150

Basic-

NMR-

Experiments

MMO January 2000 Version 2.0

CONTENTS

8

INTRODUCTION

CHAPTER 2 - DETERMINATION OF THE PULSE-DURATION	9
SUMMARY	9
Experiment 2.1 - Determination of the 90° 1H Transmitter Pulse Duration	9
Experiment 2.2 - Determination of the 90° ¹³ C Transmitter Pulse Duration	10
Experiment 2.3 - Determination of the 90° ¹ H Decoupler Pulse Duration	10
Experiment 2.4 - The 90° ¹ H Pulse with Inverse Spectrometer Configuration	11
Experiment 2.5 - The 90° ¹³ C Decoupler Pulse with Inverse Configuration	11
Experiment 2.6 - Composite Pulses	12
Experiment 2.7 - Radiation Damping	13
Experiment 2.8 - Pulse and Receiver Phases	13
Experiment 2.9 - Determination of Radiofrequency Power	14
CHAPTER 3 - ROUTINE NMR SPECTROSCOPY AND STANDARD TESTS	15
SUMMARY	15
Experiment 3.1 - The Standard ¹ H NMR Experiment	15
Experiment 3.2 - The Standard ¹³ C NMR Experiment	16
Experiment 3.3 - The Application of Window Functions	16
Experiment 3.4 - Computer-aided Spectral Analysis	17
Experiment 3.5 - Line-Shape Test for ¹ H NMR Spectroscopy	17
Experiment 3.6 - Resolution Test for ¹ H NMR Spectroscopy	18
Experiment 3.7 - Sensitivity Test for ¹ H NMR Spectroscopy	18
Experiment 3.8 - Line-Shape Test for ¹³ C NMR Spectroscopy	19
Experiment 3.9 - ASTM Sensitivity Test for ¹³ C NMR Spectroscopy	20
Experiment 3.10 - Sensitivity Test for ¹³ C NMR Spectroscopy	20
Experiment 3.11 - Quadrature Image Test	21
Experiment 3.12 - Dynamic Range Test for Signal Amplitudes	21
Experiment 3.13 – 13° Phase Stability Test	22
CHAPTER 4 - DECOUPLING TECHNIQUES	23
SUMMARY	23
Experiment 4.1 - Decoupler Calibration for Homonuclear Decoupling	23
Experiment 4.2 - Decoupler Calibration for Heteronuclear Decoupling	24

Experiment 4.3 - Low Power Calibration for Heteronuclear Decoupling	25
Experiment 4.4 - Homonuclear Decoupling	25
Experiment 4.5 - Homonuclear Decoupling at Two Frequencies	26
Experiment 4.6 - The Homonuclear SPT Experiment	26
Experiment 4.7 - The Heteronuclear SPT Experiment	27
Experiment 4.8 - 1D Nuclear Overhauser Difference Spectroscopy	27
Experiment 4.9 - 1D NOE Spectroscopy with Multiple Selective Irradiation	28
Experiment 4.10 - ¹ H Off-Resonance Decoupled ¹³ C NMR Spectra	29
Experiment 4.11 - The Gated ¹ H-Decoupling Technique	29
Experiment 4.12 - The Inverse Gated ¹ H-Decoupling Technique	30
Experiment 4.13 - ¹ H Single Frequency Decoupling of ¹³ C NMR Spectra	30
Experiment 4.14 - ¹ H Low Power Decoupling of ¹³ C NMR Spectra	31
Experiment 4.15 - Measurement of the Heteronuclear Overhauser Effect	32

CHAPTER 5 - DYNAMIC NMR SPECTROSCOPY

SUMMARY33Experiment 5.1 - Low Temperature Calibration with Methanol33Experiment 5.2 - High Temperature Calibration with 1,2-Ethandiol33Experiment 5.3 - Dynamic ¹H NMR Spectroscopy on Dimethylformamid34Experiment 5.4 - The Saturation Transfer Experiment34Experiment 5.5 - Measurement of the Rotating Frame Relaxation Time T_{1p}35

33

36

CHAPTER 6 - 1D MULTIPULSE SEQUENCES

SUMMARY 36 Experiment 6.1 - Measurement of the Spin-Lattice Relaxation Time T₁ 36 Experiment 6.2 - Measurement of the Spin-Spin Relaxation Time T, 37 Experiment 6.3 - ¹³C NMR Spectra with SEFT 38 Experiment 6.4 - ¹³C NMR Spectra with APT 38 Experiment 6.5 - The Basic INEPT Technique 39 Experiment 6.6 - INEPT+ 40 Experiment 6.7 - Refocused INEPT 40 Experiment 6.8 - Reverse INEPT 41 Experiment 6.9 - DEPT-135 42 **Experiment 6.10** - Editing ¹³C NMR Spectra with DEPT 42 Experiment 6.11 - Multiplicity Determination with PENDANT 43 Experiment 6.12 - 1D-INADEQUATE 44 Experiment 6.13 - The BIRD Filter 45 Experiment 6.14 - TANGO 45

