E11 - Autonomous Vehicles

Lecture 16 – Robot Navigation

Approaches to Control

- Planning Based Control
 - Traditional methods born out of AI (1960's +)
- Reactive (i.e. Behavior) Based Control
 - More recent (mid to late 1980's)
- Mixture of Planning and Reactive
 - Today

- Through perception, a model of the "real" world is captured in memory.
- A goal is given and a plan is generated, assuming the "real" world is not changing.
- Then, the plan is executed, one (abstract) operation at a time.

Questions:

- What is "interesting" in the "real" world to be captured?
- At what level of details should we represent the "real" world?
- What if during plan execution, the "real" world changes? e.g., drop part A.

Planning-based navigation architecture

- Perception, modeling and planning are computationally intensive.
- Our model of the "real" world must be at all times accurate (consistent and reliable).
- Sudden changes in the world may not be reflected instantly in our model.
- This approach works well in a predictable world.

Robot Navigation

- Actions are connected to precepts via behaviors.
- No internal model: The real world is our model.
- A robot reacts to changes and exhibits complex behaviors due to both internal and external interactions.

- A robot is equipped with many simple behaviors.
- Each behavior defines its own sensor data and actions.
- Interactions among the behaviors are resolved by coordination.
- These behaviors are concurrent and independent; they react to changes instantly.

Example: A simple roaming mobile robot is equipped with the following behaviors:

- Different behaviors may share same sensors and/or actuators.
- Competitive or cooperative actions are handled by careful coordination.
- Behaviors may be added or deleted incrementally.

Subsumption Architecture

- Subsumption Architecture
 - Behavioral coordination can be based on a fixed priority of suppression.

Robot Navigation

Robot Navigation

- Perception
- Localization
- Cognition
- Motion Control

- Proprioceptive
 - Compass
 - Encoders
 - Accelerometers
 - IMU Inertial Measurement Unit

- Exteroceptive
 - Range Sensors
 - Vision Systems

- Exteroceptive
 - Sonar

- Exteroceptive
 - Positioning Systems (e.g. GPS)

Robot Navigation

- Perception
- Localization
- Cognition
- Motion Control

- Representations
 - Continuous

Discrete

- Probabilistic Representations
 - Continuous

Discrete

- Probabilistic Algorithms
 - Kalman Filter Based
 - Assumes Gaussian representation of robot state
 - Compact representation good for real time implementation
 - Particle Filter Based
 - Uses many particles to represent robot state, each particle is an estimate of the robot position with an associated weight.

Robot Navigation

- Perception
- Localization
- Cognition
- Motion Control

Cognition

- Task Planning
 - Given a set of tasks (e.g. task locations), identify ordering sequence for the tasks.

Cognition

- Task Planning
 - Given a set of tasks (e.g. task locations), identify ordering sequence for the tasks.

Cognition

- Motion Planning
 - Given a robot's Start Configuration and Goal Configuration, construct a collision free trajectory from Start to Goal

Robot Navigation

- Perception
- Localization
- Cognition
- Motion Control

Motion Control

- Trajectory Tracking Control
 - Given a trajectory, determine the control signals sent to actuators that guarantee the robot will follow the trajectory.

http://www.youtube.com/watch?v=SWJ-etF4b2g