

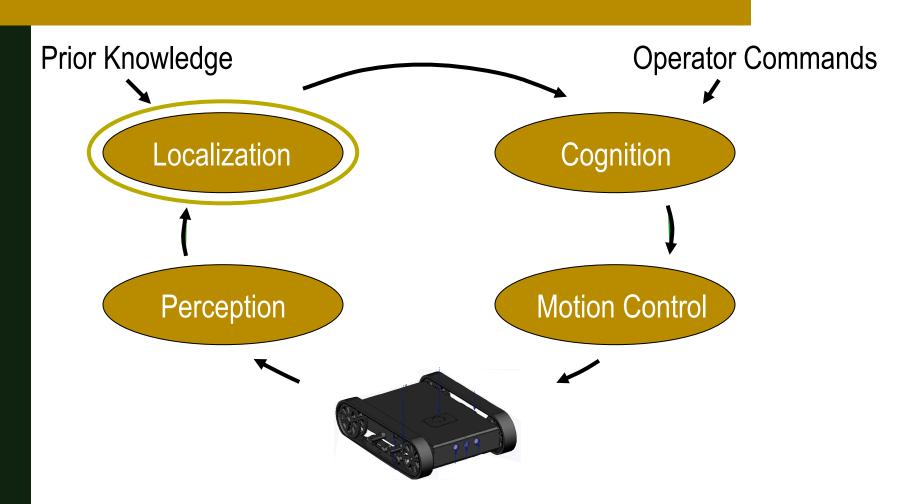
# E160 – Lecture 9 Autonomous Robot Navigation

Instructor: Chris Clark

Semester: Spring 2016



# **Control Structures Planning Based Control**



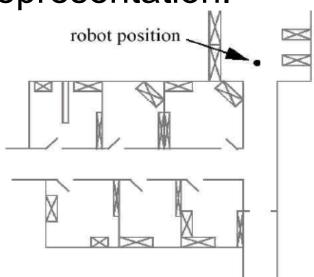


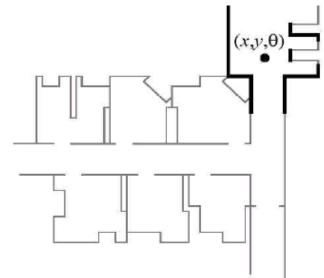
#### **Outline - Localization**

- 1. Localization Tools
  - Belief representation
  - Map representation
- 2. Overview of Algorithms
- 3. Markov Localization



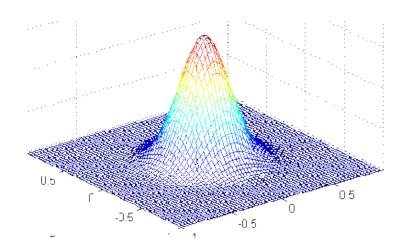
- Our belief representation refers to the method we describe our estimate of the robot state.
- So far we have been using a Continuous Belief representation.





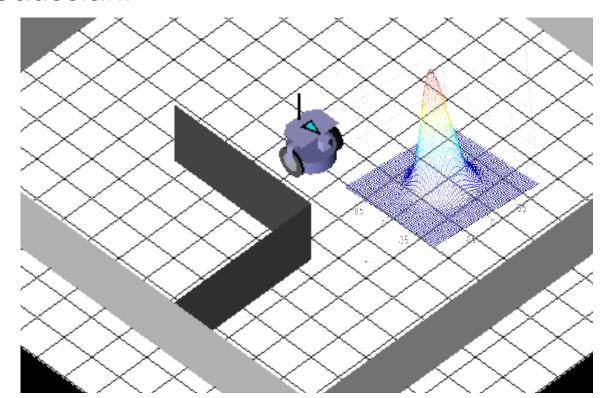


- We can provide a description of the level of confidence we have in our estimate.
  - We typically use a Gaussian distribution to model the state of the robot.
  - We need to know the variance of this Gaussian!



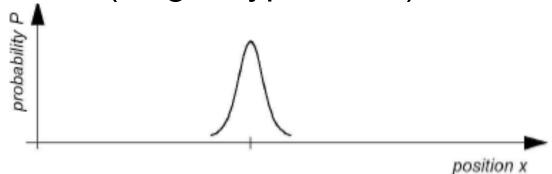


For example, consider modeling our robot's position with a 2D Gaussian:

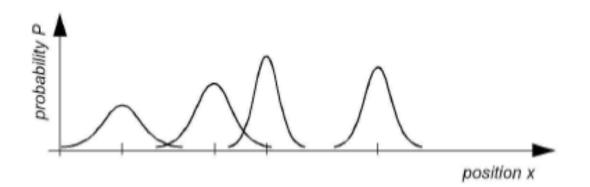




Continuous (single hypothesis)



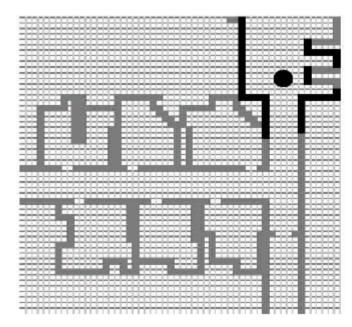
Continuous (multiple hypothesis)



