“I gained the idea that engineering was like dancing, you don't learn it in a darkened lecture hall watching slides: you learn it by getting out on the dance floor and having your toes stepped on.”

Jack L. Alford
Emeritus Professor of Engineering
Founder of the HMC Clinic Program, 1963
The Harvey Mudd College Clinic Program At A Glance

What is the HMC Clinic Program?

HMC student teams completing important, real-world Engineering, Computer Science, Mathematics, Physics or multidisciplinary projects.

- Teams of three to five students devote an average of over 1,200 person hours to a project over the academic year.
- Sponsor liaisons provide active guidance and domain expertise.
- Faculty members serve as advisers.
- Work occurs on the HMC campus with sponsor-site visits as needed.

Since 1963, well over 300 organizations have participated, resulting in more than 1,200 completed projects. Clinics have been conducted for sponsors that span the country, including IBM (Austin, Texas), Intel Corporation (Hillsboro, Ore.), Medtronic, Inc. (Los Angeles, Calif.), Northrop Grumman Corporation (Los Angeles, Calif.), QUALCOMM (San Diego, Calif.), and Sandia National Laboratories (Albuquerque, N.M.).

What does the sponsor gain?

- Useful project results such as a hardware or software prototype, a device or program to be put into production, a mathematical analysis and research investigation, or a design proposal.
- Retention of all ownership rights of resulting outcomes—patents are common.
- Fresh insight by a highly talented team of students.
- High visibility on campus throughout the academic year, beneficial to recruiting efforts.

The high rate of sponsor return testifies to sponsor satisfaction and perceived value.

What is the sponsor’s involvement?

- Submission of Project Statement in the preceding spring.
- Appointment of liaison to guide team to desired results through weekly contact.
- Payment of Clinic fee in installments over the academic year.

To learn more, visit the Clinic Web site at www.clinic.hmc.edu or send e-mail to clinic@hmc.edu or call 909/607-7015.

Calendar (See timeline, page 7)

- **MARCH–JULY**
 Sponsors commit to the HMC Clinic Program by providing project statements.

- **SEPTEMBER**
 Student teams formed, project work commences.

- **OCTOBER**
 Students submit full proposal/work plan.

- **OCTOBER–DECEMBER**
 Tuesday morning project discussions. Sponsors are encouraged to attend.

- **DECEMBER**
 Midterm reports are prepared and sponsor-site presentations may occur.

- **JANUARY–APRIL**
 Tuesday morning presentations. Sponsors and visitors are encouraged to attend student presentations discussing the status of their Clinic work.

- **EARLY MAY—PROJECTS DAY**
 Sponsors, guests and the Harvey Mudd College community attend presentations to learn about project results.

- **MAY**
 Final results, prototypes and reports delivered. Sponsor-site presentations are common.
What is the Harvey Mudd College Clinic Program? The HMC Clinic is an internationally recognized program initiated at HMC in 1963. It brings student teams together with sponsoring industry, government and nonprofit organizations to solve real-world industry problems in an academic setting. Since its inception, over 300 organizations have participated in the HMC Clinic Program, resulting in more than 1,200 completed projects.

A Clinic project is an academic-year-long graded course in which a team of three to five advanced students work on a problem posed by the sponsor. A faculty advisor oversees the project, while a sponsor-designated liaison monitors the work effort, provides regular feedback, and serves as a source of domain expertise on the specific problem addressed. The students make a series of presentations and written progress reports in the course of the year, gaining experience with this important aspect of project work.

Clinic projects are technically difficult problems for which no prior guaranteed solution exists. Thus they utilize and help build the exceptional mix of design, research and computing skills of our students. At the same time, the group structure and industrial exposure provide the students with valuable real-world technical and managerial experience, an asset to them and their eventual employers.

What kind of projects are possible? The project must have a major component in engineering, mathematics, computer science, physics or environmental science. Multidisciplinary projects are possible as well. If you have a challenging problem, chances are pretty good it could form the basis of a Clinic project. To see the variety of past projects, visit the Clinic Web pages at www.hmc.edu/ProjectsDay.

What are the benefits to the sponsor? The principal benefits of project sponsorship come in the form of the project deliverables, which might be a design proposal, a research summary, a feasibility study, a proof of concept, a systems analysis, a prototype of a piece of hardware or software, or a device or program to be put into actual production or use. Every Clinic project culminates in a formal presentation at our year-end event called Projects Day, as well as a written final report.

Projects often result in patents, which are always assigned to the sponsor. Indeed, the sponsor retains ownership of all intellectual property developed in the project. While some team presentations are open to the public, reports are confidential to the
sponsor, and all other forms of publication are subject to the approval of the sponsor at least to the end of the first year after project completion.

