E190Q - Lecture 4
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Spring 2014

Figures courtesy of Siegwart & Nourbakhsh
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P Control

* Proportional Feedback Control — P Control

= Uses the error between the desired and measured
state to determine the control signal.



P Control

= Ifx, .., 1S the desired state, and x is the actual
state, we define the error as:

€ = Xdesired — X



P Control

* The control signal « is calculated as
u=Kpe

where K, Is called the proportional gain.



P Control

= Example:

= Consider the orientation control of an autonomous
helicopter. Assume the orientation is completely
controlled by the rear rotor.
\ 0




P Control

= Example cont’:
= The control signal « is calculated as

U= KP(edesired B 9)
* Notes:
= If0,..... = 6, the control signal is 0.
= If 0,..... <0, the control signal is negative, resulting in an
decrease in 6.
" If 0,.... > 0, the control signal is positive, resulting in an

increase in 6.
= The magnitude of the increase/decrease depends on K



P Control

» Block Diagram:
U= KP(QdeSired - 9)

6. .
de‘wed—i-'—ev z Helicopter Rotar —(9—>




P Control

= Time Domain Response of step response
. Step from edesired =0to Ha’esired = 1.
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P Control

» Time Domain Response:

. Step from edesired =0to Hdesired = 4.
= Different dynamics in this example... overshoot!

Step Response
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Linear Systems

= Recall that the forward kinematics are a linear
differential equation.

= We will use this equation to help develop a
motion controller for point tracking

= \We start by observing how the state x behaves if
it obeys the following equation:

x = dx/dt = ax

13 where a Is a constant



Linear Systems

= |t should be obvious that the solution to the
equation

[ ]
X — dx

1S
x(1) = xyexp(at)
where

x, IS the initial state
14



Linear Systems

= To confirm this solution, substitute into the
original equation:

X = ax
d[x,exp(at)]/dt = a[x,exp(at)]
ax,exp(at) = ax,exp(at)

15



Linear Systems

= To view how the state x behaves over time, we
can plot out x = x,exp(at), assuming a Is positive:

x(1)

16 time



Linear Systems

= |If a Is negative and we can plot out x=x,exp(at),
we get much different results:

x(1)

X0

17 time



Linear Systems

* This exponential decay informs us that the state x
decays to zero over time.
* We say this system is “STABLE".

= We use this property in control theory to drive states
down to zero (e.g. ife =x,;,.,- x , drive e to 0).

e(t)

€

1 8 time



Linear Systems

* The above example was a one dimensional linear
system (i.e. single state x).

= Qur system is a multi-dimensional system (i.e. 3
states x, y, ).

= We need to describe the system with matrices:

x = Ax

where 4 is a matrix such that A& R
19 x IS a vector such that x& R
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Linear Systems

= The eigen values of 4, represented by A, are
coefficients that satisfy the equation:

Ax; = A;x,
for particular states called x;, called the eigen
vectors.

= A solution to the system can be written as the
combination of eigen vectors:

xX(t) =x,eMt +x,et 4. +x e



Linear Systems

* In this case, the system
x = Ax
IS said to be stable if the eigen-values of 4 are
less than 0.

21



Linear Systems

= We solve for eigen values by noting:
(A-ADx =0

= For this to hold true,
det (A-1) =0

22



Linear Systems

= Example:

3 6
=3 8]
3—-X 6
A-Al = l 1 4—A]
det(A=X) = (3-X)(4-))-6
= MN-7\+6
= (A-6)(A-1)

Therefore 1, =6, 1, =1
The system is not stable!
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Linear Systems

= Summary:

» |f our robot behaves like a system of the form
X=Ax, where the eigen values of 4 are negative
and x represents the difference between
desired and actual states, the system will move

to our desired state!
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Motion Control

= Goal is to follow a trajectory
from an initial state to some
desired goal location.