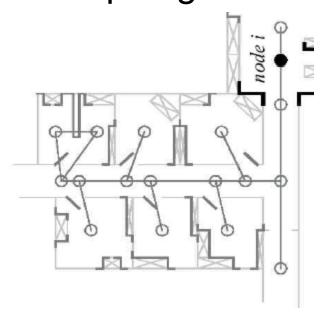


Or, we could assign a probability of being in some discrete locations:

Grid

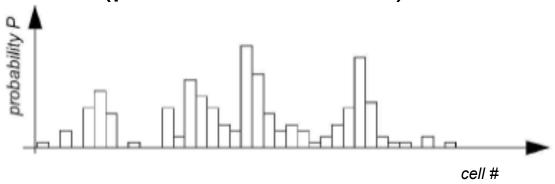


**Topological** 





Discretized (prob. Distribution)

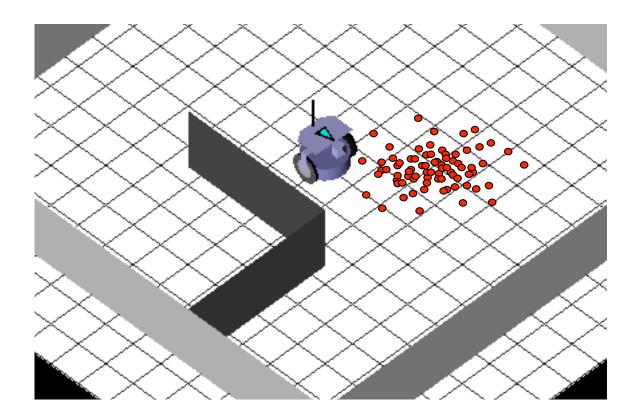


Discretized Topological (prob. dist.)



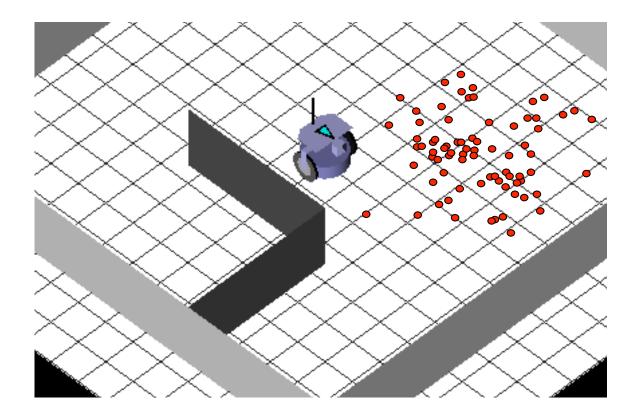


Discretized: Particles



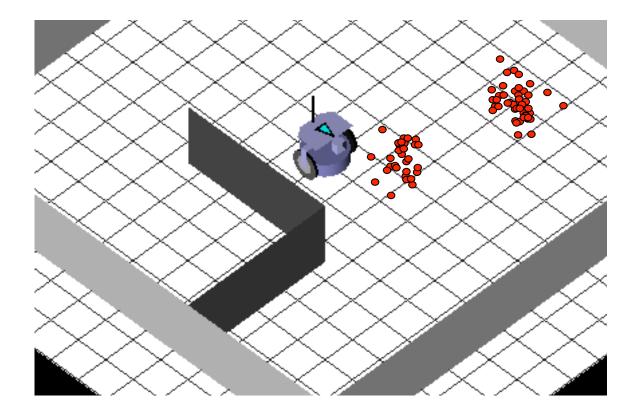


Discretized: Particles





Discretized: Particles





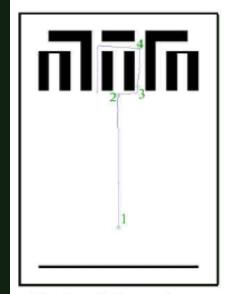
- Continuous
  - Precision bound by sensor data
  - Typically single hypothesis pose estimate
  - Lost when diverging (for single hypothesis)
  - Compact representation
  - Reasonable in processing power



- Discrete
  - Precision bound by resolution of discretization
  - Typically multiple hypothesis pose estimate
  - Rarely lost (when diverges/converges to another cell).
  - Memory and processing power needed (unless topological map used)
  - Aids discrete planner implementation



Multi-Hypothesis Example



Path of the robot

Belief states at positions 2, 3 and 4



#### **Outline - Localization**

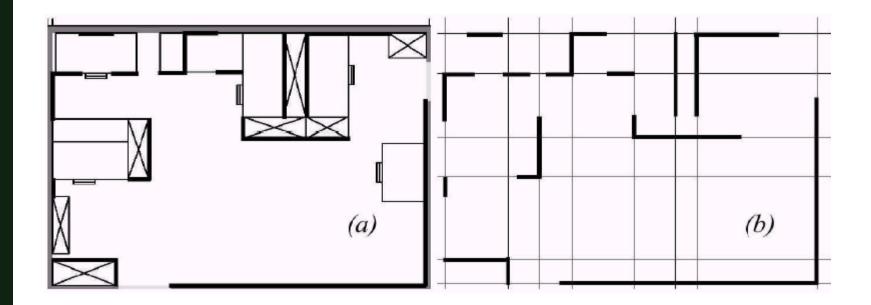
- 1. Localization Tools
  - Belief representation
  - Map representation
- 2. Overview of Algorithms
- 3. Markov Localization