Our sponsors regularly attest that project results have dollar values that far exceed the Clinic fee. Perceived sponsor value is further evidenced by the fact that over half of our sponsors have returned to sponsor additional projects.

Indirect benefits of sponsorship include increased visibility on campus, which benefits recruiting efforts. External visibility can also be raised: recent projects have been mentioned in numerous media outlets including trade journals, company newsletters and major newspapers.

Past sponsors have also mentioned additional benefits of participation such as: access to fresh ideas; management training for the liaison and potential employees among the students; and an expanded talent resource.

How does an HMC Clinic project get started? The Clinic directors begin confirming projects for the following academic year in early spring. Throughout the spring and summer, sponsors submit a short project statement to the Clinic director of the appropriate department. The statement can be posed in just one or a few short paragraphs, but should be specific enough that the director can evaluate its educational merit and feasibility in terms of time, available skills and budget. If accepted, the project statement will be further developed late in the summer for presentation to the students. Clinic project slots are limited, so it is best to submit the project statement by early June for full consideration.

What are the sponsor's obligations? The sponsor appoints a project liaison to serve as a source of expertise and to help provide guidance for the project team. While the liaison may spend as little as one hour per week communicating with the team, the liaison is the sponsor's link to the project. Success will depend, in large part, on the quality of interaction between the liaison and the rest of the team.

In addition to appointing a project liaison, the sponsoring organization also pays a fee to support the program. Payments are typically made in three equal installments at intervals during the project year.
Recent project examples. Students in the Engineering Clinic work on projects that encompass all engineering disciplines. Most projects are multidisciplinary by nature. Recent projects have included a Federal Aviation Administration (FAA) sponsored retrofit of the incandescent landing lights with LED equivalents that will increase visibility, reduce maintenance costs and lower energy costs by up to 80 percent. One team, working with Oregon Medical Laser Center, developed a device to deploy chitosan bandages to stop internal bleeding in patients. The Boston-based medical consortium CIMIT and The BioSTAR Group asked a Clinic team to develop a portable filtration system that will permit a combat medic to purify a combat soldier’s canteen water to injection grade. The Aerospace Corporation asked a team to develop a circuit board with an imager and GPS system that will fly on a picosatellite mission. For more than 10 years, Clinic teams have successfully completed a wide range of projects for the Metropolitan Water District (MWD) and Irvine Ranch Water District (IRWD). A team sponsored by Honeywell tested and developed new approaches to remove airborne water from airplane filtration systems. The solutions developed by the team are in further development at Honeywell and will find their way into future generations of aircraft.

Computer Science Clinic teams have engaged in a wide variety of projects, ranging from pure research to product development. There has been extensive work in computer security, ranging from first implementations of new protocols to work on using the human immune system as a model for intrusion detection and prevention. Artificial intelligence projects have included natural language understanding for Web chat boards, automating the translation of spoken speech into phonemes, recognition of forms by scanning devices, recognition of sung melodies, and classifying anomalies in satellite data. Wireless hand-held applications include a pilot’s assistant for displaying weather data, a data collection system for insulin pumps, and GPS cell phone applications. Computer graphics applications include automated means for making animations appear more natural and a commercial-length public service announcement for prevention of road rage. Algorithmic work has included scheduling for time-varying networks, parallelization of the Smith-Waterman DNA-matching algorithm, and genetic programming for generating decision trees.

Since the time of Newton and Leibniz, mathematics has remained at the core of science and technology, so that today mathematics and computer algorithms based on mathematics are applied to practically every area of human exploration and endeavor. As a result, the Mathematics Clinic in recent years has conducted research to improve algorithms for satellite-based geo-location systems, model singular solitons (peakons) in shallow water waves, improve Web search algorithms, optimize dynamic online surveys, assess consumer preferences to aid online purchase decisions, analyze and implement an elliptic-curve cryptography scheme, optimize control of low-thrust ion propulsion for satellite orbit raising, and analyze communication graphs to detect cohorts or suspicious investors involved in fraud. The areas in which mathematical modeling can yield beneficial results for science and industry, and where the Mathematics Clinic can serve a useful role, are unlimited.
In the past few years, the Engineering and Physics Clinics have jointly designed, built and tested for the Jet Propulsion Laboratory (JPL) the infrared interferometer that combines the light from the world’s two largest telescopes at the Keck Observatory on Mauna Kea, Hawaii. Another joint engineering-physics team modified a commercial laryngoscope to accommodate the sample arm of an optical coherence tomography instrument for the purpose of non-invasive imaging and early detection of laryngeal cancer. The work was sponsored by the Beckman Laser Institute and Medical Clinic on the campus of UC Irvine, and the instrument is now involved in clinical tests at the UC Irvine Medical Center. The synergy of the engineering and physics perspectives has proved to be remarkably effective, both in terms of project results and pedagogical value.