= Several approaches

» Could construct a global
trajectory first, then track
points on the trajectory -
locally amical

26
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Motion Control

= |f we define the error to be
in the robot frame:

e() =[xy 0]"
» Goal is to find gain matrix K

such that control of v(z) and
w(t) will drive the error ¢(t)

to zero.
V(1)
w(t)

= Ke(t)

Assume goal is
at [0 00]



Motion Control

= Recall our forward kinematics

x| [(cos@ 0
y| =1sin@ 0
0 0 1

\ J \ J
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Motion Control

‘ ).(': :'.l'

o = VA2 + Ay
a = -0 +atan2(Ay, Ax)
p = -0-a

= \We use the coordinate transformation

29



Motion Control

= Now we define the problem as driving
the robot to goal

N\

0
o | =0
ﬁ \0)

\ J
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Motion Control

= We know this will happen if the
dynamics of the system obey

p p
al=4«a
\/3/ \[3’/

Where 4 is a 3x3 matrix with eigen values less than 0.
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Motion Control

= Using the coordinate transformation,
calculate the new kinematics:

Goal
0 = projection of v on p

=-v cos(a)

KY.




Motion Control

= Using the coordinate transformation,
calculate the new kinematics:

p/)’. = projection of v perpendicular to p

= -vsin(o)

p = -vsin(o)/p

33




Motion Control

= Using the coordinate transformation,
calculate the new kinematics:

34



Motion Control

= |n matrix from:

b [ -cosa 0|[v
a|=| sina/p -1|| w| forawithin w2, 72 ]
p

-sina/p 0

35



Motion Control

= Let’ s try the control law:
v=k,p w=k,otksp

= Note that this is a form of P control, and if
p, a, B all go to zero, then v and w will go to
ZEero.

36



Motion Control

= To analyze controller, substitute control

law Into kinematics and linearize:
» Forsmall x, cos(x) =1 and sin(x) =x

= This is in the form...

X =Ax

37



Motion Control

= Check for stability:

» Take the determinant of A and solving for eigen
values leads to:

(A+k) (R+A(hy-k,)-kkz) = 0

» Thus the system will be stable if:
ky>0 kg<0 k,-k,>0

38



Motion Control

» Testing this control law with many different
start points:

39



Motion Control

= The derived control law works well if a &
[-7t/2, m/2]

* For other cases where abs(a) > 7/2, we
must modify the controller. So that the
robot will move backwards to the desired
position when required

40



Motion Control

Backwards Example:

L ]
Yo
.

*

amEEEEEEEENEEmg,
--l""-- .."-.
- L]
-‘--l‘ L
ane®®
wee®
ws?®
ws®
ws®
.t
.
.
.
®
.
*
.
o*
*
*
*
g
U
0
¥
L
)
n
"
-
=
=
- .
[ **
u o*
- .Q
- *
- Q
[ Q
. U
. Q
. 0
. g
. g
. Q
Q
. Q
. o
. K
. .
. .
" *
., .
...

*
.
[
L]
L]
[
L]
L]
L
]
¥
”

Too long



Motion Control

= Backwards Method:
o = JAX? + Ay?
a = -0 +atan2(-Ay, -Ax)
p = -0-«




Motion Control

» Backwards Method Summary:

" fa&[-n/2, /2]
» Use regular transform to polar coordinates
= Use control law:  v=k,p w=k,a+kp

= Else

= Redefine ¢ as shown in backwards method
= Use control law: v=-k,p w=k,a+kp

43
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Reachable Space

= Kinematic Constraints
= One can calculate

constraints on each (z, % ; 0
individual wheel, then y1
combine for constraints \( _Sicr(l)gg )
on entire robot.

xZr

http://www.cs.cmu.edu/afs/cs/academic/class/16741-s07/www/lecture5.pdf
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Reachable Space

= Two main constraints:
1. Rolling Constraint: no slipping!
2. Sliding Constraint: no lateral movement!
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Reachable Space

» Degrees of Freedom:

» Def n: The number of
coordinates that it takes to
uniquely specify the state of

a system.

* |n 3D, there are 6 degrees of
freedom associated to the
movement of a rigid body: 3
for its position, and 3 for its
orientation.

B J Stone, Univ. of Western Australia



Reachable Space

= Configurations in the Workspace

= A robot’ s workspace is defined by the
Degrees Of Freedom of the robot state.

* Not all robot configurations within the
workspace are reachable

1<
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Reachable Space

= NonHolonomic Robots

= A nonholonomic constraint is one that is not
integrable.
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Reachable Space

= Paths in the Workspace

» Path’s in the workspace are limited,
especially if the robot is nonholonomic

[4h]
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Reachable Space

* Trajectories in the Workspace
= A trajectory is a path parameterized by time.

= Admissible paths don’t always lead to
admissible trajectories.

[ $—1 3
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