- Similar to belief representations, there are two main types:
  - Continuous
  - Discretized

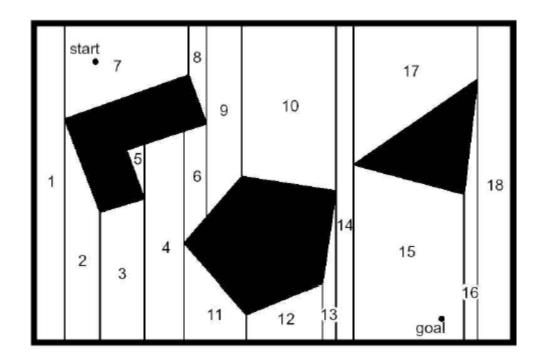


Continous line-based



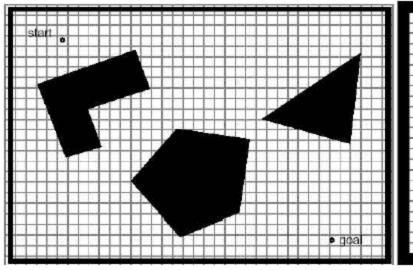


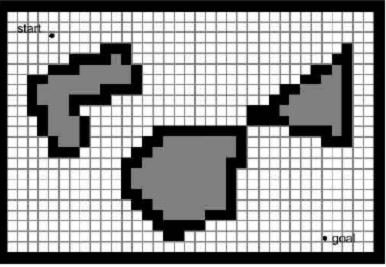
Exact cell decomposition





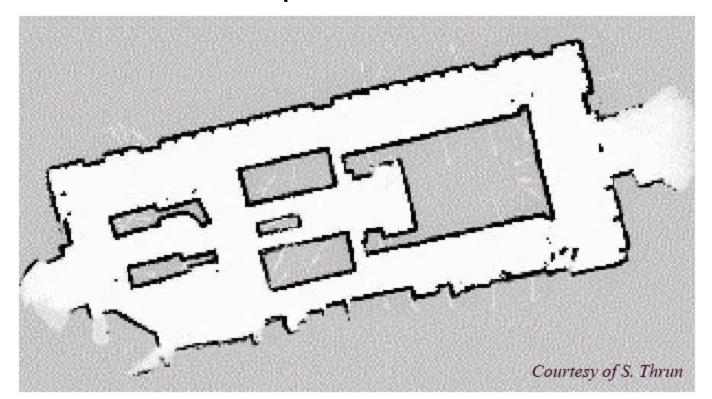
Fixed cell decomposition





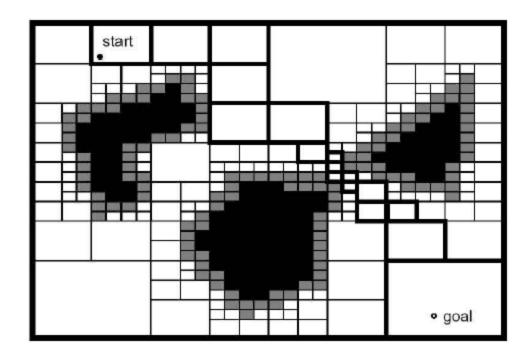


Fixed cell decomposition



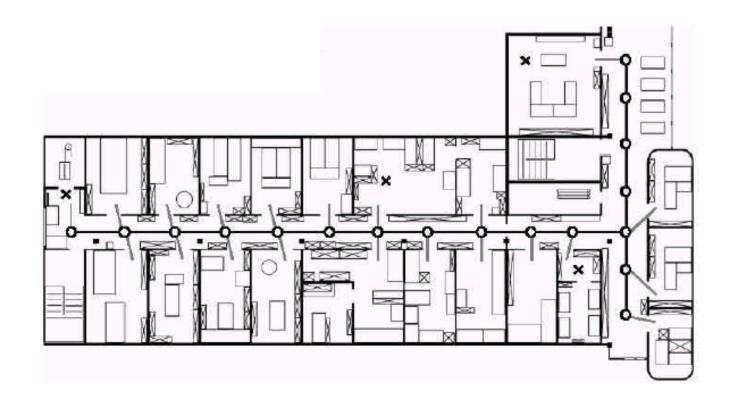


Adaptive cell decomposition



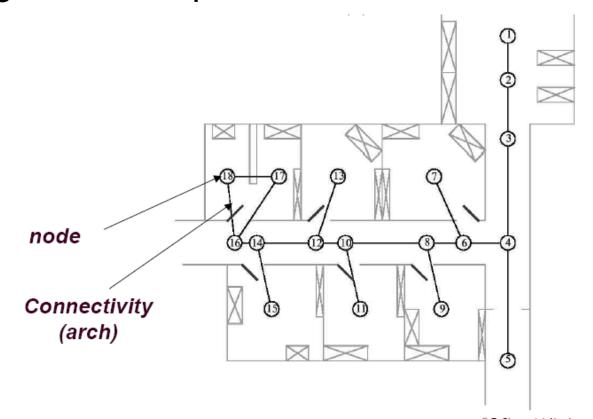


Topological decomposition



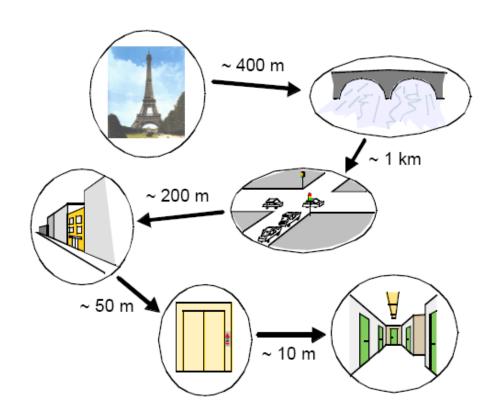


Topological decomposition





Topological decomposition





#### **Outline - Localization**

- 1. Localization Tools
- 2. Overview of Algorithms
  - Typical Methods
  - Basic Structure
- 3. Markov Localization



- Mapping Problem
  - Determine the state of the environment given a known robot state.
- Localization Problem
  - Determine the state of a robot given a known environment state.



- Strategy:
  - It might start to move from a known location, and keep track of its position using odometry.
  - However, the more it moves the greater the uncertainty in its position.
  - Therefore, it will update its position estimate using observation of its environment



- Method:
  - Fuse the odometric position estimate with the observation estimate to get best possible update of actual position