Experiment 6.15 - The Heteronuclear Double Quantum Filter	46
Experiment 6.16 - Purging with a Spin-Lock Pulse	46
Experiment 6.17 - Water Suppression by Presaturation	47
Experiment 6.18 - Water Suppression by the Jump and Return Method	48
CHAPTER 7 - NMR SPECTROSCOPY WITH SELECTIVE PULSES	49
SUMMARY	49
Experiment 7.1 - Determination of a Shaped 90° ¹ H Transmitter Pulse	49
Experiment 7.2 - Determination of a Shaped 90° ¹ H Decoupler Pulse	50
Experiment 7.3 - Determination of a Shaped 90° ¹³ C Decoupler Pulse	50
Experiment 7.4 - Selective Excitation with DANTE	51
Experiment 7.5 - SELCOSY	52
Experiment 7.6 - SELINCOR: Selective Inverse H,C Correlation via ¹ J (C,H)	52
Experiment 7.7 - SELINQUATE	53
Experiment 7.8 - Selective TOCSY	54
Experiment 7.9 - INAPT	55

CHAPTER 8 - AUXILIARY REAGENTS, QUANTITATIVE DETERMINATIONS AND REACTION MECHANISM 59

56

57

57

Experiment 7.10 - Determination of Long-Range C,H Coupling Constants

Experiment 7.11 - SELRESOLV

Experiment 7.12 - SERF

SUMMARY 59 **Experiment 8.1** - Signal Separation Using a Lanthanide Shift Reagent 59 Experiment 8.2 - Signal Separation of Enantiomers Using a Chiral Shift Reagent 60 Experiment 8.3 - Signal Separation of Enantiomers Using a Chiral Solvating Agent 60 Experiment 8.4 - Determination of Enantiomeric Purity with Pirkle's Reagent 61 Experiment 8.5 - Determination of Enantiomeric Purity by ³¹P NMR 61 **Experiment 8.6** - Determination of Absolute Configuration by the Advanced Mosher Method 62 **Experiment 8.7** - Aromatic Solvent-Induced Shift (ASIS) 62 Experiment 8.8 - NMR Spectroscopy of OH-Protons and H/D Exchange 63 Experiment 8.9 - Isotope Effects on Chemical Shielding 64 **Experiment 8.10** - pK_a Determination with ¹³C NMR 64 **Experiment 8.11** - The Relaxation Reagent Cr(acac)₂ 65 Experiment 8.12 - Determination of Paramagnetic Susceptibility by NMR 65 **Experiment 8.13** - ¹H and ¹³C NMR of Paramagnetic Compounds 66 Experiment 8.14 - The CIDNP Effect 67 Experiment 8.15 - Quantitative ¹H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka 67

Experiment 8.16 - Quantitative ¹³ C NMR Spectroscopy with Inverse Gated ¹ H-Decoupling	68
Experiment 8.17 - NMR Using Liquid-Crystal Solvents	68
CHAPTER 9 - HETERONUCLEAR NMR SPECROSCOPY	70
SUMMARY	70
Experiment 9.1 - ¹ H-Decoupled ¹⁵ N NMR Spectra with DEPT	70
Experiment 9.2 - ¹ H-Coupled ¹⁵ N NMR Spectra with DEPT	71
Experiment 9.3 - ¹⁹ F NMR Spectroscopy	71
Experiment 9.4 - ²⁹ Si NMR Spectroscopy with DEPT	72
Experiment 9.5 - ²⁹ Si NMR Spectroscopy with Spin-Lock Polarization	73
Experiment 9.6 - ¹¹⁹ Sn NMR Spectroscopy	73
Experiment 9.7 - ² H NMR Spectroscopy	74
Experiment 9.8 - ¹¹ B NMR Spectroscopy	74
Experiment 9.9 - ¹⁷ O NMR Spectroscopy with RIDE	75
Experiment 9.10 - 47/49 Ti NMR Spectroscopy with ARING	76
CHAPTER 10 - THE SECOND DIMENSION	77
SUMMARY	77
Experiment 10.1 - 2D J-Resolved ¹ H NMR Spectroscopy	77
Experiment 10.2 - 2D J-Resolved ¹³ C NMR Spectroscopy	78
Experiment 10.3 - The Basic H,H-COSY-Experiment	79
Experiment 10.4 - Long-Range COSY	79
Experiment 10.5 - Phase-Sensitive COSY	80
Experiment 10.6 - Phase-Sensitive COSY-45	81
Experiment 10.7 - E.COSY	82
Experiment 10.8 - Double Quantum Filtered COSY with Presaturation	82
Experiment 10.9 - Fully Coupled C,H Correlation (FUCOUP)	83
Experiment 10.10 - C,H Correlation by Polarization Transfer (HETCOR)	84
Experiment 10.11 - Long-Range C,H Correlation by Polarization Transfer	85
Experiment 10.12 - C,H Correlation via Long-Range Couplings (COLOC)	86
Experiment 10.13 - The Basic HMQC Experiment	86
Experiment 10.14 - Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling	87
Experiment 10.15 - Poor Man's Gradient HMQC	88
Experiment 10.16 - Phase-Sensitive HMBC with BIRD Filter	89
Experiment 10.17 - The Basic HSQC Experiment	90
Experiment 10.18 - The HOHAHA or TOCSY Experiment	91
Experiment 10.19 - The NOESY Experiment	92
Experiment 10.20 - The CAMELSPIN or ROESY Experiment	93

