E11 – Autonomous Vehicles

Sensors & Actuators

Outline

- Actuators
- Sensors

Outline

- Actuators
 - DC Motor
 - Servo Motor
 - Stepper Motor
- Sensors

How does a DC Motor work?

- The stator generates a stationary magnetic field surrounding the rotor.
- The rotor/armature is composed of a coil which generates a magnetic field when electricity flows through it.
- The **brushes** provide mechanical contact between the rotor and the commutators and help switch polarity of rotor windings.
- 4. Commutators reverse the current every half a cycle to keep the motors turning.

http://humanoids.dem.ist.utl.pt/servo/overview.html

E11 Motors

- Operating Voltage: 3-12 V
- At 6 V operation:
 - Free run speed: 11,500 RPM
 - Unloaded current: 70 mA
 - Stall current: 800 mA
 - ~o.5 oz-in torque

Gearing

- DC motors spin too fast with too little torque
- Gears slow the load rotation and increase torque

Gear Trains and Ratios

- Gear trains reduce speed and magnify torque.
- The gear ratio is the ratio of number of teeth on driver gear A to those on driven gear B:

$$GR = \frac{\text{number of teeth on gear A}}{\text{number of teeth on gear B}}$$

Gear Ratio and Angular Velocity

The gear ratio is also proportional to the ratio of radii: $GR = \frac{r_A}{r_A}$

 The surface speeds at the point of contact of the gears must be identical, so

$$v_A = v_B \Rightarrow \omega_A r_A = \omega_B r_B$$

Therefore,

$$GR = \frac{n_A}{n_B} = \frac{r_A}{r_B} = \frac{\omega_B}{\omega_A}$$

Example: Tamiya Gear Box

Gear Ratio:

Final	l to Blue1	36:12
		. J

Blue1 to Blue2 36:12

Blue 2 to Crow 36:12

Crown to Pinion 34:8

Total: 114.75:1

H-Bridge

- Motors require large current to operate
 - But Arduino outputs only offer 40 mA
- H-Bridges are used to drive the large current

Α	В	С	D	Motor	
ON	OFF	OFF	ON	Forward	
OFF	ON	ON	OFF	Backward	
ON	OFF	ON	OFF	Brake	
OFF	OFF	OFF	OFF	Coast	
ON	ON	OFF	OFF	H-Bridge Magic Smoke	

SN754410 H-Bridge

- 754410 Dual H-Bridge is easy to control with digital logic
 - V_{CC_1} = Logic Supply (5V)
 - V_{CC_2} = Motor Supply (4.5-36V)

12En	1 A	2A	Motor
0	X	Χ	Coast
1	0	0	Brake
1	0	1	Backward
1	1	0	Forward
1	1	1	Brake

Contains two H-Bridges to drive two motors

Mudduino H-Bridge Interface

Motor Driver Software

```
#define LEN 6
#define LPLUS 9
#define LMINUS 8
void forward(void)
    digitalWrite(LEN,
                          1);
    digitalWrite(LPLUS, 1);
    digitalWrite(LMINUS, 0);
    // similar for right motor...
```

Shaft Encoding

- Sometimes it helps to know the position of the motor
- Optical shaft encoder
 - Disk with slits attached to motor shaft
 - Light and optical sensor on opposite sides of disk
 - Count light pulses as the disk rotates
- Analog shaft encoder
 - Connect potentiometer (variable resistor) to shaft
 - Resistance varies as shaft turns

http://www.bogan.ca/astro/telescopes/digtcrcl.html

Servo Motor

- Servo motors are designed to be easy to use
 - DC motor
 - Gearing
 - Analog shaft encoder
 - Control circuitry
 - High-current driver

- Three wires: 5V, GND, Control
- servocity.com

- Turn from o to 180 degrees
 - Position determined by pulses on control wire

Servo Pulse Width Modulation

- Control position with 50 Hz (20 ms) pulses
- Pulse width modulation (PWM)

SG90 Servo

- 4.0 7.2 V Operation
- At 4.8 V
 - Speed: 0.12 sec / 60 degrees (83 R
 - Stall Torque: 16.7 oz-in

hobbypartz.com

Arduino Servo Library

Arduino offers a servo library for controlling servos

```
// servotest.ino
// David Harris@hmc.edu 1 October 2011
#include <Servo.h>
// pins
#define SERVOPIN 10
// Global variable for the servo information
Servo servo;
void testServo()
  initServo();
  servo.write(90); // set angle between 0 and 180 degrees
void initServo()
 pinMode (SERVOPIN, OUTPUT);
  servo.attach (SERVOPIN);
```