- This can be implemented with two main functions:
  - 1. Act
  - 2. See



- Action Update (Prediction)
  - Define function to predict position estimate based on previous state  $x_{t-1}$  and encoder measurement  $o_t$  or control inputs  $u_t$

$$x'_{t} = Act(o_{t}, x_{t-1})$$

Increases uncertainty



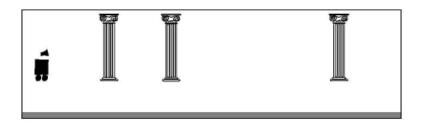
- Perception Update (Correction)
  - Define function to correct position estimate  $x'_t$  using exteroceptive sensor inputs  $z_t$

$$x_t = See(z_t, x'_t)$$

Decreases uncertainty



 Motion generally improves the position estimate.





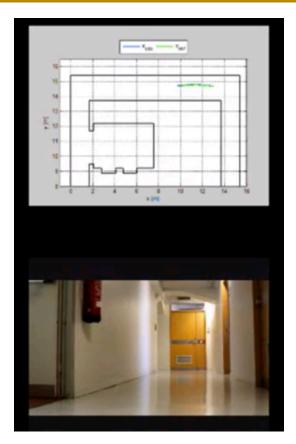
# Kalman Filtering vs. Markov

- Markov Localization
  - Can localize from any unknown position in map
  - Recovers from ambiguous situation
  - However, to update the probability of all positions within the whole state space requires discrete representation of space.
     This can require large amounts of memory and processing power.

- Kalman Filter Localization
  - Tracks the robot and is inherently precise and efficient
  - However, if uncertainty grows too large, the KF will fail and the robot will get lost.



# Kalman Filtering

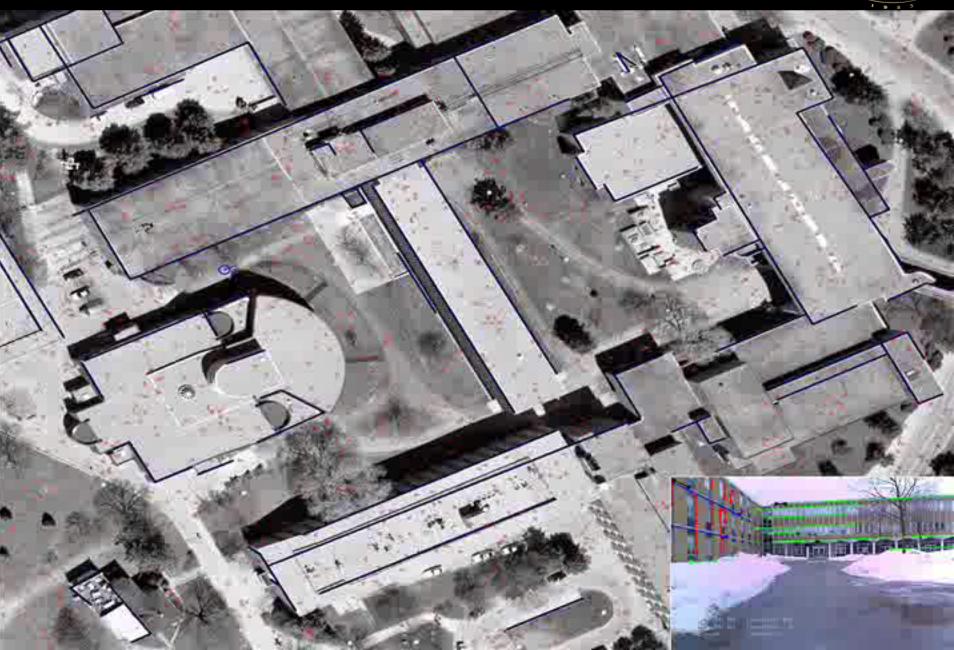




#### **Particle Filter Localization**









#### **Outline - Localization**

- 1. Localization Tools
- 2. Overview of Algorithms
- 3. Markov Localization
  - Overview
  - Prediction Step
  - Correction Step
  - ML Example



