
Why	doesn’t	it	work?
Finding	and	solving	bugs	in	complex	systems



A	common	route	to	bugs:	I	know	what	to	do.	I	will	do	it.	It	does	not	work.

For	instance	take	a	schematic	and	assemble	the	entire	thing	and	then	at	the	end	
check	if	it	works.	You	probably	did	this	when	you	put	together	your	robot’s	PCB.

This	is	marginally	okay	even	if	you	know	it	should	work	it’s	a	very	bad	idea	if	you	
don’t		



A	large	part	of	good	engineering	is	about	modules	and	modularity.	It	is	best	
if	you	create	a	system	from	a	set	of	sub-systems	that	have	clear	interfaces	
and	functions.	

This	applies	to	software	and	hardware!

This	has	numerous	advantages.	The	biggest	two	of	which	are:	reusability	
and	robustness.	

Reusability	means	you	can	combine	building	blocks	together	again	to	solve	
new	problems	without	redoing	work.

Robustness	comes	from	meeting	the	interface	specification.	If	a	vendor	
discontinues	a	part,	you	might	have	to	redesign	a	module	but	not	the	entire	
system	so	long	as	your	new	module	meets	to	the	interface	specification.	



Modules	should	be	testable and	have	a	clear	purpose.	

The	granularity	of	your	modules	can	be	anything	but	it	is	wise	to	
partition	your	hardware	or	code	into	modules	of	a	reasonable	
size.

1

2

3

4



Takeaways:	
• Before	you	start	break	down	the	problem	into	

modules
• Consider	how	you	will	test	these	modules	
• Test	the	modules	as	you	build	them



My	module	is	broken.	What	now?
Even	with	the	best	planning	errors	will	be	made	and	you	will	have	modules	that	do	not	
work	to	the	interface	specification.

With	good	planning	these	modules	will	be	simple	enough	to	debug.

Harder	bugs	occur	when	your	interface	is	broken.	If	your	interface	specification	overlooks	
a	case	you	will	have	edge	case	bugs	and	these	can	be	harder	to	find.	If	both	modules	pass	
tests	individually	it	is	likely	the	interface	that	has	the	problem.	



I	am	thinking	of	an	object	in	the	room,	what	is	it?

This	game	normally	called	20	questions	in	the	US	contains	the	core	of	how	to	
debug	a	system.

You	ask	big	questions	first	that	eliminate	large	numbers	of	things	and	then	smaller	
questions	later	to	get	to	the	exact	source	of	the	error.		Even	with	binary	answers	
you	can	quickly	resolve	a	very	open	ended	unknown.	

How	do	we	ask	a	question	in	an	engineered	system?

We	make	a	measurement	of	a	signal.	That	signal	may	be	asserted	by	software	or	
it	might	be	made	on	real	time	hardware	with	an	instrument.

To	understand	if	the	answer	indicates	a	bug	we	have	to	have	a	model	of	the	
expected	behavior	of	the	system.	



Common	electronic	hardware	questions	to	ask	(tool	to	ask	with):

• Is	point	A	connected	to	point	B?	(multimeter continuity)
• Is	the	device	powered	properly?	(multimeter volts),	consulting	datasheet
• Is	there	a	short	on	the	board?	(current	draw	from	power	supply	or	

multimeter amps)
• Does	the	signal	look	right?	(Oscilloscope	or	other	analysis	tool).

Our	sources	of	information	(feedback)	are	instruments	in	the	lab.	This	is	of	course	just	a	
partial	list.

The	key	idea	is	an	expected	value	and	a	test	of	that	value	using	feedback	to	locate	the	
inconsistency.	It	may	be	that	you	misunderstood	the	datasheet	or	it	may	be	that	your	part	
is	broken	only	when	you	find	the	inconsistency	can	you	think	deeper	about	which	it	is.



Common	electronic	software	questions	to	ask	(tool	to	ask	
with):

• Did	my	code	run	to	here?	(LED,	print	statement,	“debugger”)
• Did	my	code	produce	the	expected	output?	(LED,	Test	function,	print	

statement)
• Does	my	software	take	the	correct	path	through	functions?	(print	to	

logs,	debugger)
• How	long	did	my	code	take	to	run?	(Profiler,	tick/toc/timer)

Different	kinds	of	software	have	different	debugging	available.	When	you	are	building	a	
“real-time”	system	pausing	the	execution	of	the	software	can	change	the	result	or	make	
the	code	not	work	at	all.	This	requires	log	type	debugging	approaches.	If	you	are	writing	
software	for	a	system	that	does	not	depend	on	an	external	real-time	stream	of	
information	you	can	pause	the	execution	with	a	debugger.	



Is	it	a	hardware	bug	or	a	software	bug?

With	systems	like	we	have	in	E11	it	can	sometimes	be	hard	to	tell	if	the	bug	is	in	
hardware	or	software	as	they	interact.

Test	your	software	with	simulated	hardware	inputs.	

Test	your	hardware	with	tools	in	the	lab	as	needed	if	it	is	a	hardware	bug.	

Let’s	do	an	example…



#define	LED1	13
#define	LED2	10
#define	LED3	5
#define	LED4	2

unsigned	char	thePattern =	1;
unsigned	char	forwardBackward =	1;

void	setup()	
{
Serial.begin(9600);
pinMode(LED1,	OUTPUT);
pinMode(LED2,	OUTPUT);
pinMode(LED3,	OUTPUT);
pinMode(LED4,	OUTPUT);
}

void	loop()
{
displayPattern(thePattern);											//display	 the	pattern
delay(1000);																										//let	the	user	see	the	pattern
thePattern =	nextPattern(thePattern,	 forwardBackward);	 //go	 to	the	next	pattern
forwardBackward =	!forwardBackward;

}

//displays	the	pattern	on	the	LEDs
//function:	2	has	only	LED	2	on	while	3	has	LED	1	and	2	on
void	displayPattern(unsigned	char	pattern)
{
if(pattern	>=	1)digitalWrite(LED1,	HIGH);
else	digitalWrite(LED1,	LOW);
if(pattern	>=	2)digitalWrite(LED2,	HIGH);
else	digitalWrite(LED2,	LOW);
if(pattern	>=	4)digitalWrite(LED3,	HIGH);
else	digitalWrite(LED3,	LOW);
if(pattern	>=	8)digitalWrite(LED4,	HIGH);
else	digitalWrite(LED4,	LOW);		
}

//If	 forward	return	2	greater,	 otherwise	1	less
unsigned	char	nextPattern(unsigned	char	currentPattern,	unsigned	char	forward)
{
if(forward	==	1)	return	currentPattern +	2;
else	 return	currentPattern - 1;		
}

Debug	expected	order	for	nextPattern:
1
3
2
4
3
5
4
6

//Fixed	display	pattern
void	displayPattern(unsigned	 char	pattern)
{
if(pattern	&	0b1)digitalWrite(LED1,	 HIGH);
else	digitalWrite(LED1,	LOW);
if(pattern	&	0b10)digitalWrite(LED2,	 HIGH);
else	digitalWrite(LED2,	LOW);
if(pattern	&	0b100)digitalWrite(LED3,	 HIGH);
else	digitalWrite(LED3,	LOW);
if(pattern	&	0b1000)digitalWrite(LED4,	 HIGH);
else	digitalWrite(LED4,	LOW);		
}