In a more recent JPL Clinic project, a Physics Clinic team measured the separation of two telescope corner cubes to within an atom’s diameter for the Space Interferometry Mission. The Physics Clinic also worked on beam stabilization for the proton beam cancer treatment facility at Loma Linda University Medical Center. In a current two-year project, Sandia National Laboratories has asked a physics team to measure the optical properties of organically coated soot particles to determine their impact on regional air quality and long-term effect on global climate. It is often the case that Physics Clinic projects have a strong research component.

“Without the Clinic, we would not be able to send our students to Harvey Mudd College every year. They not only learn English but also participate in the Clinic. The utmost benefit for them is to get to know people of a different culture in a different country, and to some extent it is a culture shock to them which remains in their mind for the rest of their lives. After coming back to Japan, these students work harder and their job-finding rate is much higher. We have one exchange student coming from HMC every year who joins our industry-academia cooperative program similar to the Clinic, working together with our students. We would like to extend this relationship to a global scale in the near future through the Clinic Program.”

Okisugu Furuya, Professor, Ph.D.
Director, Engineering Clinic Program Center of Kogakuin University
Department of Basic Engineering in Global Environment
Faculty of Engineering
Kogakuin University, Japan

“Personally, I keep coming back because I enjoy working with the students on these projects. It is a real challenge to come up with a good project and then to see that this project gets supported throughout the school year. Projects Day is also an enjoyable day for me—a lot of interaction with the student body, and many interesting ideas to hear. From a DIRECTV perspective, the Clinic Program has primarily provided instant name recognition on campus, and through this we have had good success in recruiting. We have no trouble filling our interview schedules with good students. We have also been able to build good relations with the faculty, and this has led to valuable recommendations on students that we might pursue. Recruiting was a primary goal when we started our first Clinic project. Secondly, we really do get valuable work from the projects. For example, our first Clinic project is still in daily use here at DIRECTV monitoring the strength of our satellite transmissions. Our third Clinic project is about to become a test equipment product available on the open market, and the fourth Clinic project will likely be combined with the third in this same piece of test equipment. These are projects that we do not have adequate internal resources to complete, are important to our business, and fit well within the Clinic Program.”

Paul Anderson
Former Manager, Systems Engineering
DIRECTV
The importance of the liaison. The liaison advises and evaluates the ongoing work of the Clinic team from the perspective of the sponsor. The liaison is a crucial member of the team, contributing to the project in three ways:

- Helping to formulate the official work statement;
- Maintaining communication between the project team and the sponsor;
- Providing guidance for the project from the sponsor’s perspective.

The HMC Clinic’s origins. The idea for the HMC Clinic Program originated in 1963 in the Department of Engineering to channel HMC student initiative, drive and intelligence into projects of a real-world nature. Founders Jack Alford and Mack Gilkeson felt that the best way to do this was to give students “clinical” experience like that which medical students receive as part of their training—thus, the name Clinic.

The Harvey Mudd College Engineering Clinic was born with initial funding from the Ford, U.S. Steel, and Sloan foundations. The Mathematics Clinic began in 1973 with funding from a National Science Foundation grant. The Computer Science Clinic began in 1993, the Physics Clinic in 1996 and the Environmental Studies Clinic in 2000.

Harvey Mudd College. Since its founding in 1955, Harvey Mudd College has been dedicated to educating a special breed of scientists, mathematicians and engineers with exceptional breadth in their technical education and a firm academic grounding in the humanities and social sciences. A student’s coursework is divided roughly in thirds, covering the humanities and social sciences, the Common Core (in biology, chemistry, computer science, engineering, mathematics and physics) and the student’s major.

Harvey Mudd College has earned national recognition for its accomplishments, and its faculty and students rank among the nation’s best. HMC has consistently been rated as one of the most selective colleges in the nation and traditionally recruits one of the highest percentages of National Merit Scholars of any school in the country. A low student-faculty ratio (9:1) enhances close interaction between students and the faculty, all of whom hold a Ph.D. degree or a terminal degree in their field and many of whom have industrial experience.

Located in Southern California, Harvey Mudd College is a member of The Claremont Colleges, a group of five distinctive undergraduate colleges and two graduate institutions.