#### **Markov Localization**

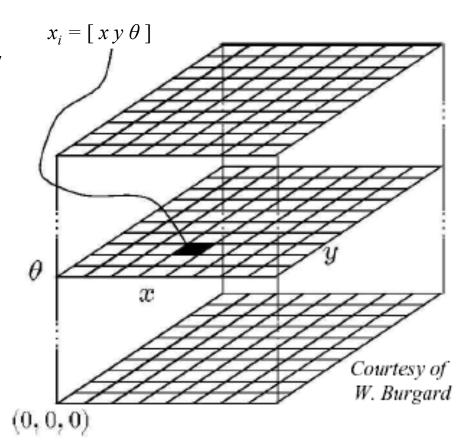
- Markov localization uses an explicit, discrete representation for the probability of all positions in the state space.
- Usually represent the environment by a finite number of (states) positions:
  - Grid
  - Topological Map



 Use a fixed decomposition grid by discretizing each dof:

$$(x, y, \theta)$$

- For each location  $x_i = [x y \theta]$  in the configuration space:
- Determine probability  $P(x_i)$  of robot being in that state.





#### **Markov Localization**

 We assume in localization the Markov Property holds true...

- Markov Property
  - A stochastic Process satisfies the Markov Property if it is conditional only on the present state of the system, and its future and past are independent
  - The robot state  $x_t$  only depends on previous state  $x_{t-1}$  and most recent actions  $u_t$  and measurements  $z_t$



#### **Markov Localization**

Algorithm PseudoCode to update all n states

```
for i = 1:n
P(x_i) = 1/n
while (true)
o = \text{getOdometryMeasurements}
z = \text{getRangeMeasurements}
for i = 1:n
P(x_i') = \text{predictionStep}(P(x_j), o)
for i = 1:n
P(x_i) = \text{correctionStep}(P(x_i'), z)
```



# Markov Localization Applying Probability Theory

1. PREDICTION Step: Updating the belief state

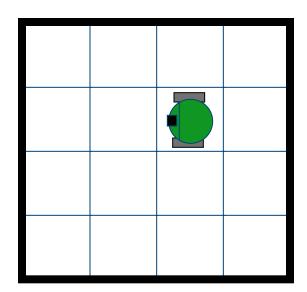
$$P(x_{i,t}') = P(x_{i,t} | o_t)$$

$$= \sum_{j=1}^{n} P(x_{i,t} | x_{j,t-1}, o_t) P(x_{j,t-1})$$

- Map from a belief state  $P(x_{j,t-1})$  and action  $o_t$  to a new predicted belief state  $P(x_{i,t})$
- Sum over all possible ways (i.e. from all states  $x_{j,t-1}$ ) in which the robot may have reached  $x_{i,t}$
- This assumes that update only depends on previous state and most recent actions/perception



- Example Problem:
  - Consider a robot equipped with encoders and a perfect compass moving in a square room that is discretized into a map of 16 cells:





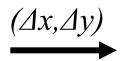
- Example Problem:
  - What is the probability of being in position (2,3) given odometry  $o_t = (\Delta x, \Delta y) = (-1.0 \text{ cells}, 0.0 \text{ cells}),$  and starting from the following distribution?

| .02 | .05 | .05 | .05 |
|-----|-----|-----|-----|
| .02 | .05 | .18 | .05 |
| .05 | .05 | .18 | .05 |
| .05 | .05 | .05 | .05 |



- Example Solution:
  - We must have a model of how well our odometry works. For example, we could use a model for  $o_t = (\Delta x, \Delta y) = (-1.0, 0.0)$  that looks like:

| .00 | .00 | .00 |
|-----|-----|-----|
| .00 | .00 | 1.0 |
| .00 | .00 | .00 |

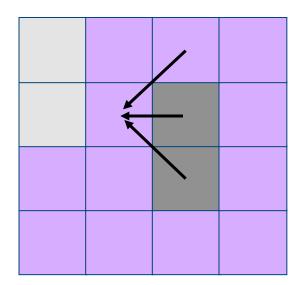


| .00 | .20 | 00.   |
|-----|-----|-------|
| .00 | .50 | 0 .10 |
| .00 | .20 | 00.00 |



- Example Solution:
  - Now apply this model to the initial state. We must consider the following possible scenarios for getting to position (2,3):

$$(3,3) \rightarrow (2,3)$$
  
 $(2,3) \rightarrow (2,3)$   
 $(3,2) \rightarrow (2,3)$   
 $(3,4) \rightarrow (2,3)$ 





