 9 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Spring 2014 

Figures courtesy of Siegwart & Nourbakhsh 
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Control Structures 
Planning Based Control 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 

!
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Outline - Localization 

1.  Localization Tools 
§  Belief representation 
§ Map representation 

2.  Overview of Algorithms 
3.  Markov Localization 
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Belief Representation 

§  Our belief representation refers to the method we 
describe our estimate of the robot state. 

§  So far we have been using a Continuous Belief 
representation. 
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Belief Representation 

§  We can provide a description of the level of confidence 
we have in our estimate.  
§  We typically use a Gaussian distribution to model the state of the 

robot. 
§  We need to know the variance of this Gaussian!  
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Belief Representation 

§  For example, consider modeling our robot’s position with 
a 2D Gaussian: 
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§  Continuous (single hypothesis) 

§  Continuous (multiple hypothesis) 

Belief Representation 
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Belief Representation 

§  Or, we could assign a probability of being in some 
discrete locations: 
      Grid                             Topological 
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Belief Representation 

§  Discretized (prob. Distribution) 

§  Discretized Topological (prob. dist.) 
cell # 
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Belief Representation 

§  Discretized: Particles 
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Belief Representation 

§  Discretized: Particles 
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Belief Representation 

§  Discretized: Particles 
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Belief Representation 

§  Continuous 
§  Precision bound by sensor data 
§  Typically single hypothesis pose estimate 
§  Lost when diverging (for single hypothesis) 
§  Compact representation 
§  Reasonable in processing power 
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Belief Representation 

§  Discrete 
§  Precision bound by resolution of discretization 
§  Typically multiple hypothesis pose estimate 
§  Rarely lost (when diverges/converges to another cell). 
§  Memory and processing power needed (unless 

topological map used) 
§  Aids discrete planner implementation 
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Belief Representation 

§  Multi-Hypothesis Example 
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Outline - Localization 

1.  Localization Tools 
§  Belief representation 
§ Map representation 

2.  Overview of Algorithms 
3.  Markov Localization 
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Map Representation 

§  Similar to belief representations, there are two 
main types: 
§  Continuous 
§  Discretized 
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Map Representation 

§  Continous line-based  
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Map Representation 

§  Exact cell decomposition  
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Map Representation 

§  Fixed cell decomposition  



21 

Map Representation 

§  Fixed cell decomposition  
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Map Representation 

§  Adaptive cell decomposition  
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Map Representation 

§  Topological decomposition  
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Map Representation 

§  Topological decomposition  
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Map Representation 

§  Topological decomposition  
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Outline - Localization 

1.  Localization Tools 
2.  Overview of Algorithms 

§  Typical Methods 
§  Basic Structure 

3.  Markov Localization 
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Methods 

§  Mapping Problem 
§  Determine the state of the environment given a 

known robot state. 

§  Localization Problem 
§  Determine the state of a robot given a known 

environment state. 
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Methods 

§  Strategy: 
§  It might start to move from a known location, and 

keep track of its position using odometry. 
§  However, the more it moves the greater the 

uncertainty in its position. 
§  Therefore, it will update its position estimate using 

observation of its environment  
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Methods 

§  Method: 
§  Fuse the odometric position estimate with the 

observation estimate to get best possible update of 
actual position 

§  This can be implemented with two main 
functions: 
1.  Act 
2.  See 
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Methods 

§  Action Update (Prediction) 
§  Define function to predict position estimate based 

on previous state xt-1 and encoder measurement ot 
or control inputs ut 

                        x’t = Act (ot , xt-1) 

§  Increases uncertainty 
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Methods 

§  Perception Update (Correction) 
§  Define function to correct position estimate x’t using 

exteroceptive sensor inputs zt 

                         xt = See (zt , x’t) 

§  Decreases uncertainty 
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Methods 

§  Motion generally 
improves the position 
estimate. 
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Kalman Filtering vs. Markov 

§  Markov Localization 
§  Can localize from any 

unknown position in map 
§  Recovers from 

ambiguous situation 
§  However, to update the 

probability of all positions 
within the whole state 
space requires discrete 
representation of space. 
This can require large 
amounts of memory and 
processing power. 

§  Kalman Filter 
Localization 
§  Tracks the robot and is 

inherently precise and 
efficient 

§  However, if uncertainty 
grows too large, the KF 
will fail and the robot will 
get lost. 
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Kalman Filtering 

http://www.youtube.com/watch?v=AXGXfD1GMY4 
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Particle Filter Localization 
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Particle Filter Localization 
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Outline - Localization 

1.  Localization Tools 
2.  Overview of Algorithms 
3.  Markov Localization 

§ Overview 
§  Prediction Step 
§ Correction Step 
§ ML Example 
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Markov Localization 

§  Markov localization uses an explicit, discrete 
representation for the probability of all positions 
in the state space. 