“The HNC Software-sponsored Mathematics Clinic at Harvey Mudd College was a great success. Working with some of the most talented students and outstanding faculty, we were able to successfully address complex real-world problems. The Harvey Mudd College team allowed us to undertake projects that would have otherwise required more resources on our part.”

Dr. Ayman Farahat
Senior Staff Scientist
Advanced Technology Solutions
HNC Software

“Clinic really changed my life. I’ve learned so much about what I wanted to do in school and where I want to go afterwards. It wasn’t until I got to Clinic that I was able to see… the different directions in which I could go. All those opportunities just opened up to me.”

Adrian Urias ’99/00
“We appreciate the hard work and enthusiasm that the students and faculty brought to the Clinic project. It’s invigorating to work with people who are undaunted by experimental obstacles and tackle these problems with energy that leads to innovative solutions. We’re looking forward to continuing this project next year.”

Andrew McIlroy ’85 and Hope Michelsen
Sandia National Laboratories
Past and Current Harvey Mudd College Clinic Sponsors

3Com Corporation
Accel Technologies, Inc.
Adolph Coors Company
Aerojet General
Aerospace Corporation, The
AeroVironment, Inc.
Agilent Technologies
Alcoa Foundation
Alejo Engineering Inc.
AliedSignal
American Honda Motor Company Inc.
American Pharmaceutical-Airlife
Ameritone Paint Corp.
Amgen Inc.
Amper Corporation
ANADEX, Inc.
Anco Engineers
Anheuser-Busch Companies, Inc.
Applied Biosystems
Archive Corporation
Atlantic Richfield Company (ARCO)
Areté Associates
Aronaut Insurance Company
Aptecio International, Inc.
Associated Consultants
ASTECH Manufacturing, Inc.
Andtru.de
Automobile Club of Southern California
AXT LED Technologies
Bank of America
Bates Program
Baxter Healthcare Corp.
Bechtel Corporation
Beckman Coulter, Inc.
Becton, Dickinson and Company
Bell & Howell
BHk, Inc.
BioAxyst, LLC
Biosonics, Inc.
BioSTAR Group, The
BJ Hughes (Byron Jackson)
Boeing Company, The
Bourns, Inc.
Buckle-Down
Bunker Ramo
California Center of Environment
California Computer Products
California State Architect's Office
California Tomorrow
Capital Group Companies, The
Center for Integration of Medicine and
Innovative Technology (CIMIT)
Chicago Tracing Company, LLC
Child Health and Immunization Network
Chevron Corporation
Chiron Corporation
Citadel Investment Group, LLC
City of Anaheim
City of Chino
City of Claremont
City of San Bernardino
Claremont University Consortium
Clorox Company Technical Center, The
COBE
Control Data
CPI Corporation
Cryptek, Inc.
CustomSite.com, The
Cyprus Mines Corporation
Cyprus Research
Danbury School
Data Devices International
Dataproducts Corporation
Defense Advanced Research Projects
Agency (DARPA)
Developmental Sciences
DIRECTV, Inc.
Douglas Aircraft Company
Dow Chemical Company, The
Dynafusam, Inc.
Eastman Kodak Company
Easton Sports, Inc.
Eaton Corporation
Edison International
Edwards Air Force Base
Elaine & Richard Wilson Foundation
Eldec Corporation
Electronic Memories & Magnetics Corporation
Electro Yak, LLC
Electus Technology
Endeco
Environmental Systems
Research Institute, Inc.
ESL, Inc.
Evans & Sutherland
Everett/Charles
Fair Isaac Corporation
Federal Aviation Administration (FAA)
Fluidmaster, Inc.
Fluor Corporation
FMC Corporation
Ford Aerospace
Four-Phase Systems
Fox Interactive Media, Inc.
Gaiser Tool & Engineering
Garrett Automotive
Gary Jensen, Inc.
General Atomic Company
General Dynamics Corporation
GE Nuclear Energy
General Electric Company
General Motors Corporation
General Motors Dynex Co.
Genius.com Inc.
Gilead Sciences, Inc.
Golder Federal Services
Google Inc.
Gould Defense Systems, Inc.
Green Media Toolshed, The
Grebecker Associates
GTE Corporation
Harvey Mudd College
Heat Transfer Research
Hewlett-Packard Company
Hewlett-Packard Laboratories