- Example Solution:
  - Consider the first possibility:

$$(3,3) \rightarrow (2,3)$$

We can calculate the probability of this happening

$$P(x_{i,t} | x_{j,t-1}, o_t) P(x_{j,t-1})$$

$$= P(x_t = (2,3) | x_{t-1} = (3,3), o_t = (-1,0)) P(x_{t-1} = (3,3))$$

$$= (0.5) (0.18)$$

$$= 0.09$$



- Example Solution:
  - Similarly, we can calculate the probability of all other possible ways to get to (2,3).

$$P(x_{t}=(2,3) \mid x_{t-1}=(2,3), o_{t}=(-1,0)) P(x_{t-1}=(2,3))$$

$$= 0.005$$

$$P(x_{t}=(2,3) \mid x_{t-1}=(3,2), o_{t}=(-1,0)) P(x_{t-1}=(3,2))$$

$$= 0.036$$

$$P(x_{t}=(2,3) \mid x_{t-1}=(3,4), o_{t}=(-1,0)) P(x_{t-1}=(3,4))$$

$$= 0.01$$



- Example Solution:
  - So the probability of being at position (2,3) given the odometry is the total probability of moving there from each possible position:

$$P(x_{it}=(2,3)|\ o_t=(-1,0)) = \sum P(x_t=(2,3)|\ x_{j,t-1},\ o_t=(-1,0))\ P(x_{j,t-1})$$

$$= 0.09 + 0.005 + 0.036 + 0.01$$

$$= 0.141$$



# Markov Localization Applying Probability Theory

2. CORRECTION Step: refine the belief state

$$P(x_{i,t} | z_t) = P(z_t | x_{i,t}') P(x_{i,t}') \frac{P(z_t | x_{i,t}') P(x_{i,t}')}{P(z_t)}$$

- $P(x'_{i,t})$ : the belief state before the perceptual update i.e.  $P(x_{i,t} | o_t)$
- $P(z_t | x_{i,t}')$ : the probability of getting measurement  $z_t$  from state  $x_{i,t}'$
- $P(z_t)$ : the probability of a sensor measurement  $z_t$ . Calculated so that the sum over all states  $x_{i,t}$  from equals 1.



#### **Markov Localization**

- Critical challenge is calculation of P(z | x)
  - The number of possible sensor readings and geometric contexts is extremely large
  - $P(z \mid x)$  is computed using a model of the robot's sensor behavior, its position x, and the local environment metric map around x.
  - Assumptions
    - Measurement error can be described by a distribution with a mean
    - Non-zero chance for any measurement
    - Sensor is located at center of robot



- Example Problem:
  - What is the probability of being in state x = (2,3) given we have range measurement z = 0.8m?

$$P(x_t = (2,3)) | z_t = 0.8) = P(z_t = 0.8 | x_t' = (2,3)) P(x_t' = (2,3))$$

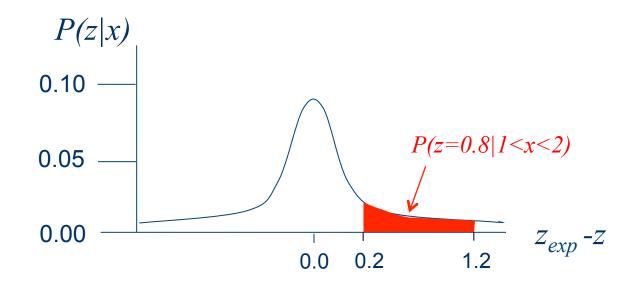
$$P(z_t = 0.8)$$



- Example Solution:
  - We can use the probability  $P(x_t'=(2,3)) = 0.141$  from the previous example.
  - The interesting term is  $P(z_t=0.8 \mid x_t'=(2,3))$ .
    - Using the map, we can calculate the expected value of the range sensor measurement.
    - If the robot is at (2,3) and facing to the left, it should get a range measurement between 1m and 2m.
    - Recall that we can use the probability density function representing the sensor characteristics, and that the expected value is between 1 and 2.

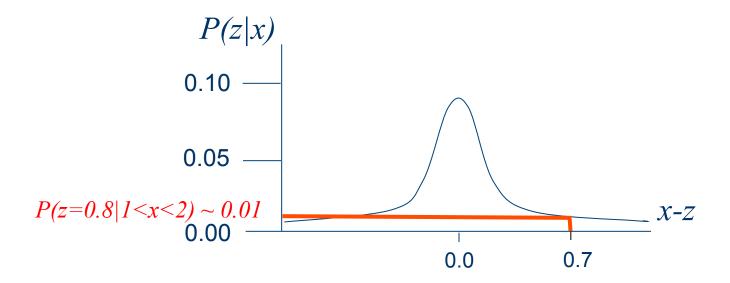


- Example Solution:
  - For Ultrasound, P(z|x) can be taken from the following distribution:





- Example Solution:
  - Often, we approximate





- Example Solution:
  - Now we can calculate the numerator for

$$p(x_t = (2,3)) | z_t = 0.8)$$

$$= p(z_t=0.8 | x_t'=(2,3)) p(x_t'=(2,3))$$

$$= (0.01) (0.141)$$

$$p(z_t=0.8)$$



- Example Solution:
  - Finally, we can calculate the denominator by ensuring the sum of all probabilities is 1.