Experiment 10.21 - The HOESY Experiment	94
Experiment 10.22 - 2D-INADEQUATE	94
Experiment 10.23 - The EXSY Experiment	95
Experiment 10.24 - X, Y Correlation	96
CHAPTER 11 - NMR SPECTROSCOPY WITH PULSED FIELD GRADIENTS	98
SUMMARY	98
Experiment 11.1 - Calibration of Pulsed Field Gradients	98
Experiment 11.2 - Gradient Preemphasis	99
Experiment 11.3 - Gradient Amplifier Test	99
Experiment 11.4 - Determination of Pulsed Field Gradient Ring-Down Delays	100
Experiment 11.5 - The Pulsed Gradient Spin-Echo Experiment	100
Experiment 11.6 - Excitation Pattern of Selective Pulses	101
Experiment 11.7 - The Gradient zz-Filter	102
Experiment 11.8 - gs-SELCOSY	102
Experiment 11.9 - gs-SELTOCSY	103
Experiment 11.10 - DPFGSE-NOE	104
Experiment 11.11 - gs-SELINCOR	105
Experiment 11.12 - GRECCO	106
Experiment 11.13 - WATERGATE	106
Experiment 11.14 - Water Suppression by Excitation Sculpting	107
CHAPTER 12 - 2D NMR SPECTROSCOPY WITH FIELD GRADIENTS	108
SUMMARY	108
Experiment 12.1 - gs-COSY	108
Experiment 12.2 - Phase-Sensitive gs-DQF-COSY	109
Experiment 12.3 - gs-HMQC	110
Experiment 12.4 - gs-HMBC	110
Experiment 12.5 - ACCORD-HMBC	111
Experiment 12.6 - Phase-Sensitive gs-HSQC with Sensitivity Enhancement	112
Experiment 12.7 - gs-TOCSY	113
Experiment 12.8 - gs-HMQC-TOCSY	114
Experiment 12.9 - 2Q-HMBC	115
Experiment 12.10 - Gradient-Selected ¹ H-Detected 2D INEPT-INADEQUATE	116
Experiment 12.11 - gs-NOESY	117
Experiment 12.12 - gs-HSQC-NOESY	118
Experiment 12.13 - gs-HOESY	119
Experiment 12.14 - ¹ H, ¹⁵ N Correlation with gs-HMQC	119

CHAPTER 13 - THE THIRD DIMENSION	121
SUMMARY	121
Experiment 13.1 - 3D HMQC-COSY	121
Experiment 13.2 - 3D gs-HSQC-TOCSY	122
Experiment 13.3 - 3D H,C,P-Correlation	122
Experiment 13.4 - 3D HMBC	123
CHAPTER 14 - SOLID-STATE NMR SPECTROSCOPY	124
SUMMARY	124
Experiment 14.1 - Shimming Solid-State Probe-Heads	12/
	127
Experiment 14.2 – Adjusting the Magic Angle	124
Experiment 14.2 – Adjusting the Magic Angle Experiment 14.3 - Hartmann-Hahn Matching	125 126
Experiment 14.2 – Adjusting the Magic Angle Experiment 14.3 - Hartmann-Hahn Matching Experiment 14.4 – The Basic CP/MAS Experiment	124 125 126 127
Experiment 14.2 – Adjusting the Magic Angle Experiment 14.3 - Hartmann-Hahn Matching Experiment 14.4 – The Basic CP/MAS Experiment Experiment 14.5 - TOSS	125 125 126 127 127
Experiment 14.2 – Adjusting the Magic Angle Experiment 14.3 - Hartmann-Hahn Matching Experiment 14.4 – The Basic CP/MAS Experiment Experiment 14.5 - TOSS Experiment 14.6 - SELTICS	125 125 126 127 127 128

Introduction

Here you will find some information about the Bruker pulse programs and parameters, which are needed to repeat the experiments shown in the book: "150 and More Basic NMR Experiments" written by S. Braun, H.-O. Kalinowski, S. Berger, VCH Weinheim, Germany.