§  Usually represent the environment by a finite 
number of (states) positions: 
§  Grid 
§  Topological Map 
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Markov Localization 
Grid Based Example 

§  Use a fixed 
decomposition grid by 
discretizing each dof: 

       (x, y, θ) 
§  For each location  
     xi = [ x y θ ] in the 

configuration space: 
§  Determine probability    

P(xi) of robot being in 
that state.  

xi = [ x y θ ] 
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Markov Localization 

§  We assume in localization the Markov Property 
holds true… 

§  Markov Property 
§  A stochastic Process satisfies the Markov Property 

if it is conditional only on the present state of the 
system, and its future and past are independent 

§  The robot state xt only depends on previous state xt-1 
and most recent actions ut and measurements zt 
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Markov Localization 

§  Algorithm PseudoCode to update all n states 
 

   for i = 1:n  
        P(xi ) = 1/n 

 
   while (true) 

        o = getOdometryMeasurements 
        z = getRangeMeasurements 
        for i = 1:n  

   P(xi’) = predictionStep( P(xj ) , o ) 
        for i = 1:n 

   P(xi ) = correctionStep( P(xi’), z ) 
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Markov Localization 
Applying Probability Theory 

1.  PREDICTION Step: Updating the belief state 
 
           P(xi,t’) = P ( xi,t | ot )  

                        = Σ P ( xi,t | xj,t-1 , ot ) P (xj,t-1 )  
                                            
§  Map from a belief state P (xj,t-1 ) and action ot to a 

new predicted belief state P (xi,t’)  
§  Sum over all possible ways (i.e. from all states xj,t-1 ) 

in which the robot may have reached xi,t’  
§  This assumes that update only depends on previous 

state and most recent actions/perception 

j =1  

n 
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Markov Localization 
Grid Based Example 

§  Example Problem: 
§  Consider a robot equipped with encoders and a 

perfect compass moving in a square room that is 
discretized into a map of 16 cells: 
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Markov Localization 
Grid Based Example 

§  Example Problem: 
§  What is the probability of being in position (2,3) 

given odometry ot = (Δx,Δy) = (-1.0 cells, 0.0 cells), 
and starting from the following distribution? 

.02   .05  .05  .05 

.02   .05  .18  .05 

.05   .05  .18  .05 

.05   .05  .05  .05 
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  We must have a model of how well our odometry 

works. For example, we could use a model for ot = 
(Δx,Δy) = (-1.0,0.0) that looks like:  

.00   .00   .00 

.00   .00   1.0 

.00   .00   .00 

(Δx,Δy) 
.00    .20   .00 

.00    .50   .10 

.00    .20   .00 
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  Now apply this model to the initial state. We must 

consider the following possible scenarios for 
getting to position (2,3): 

     (3,3)     (2,3) 
     (2,3)     (2,3) 
     (3,2)     (2,3) 
     (3,4)     (2,3) 
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  Consider the first possibility: 

     (3,3)     (2,3) 
§  We can calculate the probability of this happening  
 
P ( xi,t | xj,t-1 , ot ) P (xj,t-1 )  
     = P ( xt=(2,3) | xt-1=(3,3) , ot=(-1,0) )  P(xt-1= (3,3))  
     = (0.5) (0.18) 
     = 0.09 

 .18 
0.5 
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  Similarly, we can calculate the probability of all other 

possible ways to get to (2,3). 
P( xt=(2,3) | xt-1=(2,3) , ot=(-1,0) )  P(xt-1= (2,3))  

  = 0.005 
P( xt=(2,3) | xt-1=(3,2) , ot=(-1,0) )  P(xt-1= (3,2))  

  = 0.036 
P( xt=(2,3) | xt-1=(3,4) , ot=(-1,0) )  P(xt-1= (3,4))  

  = 0.01 
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  So the probability of being at position (2,3) given the 

odometry is the total probability of moving there from 
each possible position: 

 P(xit=(2,3)| ot=(-1,0))       = Σ P( xt=(2,3)| xj,t-1 , ot=(-1,0)) P(xj,t-1 ) 
                                           = 0.09 + 0.005 + 0.036 + 0.01 
                                           = 0.141  
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Markov Localization 
Applying Probability Theory 

2.  CORRECTION Step: refine the belief state 
                     P(xi,t | zt) =  P(zt | xi,t’ ) P(xi,t’)  
                                                  P(zt )  
 
§  P( x’i,t ): the belief state before the perceptual 

update i.e. P( xi,t | ot )  
§  P( zt | xi,t’): the probability of getting measurement 

zt from state xi,t’ 
§  P( zt ): the probability of a sensor measurement zt. 