$$1 = \sum_{i=1}^{n} P(x_{i,t} \mid z_{t} = 0.8)$$

$$= \sum_{i=1}^{n} P(z_{t} = 0.8 \mid x_{i,t}') P(x_{i,t}')$$

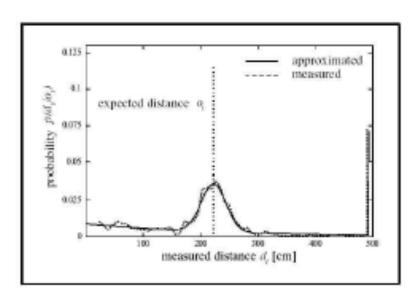
$$P(z_{t} = 0.8)$$

Therefore:

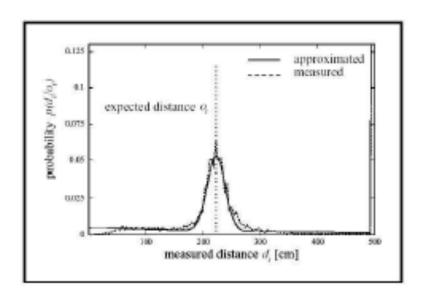
$$P(z_t = 0.8) = \sum P(z_t = 0.8 | x_{i,t}') P(x_{i,t}')$$



Here are some typical sensor distributions:



Ultrasound.



Laser range-finder.



#### **Outline - Localization**

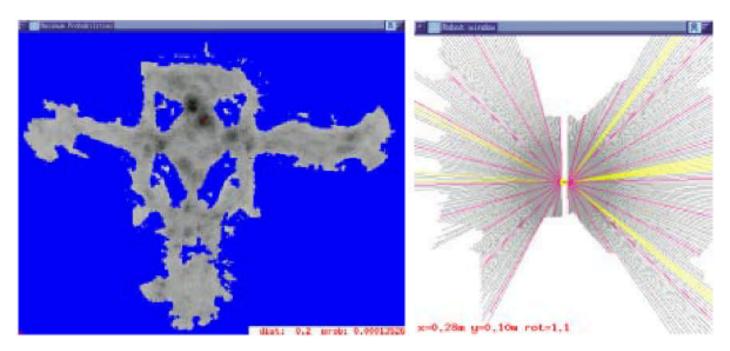
- 1. Localization Tools
- 2. Overview of Algorithms
- 3. Markov Localization
  - Overview
  - Prediction Step
  - Correction Step
  - ML Example



- Smithsonian Navigation
  - Time steps taken from ML example of the robot Minerva navigating around the Smithsonian.
  - In the following figures:
    - Left side shows belief state. Darker means higher probability.
    - Right side shows actual robot position and sensor measurements.