Stepper Motor

- Stepper motors are also popular
 - Motor advances in discrete steps
 - Input pulses indicate when to advance
- Example: Pololu 1207 Stepper Motor
 - 1.8° steps (200 steps/revolution)
 - 280 mA @ 7.4 V
 - 9 oz-in holding torque
 - Needs H-Bridge driver
 - Ground C and D
 - Alternate pulses to A and B

Stepper Motor

Outline

- Actuators
- Sensors
 - Phototransistor
 - Reflectance Sensor
 - IR Distance Sensor
 - Contact Switch
 - Other Sensors

Phototransistor

- Converts light to electrical current
- Vishay BPW77NA NPN Phototransistor
 - Dark current: 1 100 nA
 - Angle of half sensitivity: ±10°

Phototransistor Circuit

$$V_{out} = 5 - I_{photo} \times 330 \text{ k}\Omega$$

- In dark, $V_{out} \approx 5 \text{ V}$
- For $I_{photo} > 15 \mu A$, V_{out} drops to ~o

 Large resistor gives sensitivity to weak light

Reflectance Sensor

- Infrared LED and phototransistor pair
 - LED illuminates surface
 - Phototransistor receives reflected light
 - Daylight filter on sensor reduces interference
 - Sensitive to distance, color, reflectivity
- Fairchild QRD1114 Reflectance Sensor
 - ~20 mA LED current
 - 1.7 V LED ON voltage
 - 940 nm wavelength (near infrared)

fairchild.com

Reflectance Sensor Circuit

• $I_{LED} = (5-1.7 \text{ V}) / 220 \Omega = 15$ mA

$$V_{out} = 5 - I_{photo} × 10 kΩ$$

 Resistor was selected to give a good range of response

IR Distance Sensor

- Sharp GP2YoA21YKoF
- Range of 8 to 6o"
- Triangulates with linear CCD array
- Three terminals: 5V, GND, Signal

Ultrasonic Distance Sensor

- Measure flight time of ultrasonic pulse
 - Less sensitive to ambient light
 - More precise
 - More expensive

- 42 KHz ultrasonic beam
- Range of 254" with resolution of 1"
- 2.5 5.5 V operation
- Analog voltage output

maxbotix.com

Switches

- Switches are useful for proximity detection
- Three terminals

COM: Common

NO: Normally Open

NC: Normally Closed

- Mounting issues
 - Good supporting surface
 - Gang 2 or more with plate between

Navigation Sensors

- Track your position
 - Watch for operating voltage and analog/digital interface
 - Some of these sensors are expensive!
- Sparkfun
 - HMC6352 Digital Compass
 - MLX90609 Single Axis Gyroscope
 - ITG-3200 Triple Axis Gyroscope
 - ADXL322 Dual Axis Accelerometer
 - Inertial Measurement Units

Sensor Averaging

- Sensors are subject to noise
- Average multiple readings for more stable results

http://kedder.livejournal.com/13372.html

Mounting Sensors & Actuators

- Secure mounting is half the challenge
 - Poorly mounted sensors will fail at an inopportune time
 - Tangles of cables will catch on obstructions and pull loose
 - High center of gravity leads bots to topple in collisions
- Consider building a custom mount
 - Machine shop
 - 3D printer
- Use Breadboard to test electronics
 - Solder final electronics onto front of Mudduino for security

Adhesives

- Cynoacrylate (CA) Glue (aka Super Glue)
 - Fast drying, good for bonding plastic
 - Low shear strength
 - Don't bond your fingers wear gloves
- Hot Glue
- Electrical Tape
 - Insulator, low strength
- Gaffer's Tape
 - Like duct tape, but stronger and removes cleanly

Suppliers

- Engineering Stockroom
- Hobbyist
 - Pegasus Hobbies
 - 5515 Moreno St., Montclair, an easy bike ride from campus
 - Sparkfun
 - Pololu
 - Jameco
 - All Electronics, Futurlec, Inventables, Goldmine Electronics, ...
- Professional
 - DigiKey (very wide selection, fewer hobby parts, higher cost)

Summary

- On-Board Actuators:
 - Twin DC Motors + Gearbox
 - Servo Motor
- On-Board Sensors:
 - Phototransistor (A5)
 - Reflectance Sensor (A₄)
 - Distance Sensor (Ao)
- Some E11 stock of various sensors
- Boundless possibilities!

Announcements

- Bring your laptop, robot, and programming cable to the rest of the lab sessions this fall
- Pick your partner for Lab 6 & Final Project
 - Write partner names on sign-up sheet
 - Rank order all lab sections both you and your partner can make (leave blank those you cannot make)