HIAC-Pacific Scientific
HNC Software Inc.
Hoffman Electronics
Honeywell International Inc.
HSC Software
HRL Laboratories
Hughes Aircraft
Hughes Space & Communications Company
Hughes Simulations Systems
Hydrid Company
Hydrosir
IBM
Idealab
InLight Solutions
Intel Corporation
Intraqo, Inc.
Intuit Inc.
Iolab
I/O Software, Inc.
Irvine Ranch Water District (IRWD)
Isolent, Inc.
Ixis Pharmaceuticals
ITT Industries, Inc.
IVAC Corporation
Jacobs Engineering Group, Inc.
Jet Propulsion Lab
John Crane Belfab
Kaiser Steel
Kobe, Inc.
Kodak Image Products, Inc.
Lanterman Development Center
Laserfiche, Inc.
Lawrence Livermore National Laboratory
Leach Corporation
 Lear Siegler, Inc.
Leeds, Hill, & Jewett
Legan Systems, Inc.
LinkedIn Corporation
Liquid Carbonic Industries
Lockheed Martin Corporation
Loma Linda University Medical Center
Loral Corp.
Los Alamos National Laboratory
Los Angeles County Superior Court
M/A-Com Linkabit
Magna Instruments Corp.
Magnify 560
Maglandian Studio
Marine Biological Laboratory
Max Planck Institute for Astronomy
Max-Viz, Inc.
McDonnell Douglas
Medtronic MinMed Inc.
Megatek Corporation
Metropolitan Transportation Authority
Metropolitan Water District of Southern California
Meyers
Microsoft Corporation
Montovia Nursery
Motorola, Inc.
N2H2, Inc.
Nalco Chemical Company
NASA Ames Research Center
National Optical Astronomy Observatories
National Renewable Energy Laboratory
National Semiconductor
Naval Ocean Systems Center
Navy Engineering Lab
NC4
NeonGecko.com, Inc.
Nike, Inc.
Northrop Grumman Corporation
Nuera Communications, Inc.
Occidental Research Corporation
Octel Communications Corporation
Operation Second Chance
Octo 22
Oprius Technology, Inc.
Orbital Sciences Corporation
Oregon Biomedical Engineering Institute
Oregon Medical Laser Center
Orthodyne Electronics
Overture Services, Inc.
Owen Racing Shells
Pacific Bell
Pacific Northwest National Laboratory
Pacific Scientific Company
Paracel, Inc.
PCSI
Pilgrim Place
Pitzer College
The Platform for Media, Inc.
Pomona Valley Center for Community
Development
Pomona Valley Hospital Medical Center
Pomona Valley Municipal Water District
Portland Cement Company
Procter & Gamble Company, The
PVP Advanced EO Systems, Inc.
Pyxis Corporation
QUALCOMM
Rain Bird Corporation
Ralph M. Parsons Company
Rancho Los Amigos Hospital
RAND Corporation
Raychem Corporation
Raytheon Company
RealNetworks, Inc.
Robert Exter
Rockderne
Rockwell Collins/Passenger Systems
Rockwell International Corporation
Roscoe Moss Mfg. Co.
Royal Industries
SAEDCOM
Science Applications International Corporation
Sandia National Laboratories
Santa Barbara Aviation
Santa Fe International Corporation
Sargent Fletcher, Inc.
Schlosser Forge Co.
Schwien Engineering
Sierra Wireless America, Inc.
Skalos, Inc.
SMC
Smith Tool
SnapTrack, Inc.
Soft-Cat International, Inc.
Southern California Gas Company
Southern California Edison Company
Southwestern Regional Labs
Southwest Research Institute
Space Systems/Loral
Spragg & Associates
Sprocket Digital
SRI International
Storm Integration, Inc.
Sun Microsystems, Inc.
Sweco, Inc.
System Development Corporation
Sytron Donnet
Teledyne
Terasdyne, Inc.
Texas Instruments
Texas Instruments Incorporated
Thermador/Waste King/LA
Three Valleys Municipal Water District
Trex Enterprises Corporation
TRW, Inc.
Ultra-Violet Products, Inc.
Uncle Spunky's Bar-B-Q Sauce
Unisys
United Devices
University of California, Irvine
University of California, Riverside
UNOCAL
U.S. Army Medical Research and
Material Command
U.S. Fire Lab I
U.S. Forestry Service Fire Lab II
UVP, Inc.
VaporTech Corporation
ViaSat, Inc.
Vortox Manufacturing Co.
VTEK
Walt Disney Imagining
Walt Disney Feature Animation
Waltec Reed Arm Institute of Research
Web TV Networks, Inc.
Western LNG Terminal Assoc.
Westinghouse
WODC: Fluor Drilling Services
WolfeTech Corporation
WorldPort Internet, Inc.
WorldQuant, LLC
Xerox
Yahoo!