First you will find the experiment number, followed by the Bruker pulse program, the settings of the different channels and a list of the acquisition and processing parameters.

The number of the chapters are identically with the number of the chapters in the book.

The book contains a lot of very interesting experiments. If you want to repeat such experiments with a BRUKER Avance instrument you need the pulse program and the parameters belonging to the pulse program. The needed parameters are sometimes different or more then mentioned in the book. BRUKER has its own nomenclature for the parameters, which is different from the book. For example the 90° transmitter pulse is always P1, D2 is a delay depending on the coupling constant (1/2 J) and so on.

It is possible that the needed pulse program isn't yet in your library, in that case send me an e-mail: Monika.Moertter@bruker.de.

Chapter 2

- Determination of the Pulse-Duration

Summary

Experiment	Pulse program	Description
2.1	zg0	Determination of the 90° ¹ H Transmitter Pulse-Duration
2.2	zg0dc	Determination of the 90° ¹³ C Transmitter Pulse-Duration
2.3	decp90	Determination of the 90° ¹ H Decoupler Pulse-Duration
2.4	zg0	The 90° ¹ H Pulse with Inverse Spectrometer Configuration
2.5	decp90	The 90° ¹³ C Decoupler Pulse with Inverse Configuration
2.6	exp2_6a.mo and exp2_6b.mo	Composite Pulses
2.7	zg0	Radiation Damping
2.8	zg	Pulse and Receiver Phases
2.9	zg	Determination of Radiofrequency Power

Experiment 2.1

- Determination of the 90° 1H Transmitter Pulse Duration

pulse program:	zg0 1D-sequence, us spectrum.	sing p0 fo	r any flip angle	. Result is a routine proton NMR
Setting of the need	led channels:	F1: F2:	¹ H off	

Acquisition parameters

- **PL1** : F1 channel high power level for ¹H transmitter pulse, here 3dB was used
- **D1**: 30 sec relaxation delay
- **SW**: 500 Hz
- **NS**: 1

Processing parameters

SI :2 K WDW :EM FT :fourier transformation

baseline correction :ABS

- **P0** : F1 channel ¹H transmitter pulse, to be varied, 1 usec as initial value and increase by 2 usec
- **TD**: 4 K
- **O1**: on resonance of CHCl₃ signal
- RG : receiver gain for correct ADC input

BC_mod :quad LB :1 Hz phase correction :adjust the phase of the first spectrum to pure absorption and for all other experiments use the same values for the phase correction (PK) plot :use XWINPLOT

Experiment 2.2

- Determination of the 90° ¹³ C Transmitter Pulse Duration				
pulse program: zg0dc 1D-sequence with F2 decoupling, using p0 for any flip angle. Result is a standard 13C NMR spectrum with proton broad-band decoupling.				
Setting of the needed channels: F1: ¹³ C F2: ¹ H				
Acquisition parameters				
PL1 :F1 channel - high power level for ¹³ C transmitter pulse, here 3 dB was used	P0 :F1 channel - ¹³ C transmitter pulse, 7 usec for experiment a and 14 usec for experiment b			
PL12 :F2 channel - power level for CPD decoupling CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2	PCPD2 :F2 channel – 90° pulse for decoupling sequence			
D1 :60 sec - relaxation delay	D11 :30 msec - delay for disk I/O			
O1 :on resonance of ¹³ C signal NS :1	O2 :middle of ¹ H NMR spectrum RG :receiver gain for correct ADC input			
Processing parameters				
	BC_mod :quad			
FT :fourier transformation	phase correction :adjust the phase of the first spectrum to pure absorption and for all other experiments use the same values for the phase correction (PK)			
baseline correction : ABS	plot : use XWINPLOT			

Experiment 2.3

- Determination of the 90° ¹H Decoupler Pulse Duration

pulse program: decp90

1D-sequence to determine the 90° decoupler pulse-duration

Setting of the needed channels: F1: ^{13}C F2: ^{1}H

Acquisition parameters

- PL1 :F1 channel high power level for ¹³C transmitter pulse
- PL2 :F2 channel high power level for ¹H decoupler pulse, here 0 dB was used
 D1 :60 sec relaxation delay

