
E190Q – Autonomous Robot Navigation  

Lab 3 
 

Point Tracking 
 
INTRODUCTION 
Robots often need to move to a point with a desired orientation. This can be difficult 
when the robot has nonholonomic constraints. The robot cannot simply move laterally, 
making it difficult to come up with a controller using intuition. 
 
The goal of this lab is to get students to implement a closed loop controller that will drive 
the robot to any desired state (position and orientation). Odometry will be the sole 
method used for estimating the robot’s state (i.e. localization). 
 
BACKGROUND 
As shown in class, a controller has been developed based on the following coordinate 
transformation: 
 

ρ    =  ( Δx2 + Δy2 )0.5 
      α    =   -θ  + atan2(Δy , Δx ) 
           β    =    -θ  - α 
 
Once the new variables have been calculated, desired forward velocity v and desired 
rotational velocity w can be calculated. Note, control gains are defined at the top of 
Navigation.cs, but they may not be optimal values. 
 

v = kρ ρ      w = kα α + kβ β 
             
Using v and w, we can determine the desired wheel velocities φ1 and φ2. The following 
equations were derived and are used. 

 
  

    w(t) = (ω1 + ω2) 
    v(t) = L(ω1 - ω2) 
 

Recall that this controller works well if the goal point is in front of the robot, that is if α 
lies between –π/2 and +π/2. 
 



However if the goal is behind the robot, then modifications to the controller are required 
to give shorter more direct paths involving the robot moving in reverse. That is, we first 
redefine the transformation as: 

ρ    =  ( Δx2 + Δy2 )0.5 
      α    =   -θ  + atan2(-Δy , -Δx ) 
           β    =    -θ  - α 
 
We also redefine the control law to have the robot work in reverse. 

v = -kρ ρ      w = kα α + kβ β 
 
When implementing this controller, make sure your robot never exceeds the maximum 
allowable velocity of 0.25 m/s, and that controller gains must satisfy the necessary 
conditions for stability.  
 
 
EXPERIMENTS 
Use the most recent version of the base code from the course website. All coding for 
steps 1 through 4 will occur within the function FlyToSetPoint(). Recall that this 
function will be called for each iteration of the control loop.  You will need your odometry 
localization code from lab 2. You will not need any wall positioning or odometry error 
characterization code. 
 
 

1. Transform to new coordinate system 
Using the robot state estimate [x_est y_est t_est], and the desired state [ desiredX  
desiredY  desiredT ], calculate the position of the robot Δx, Δy relative to the goal 
position.  
 
Now use the equations above to calculate the state [ pho alpha beta ] in the new 
coordinate system. Remember to check if the goal is behind the robot and 
recalculate the state if necessary. 
 
It is often a good idea to make sure that ALL angles lie within –π and π. 

 
 
 
 

2. Calculate Desired Wheel Velocities 
Now that the transformation is complete, implement the control law to determine the 
desired velocities v and w, respectively represented by desiredV and desiredW in 
your code. You must experiment with different gain values Kpho, Kalpha, and 
Kbeta. Remember to reverse direction if the goal is behind the robot. 
 
From desired robot velocities v and w, you can calculate the desired wheel velocities 
desiredRotRateL and desiredRotRateR. 
 



Remember to convert these desired wheel velocites from m/s to encoder pulses / 
second before sending them to the robot. 

 
You can check if the robot is close enough to the desired state and zero the desired 
wheel velocities. 
 
 
3. Track Desired Positions 
After building and running the application, select Simulation mode. Try entering [1 0 
0] in DesiredX, DesiredY, and DesiredT fields located next to the 
FlyToSetPoint button. Click on the FlyToSetPoint button. The robot should move 
forward 1 m. Now try tracking the point [0 0 0]. The robot should return to the origin. 
 
Keep trying new points to track, making sure the robot always moves to the desired 
locations. At this point the robot will always end with orientation 0 degrees. 
 

 
4. Track desired positions and orientations 
To make the robot track desired orientations, the state variable β must be modified 
to include desiredT. Simply adding this to β will force the robot to track the desired 
orientation, (See figure below). 
 

   
Old Definition:    New Definition 

 
Now test the controller for many desired position/orientation combinations in 
Simulation mode. 
 
 
5. Jaguar Wheel Velocity Control 
The Jaguar’s DC motor velocity control is not functional. It is up to you to add such a 
controller. In the function named CalcMotorSignals(), which is called from the 
main control loop, you need to add a Proportional-Integral-Derivative (PID) 
controller. This Controller will determine the duty-cycle of the pulse width modulation 
controller as a function of the desired wheel velocities. 
 
First you need to get estimates of the wheel velocities in pulses per second. There 
are global variables diffEncoderPulseR and diffEncoderPulseL that should 

θdesired 



be set in your odometry function. These can be used, along with deltaT, to 
determine the wheel velocity. 
 
For this PI controller, the velocity error can be defined as the difference between the 
desired wheel velocity and the estimated: 

 
e1 =  φ1 - φ1_est   
er =  φ2 - φ2_est   

 
The controller for each track becomes  
 

upwm(t) = KP e(t) + KI   e(t) dt + KD de(t)/dt 
 

Feel free to read up on PID control – it will be useful. Tuning these control gains can 
take some time. The instructor can help give guidance if required. Make sure the 
control signals upwm sent to the jaguar are between 0 and 32767. 

 
First, do a check to make sure the robot is not moving faster than 0.30 m/s. Next, 
consider the controller’s performance as the jaguar gets very close to the goal. 

 
 

6. Tracking trajectories 
Using the point tracker you just developed, implement a trajectory tracker that 
enables the Jaguar to autonomously follow a hard coded trajectory, (this may be 
useful when your motion planner autonomously constructs a collision-free 
trajectory). 
 
Hard code a trajectory that includes both straight line path segments and circular arc 
path segments.  
 
Use the function TrackTrajectory() located in Navigation.cs. You will have to make 
sure the control thread calls TrackTrajectory() instead of FlyToSetPoint().  
 

 
 
 
 DELIVERABLES 

 
1. Demonstration 
Before the end of the final day of this lab, you must demonstrate to the Instructor 
that your point tracker/trajectory tracker is working properly. In both simulation and 
hardware mode, the 2D graphics window should show the robot and estimate 
moving towards desired goal states. 
 
Part of your grade will be based on performance: How stable is the controller on the 
real robot, how close does it come to desired states, etc. Demos are due by the end 
of lab on Friday March 1st. 

.      . 

.      . 



 
 
2. Submissions 
In a 5-10 page report, present your methods and results for both point tracking and 
trajectory tracking. Be sure to include the following sections: abstract, introduction, 
background, problem definition, control design, results, conclusion.  
 
Note, all lab documents in this class will follow the template found at: 
http://www.ieee.org/conferences_events/conferences/publishing/templates.html 

 
The report is due 9:00am, Friday, February 27th. 
 

 
 