Calculated so that the sum over all states xi,t from 
equals 1. 
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Markov Localization 

§  Critical challenge is calculation of P( z | x ) 
§  The number of possible sensor readings and 

geometric contexts is extremely large 
§  P( z | x ) is computed using a model of the robot’s 

sensor behavior, its position x, and the local 
environment metric map around x. 

§  Assumptions 
§  Measurement error can be described by a distribution with 

a mean 
§  Non-zero chance for any measurement 
§  Sensor is located at center of robot 
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Markov Localization 
Grid Based Example 

§  Example Problem: 
§  What is the probability of being in state x = (2,3) 

given we have range measurement z =0.8m ? 
 
P(xt = (2,3))| zt =0.8) =  P(zt=0.8| xt’=(2,3))  P(xt’=(2,3))  
                                                      P(zt = 0.8)  
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  We can use the probability P(xt’=(2,3))  =  0.141 from 

the previous example. 
§  The interesting term is P(zt=0.8 | xt’=(2,3)).  

§  Using the map, we can calculate the expected value of the 
range sensor measurement. 

§  If the robot is at (2,3) and facing to the left, it should get a range 
measurement between 1m and 2m. 

§  Recall that we can use the probability density function 
representing the sensor characteristics, and that the expected 
value is between 1 and 2. 
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  For Ultrasound, P(z|x) can be taken from the 

following distribution:  

P(z=0.8|1<x<2) 

P(z|x) 

x-z 
0.0 

0.05 

0.10 

0.00 
0.2             1.2         
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  Often, we approximate 

P(z=0.8|1<x<2) ~ 0.01 

P(z|x) 

x-z 
0.0 

0.05 

0.10 

0.00 
    0.7 
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  Now we can calculate the numerator for  

   p (xt = (2,3))| zt =0.8)  
                        

    =  p (zt=0.8| xt’=(2,3))  p (xt’=(2,3))  
                                                      p (zt = 0.8)  

    =    (0.01) (0.141)  
                                            p (zt = 0.8)  
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Markov Localization 
Grid Based Example 

§  Example Solution: 
§  Finally, we can calculate the denominator by 

ensuring the sum of all probabilities is 1. 

      1 = Σ P(xi,t | zt =0.8)  

         = Σ P(zt=0.8| xi,t’ ) P(xi,t’) 
      P(zt = 0.8) 

Therefore: 

   P(zt = 0.8) = Σ P(zt=0.8| xi,t’)  P(xi,t’) 

i=1 

n 
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Markov Localization 
Grid Based Example 

§ Here are some typical sensor distributions: 
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Outline - Localization 

1.  Localization Tools 
2.  Overview of Algorithms 
3.  Markov Localization 

§ Overview 
§  Prediction Step 
§ Correction Step 
§ ML Example 
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ML Example 1 

§  Smithsonian Navigation 
§  Time steps taken from ML example 

of the robot Minerva navigating 
around the Smithsonian. 

§  In the following figures: 
§  Left side shows belief state. Darker 

means higher probability. 
§  Right side shows actual robot position 

and sensor measurements.  
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ML Example 1 

§  Laser Scan 1 of Museum 

Figures courtesy of W. Burgard 
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ML Example 1 

§  Laser Scan 2 of Museum 

Figures courtesy of W. Burgard 
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ML Example 1 

§  Laser Scan 3 of Museum 

Figures courtesy of W. Burgard 
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ML Example 1 

§  Laser Scan 13 of Museum 

Figures courtesy of W. Burgard 
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ML Example 1 

§  Laser Scan 21 of Museum 

Figures courtesy of W. Burgard 
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ML Example 2 

§  Lane State 
Estimation 
§  (Semi) Autonomous 

Highway Systems will 
benefit from lane 
position optimization 

§  Vehicles must need to 
know what lane they 
are in. 
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ML Example 2 

§  Multiple vehicles driving down a 
highway. 
§  Can we estimate what lane they are in? 
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ML Example 2 

§  Assume vehicles have  
§  Inter-Vehicle Communication (IVC) 
§  GPS  
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ML Example 2 

§  Baye’s Filter - Prediction Step 
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ML Example 2 

§  Baye’s Filter - Correction Step 
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ML Example 2 

§  Results 
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ML Example 2 

§  Results 


