Comparing Density Functional Theory with Experimental Results of

Claisen Rearrangements

Gabriel S. Phun, William G. Daub, Robert J. Cave Department of Chemistry, Harvey Mudd College

General Information About Claisen Rearrangements

- The reaction is a pericyclic reaction.
- 398 K is the temperature at which the experiment was conducted.
- Very versatile and powerful reaction for synthesis.

Curtin-Hammett Principle

Case 1 **B3LYP B3LYP** Experiment Isomer **GD3BJ** 56% 60% Syn 53.5% 41% 39% 44.8% Anti Distal 3% 0% 1.7%

n-Propyl Substituent Results

ОН H ₃ +			OH H ₃	CO ₂ CH ₃		
	Case 1	5	Case 16			
lsomer	B3LYP	Experiment	Isomer	B3LYP	Experiment	
Syn	28%	000/	Syn	32%	40.47%	
Anti	67%	02 /0	Anti	60%	30.53%	
Distal	5%	18%	Distal	8%	29%	
OH H ₃ CO +	OCH3 CO2CH3	CO₂CH ₃	OH	H ₃ CO OCH ₃ +	nPropyl	
Ň	Case 17			Case 18		
lsomer	B3LYP	Experiment	Isomer	B3LYP	Experiment	
Syn	39%	80%	Syn	38%	58%	
Anti	56%	0070	Anti	57%	5070	
Distal	5%	20%	Distal	5%	42%	
nPropyl OH	+ CO ₂ CH ₃		OH	H ₃ CO OCH ₃	nPropyl CO ₂ C H ₃	
	Case 19			Case 2	20	
Isomer	B3LYP	Experiment	Isomer	B3LYP	Experiment	
Syn	55%	52%	Syn	60%	62%	
Anti	42%	00 /0	Anti	36%		
Distal	3%	42%	Distal	5%	38%	

 $\mathsf{C} \leftarrow \mathsf{A} \leftrightarrows \mathsf{B} \rightarrow \mathsf{D}$

(dl)

(dl)

	Case 3			
somer	B3LYP	B3LYP GD3BJ	Experiment	Isomer
roximal	100%	100%	69%	Syn
Distal	0%	0%	31%	Anti
				Distal
OH	+ H ₃ CO OCI	H ₃ iPropyl	iPropyl	OH
lsomer	B3LYP	B3LYP GD3BJ	Experiment	Isomer
Syn	13%	23%	36.85%	Syn
Anti	12%	45%	30.15%	Anti
Distal	75%	32%	33%	Distal
OH	+ H ₃ CO OCH	ase 9		OH
somer	B3LYP	B3LYP GD3BJ	Experiment	Isomer
Syn	40%	43%		Syn
Anti	56%	57%	86%	Anti
	40/	10/	4 4 0 /	N! _1_

	Case 4		
somer	B3LYP	B3LYP GD3BJ	Experiment
Syn	50%	52%	51%
Anti	47%	48%	42%
Distal	3%	1%	7%
ОН	+ H ₃ CO OCH ₃ +	utvl	tButyl
	С	ase 6	
somer	B3LYP	B3LYP GD3BJ	Experiment
Syn	0%	5%	00/
Anti	0%	2%	0 70
Distal	100% H ₃ CO	93%	100%
	+		iPropyl
	iPropyl Case 10		
somer	B3LYP	B3LYP GD3BJ	Experiment
Syn	51%	44%	48%
Anti	47%	56%	48%
Distal	2%	0%	4%

Results Summary

 Remarkably good agreement between theory and experiment in many of the phenyl substituent results.

- B3LYP did not agree with experiment for cases 3 & 5.
- Not as good agreement between theory and experiment in the n-propyl substituent results.

Computational Details

• All stationary points were verified by calculating second derivatives at the stationary points. In particular, all transition states had exactly one imaginary frequency. Transition states were connected to particular reactants and products via Intrinsic Reaction Coordinate calculations.

Future Work

- Use another method, RPA, on the phenyl substituent cases.
- Further explore the cases that did not agree well.

Acknowledgements

Professor Daub Professor Cave Dr. Park Kareesa Kron HMC Chemistry Department