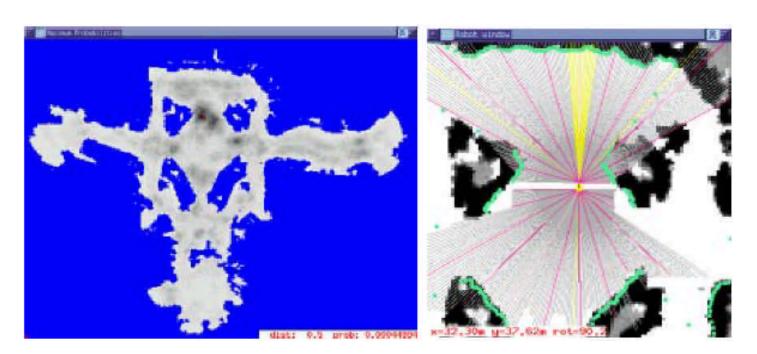
Laser Scan 1 of Museum



Figures courtesy of W. Burgard



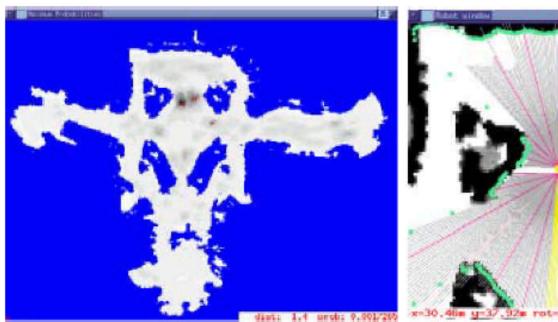
Laser Scan 2 of Museum

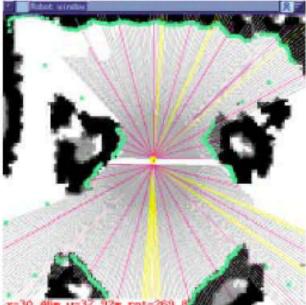


Figures courtesy of W. Burgard



Laser Scan 3 of Museum

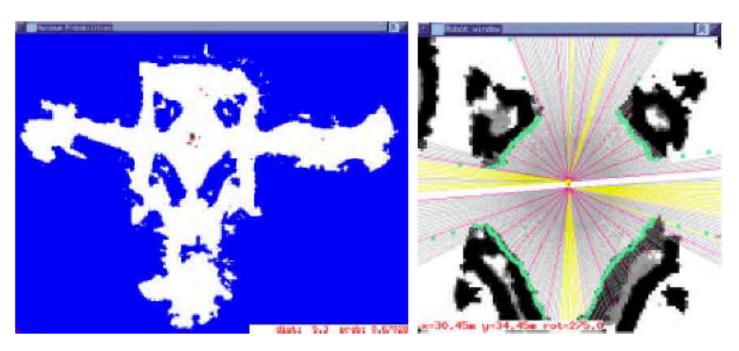




Figures courtesy of W. Burgard



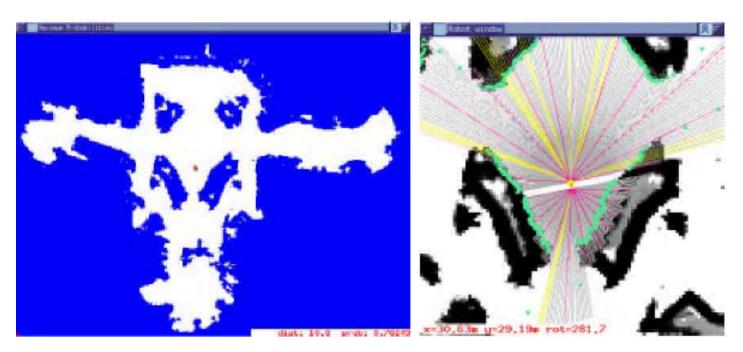
Laser Scan 13 of Museum



Figures courtesy of W. Burgard



Laser Scan 21 of Museum



Figures courtesy of W. Burgard

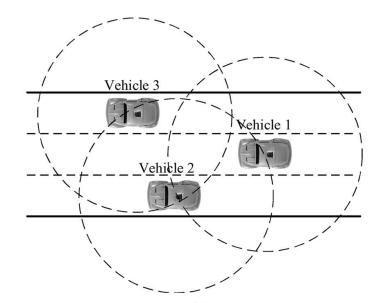


- Lane StateEstimation
  - (Semi) Autonomous
     Highway Systems will
     benefit from lane
     position optimization
  - Vehicles must need to know what lane they are in.



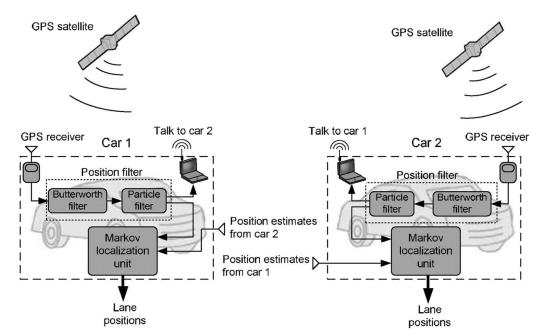


- Multiple vehicles driving down a highway.
  - Can we estimate what lane they are in?





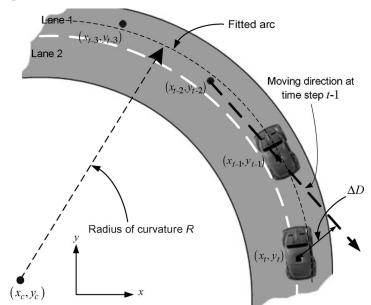
- Assume vehicles have
  - Inter-Vehicle Communication (IVC)
  - GPS





Baye's Filter - Prediction Step

$$P(v_{i,t} = l_a) \leftarrow \sum_{j=1}^{2} P(v_{i,t} = l_a | v_{i,t-1} = l_j) P(v_{i,t-1} = l_j)$$



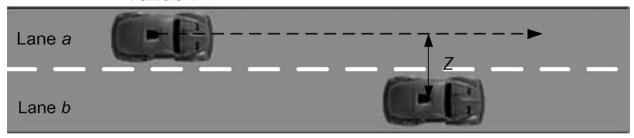


Baye's Filter - Correction Step

$$P(v_{1,t} = l_a, v_{2,t} = l_b | z_t)$$

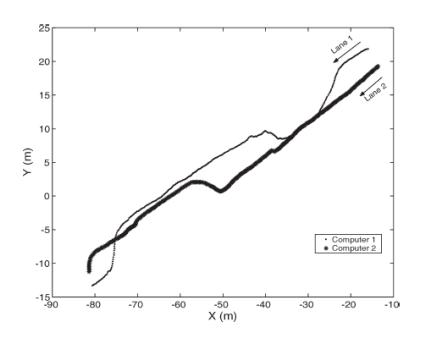
$$\leftarrow \frac{P(z_t | v_{1,t} = l_a, v_{2,t} = l_b) P(v_{1,t} = l_a, v_{2,t} = l_b)}{P(z_t)}$$

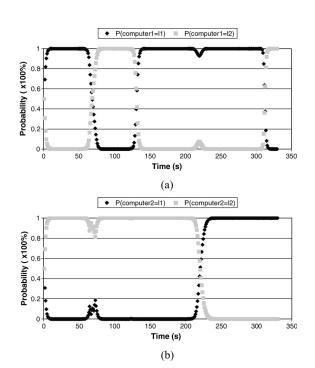
Vehicle 1





#### Results







#### Results