TD :4 K

- O1 :on resonance of ¹³C signal
- **NS** :1

- P1 :F1 channel 90° ¹³C transmitter pulse
- **P3** :F2 channel ¹H decoupler pulse, use 1 usec as starting value, to be varied
- **D2** :1/[2J(C,H)]= 2.36 msec, calculated from ${}^{1}J(C,H)=212$ Hz
- **SW** :500 Hz
- **O2** :on resonance of ¹H NMR signal
- RG :receiver gain for correct ADC input

In a second set of experiments use high decoupler attenuation (PL2=22 dB) and vary it so that P3 is in the region of 100 usec (for WALTZ).

SI :2 K WDW :EM FT :fourier transformation BC_mod :quad LB :2 Hz phase correction :adjust the doublet in antiphase and use the same values for the other phase corrections (PK). plot :use XWINPLOT

baseline correction :ABS

Experiment 2.4

- The 90° ¹H Pulse with Inverse Spectrometer Configuration

pulse program:	zg0 compare with E	xperiment	2.1
Setting of the need	ded channels:	F1: F2:	¹ H off

Acquisition parameters

PL1 :F1 channel - high power level for ¹H transmitter pulse
D1 :5 sec - relaxation delay
TD :4 K
O1 :100 Hz towards higher frequency of CHCl₃ signal
NS :8

P0 :F1 channel - ¹H transmitter pulse, near 360° as starting value, to be varied

SW :500 Hz

RG : receiver gain for correct ADC input

Processing parameters

No signal processing is required, since the FID is directly observed.

Experiment 2.5

- The 90° ¹³ C Decoupler Pulse with Inverse Configuration				
pulse program:	decp90 compare with E	xperiment	2.3	
Setting of the needed channels: F1: ¹ H F2: ¹³ C				
Acquisition parameters				

- transmitter pulse **PL2** :F2 channel - high power level for ¹³C
- decoupler pulse, here 0 dB was used $\ensuremath{\text{D1}}$:20 sec relaxation delay

TD :4 K

O1 :on resonance of ¹H signal

- P1 :F1 channel 90° ¹H transmitter pulse
- **P3** :F2 channel ¹³C decoupler pulse, 1 usec as starting value, to be varied.
- D2 :1/[2J(C,H)]= 2.33 msec, calculated from 1 J(C,H)=215 Hz
- **SW** :500 Hz
- O2 :on resonance of ¹³C NMR signal

NS :1 **RG** :receiver gain for correct ADC input In a second set of experiments use high decoupler attenuation (PL2) and vary it so that P3 becomes in the range of 70 usec (for GARP).

Processing	parameters
1.000000000	paramotoro

SI :2 K WDW :EM FT :fourier transformation BC_mod :quad LB : 1 Hz phase correction :adjust the phase of the big signal descended from the protons bound to ¹²C in dispersion: look for a clean anti phase pattern of the ¹³C satellites and use the same values for the next phase correction (PK). plot :use XWINPLOT

baseline correction :ABS

Experiment 2.6 - Composite Pulses			
a)pulse program: exp2_6a.mo Sequence with a	a normal 18	30° puls	e to compensate pulse imperfections.
Setting of the needed channels:	F1: F2:	¹ H off	
Acquisition parameters Perform two experiments, or Use the same parameters for PL1 :F1 channel - high power transmitter pulse, 3dB w D1 :30 sec - relaxation delay TD :64 K O1 :10 kHz towards higher for the resonance of the CH NS :8	ne with the or both expo er level for ras used he requencies ICI ₃ signal	pulse p eriments 'H ere s from	rogram exp2_6.mo and one with exp2_2b.mo. s. P1 :F1 channel – 90° ¹ H transmitter pulse P2 :F1 channel – 180° ¹ H transmitter pulse D15 :10 msec - fixed delay SW :80 ppm RG : receiver gain for correct ADC input
Processing parameters Use the same processing parameters SI :32 K WDW :EM FT :fourier transformation baseline correction :ABS	arameters f	or both	experiments BC_mod :quad LB :1 Hz phase correction :adjust the phase of the CHCl ₃ signal to be negative plot :use XWINPLOT
b)pulse program: exp2_6b.mo A sequence with	a 180° cor	mposite	pulse to compensate pulse imperfections.
Setting of the needed channels:	F1: F2:	¹ H off	

 Acquisition parameters PL1 :F1 channel - high power level for ¹H transmitter pulse, 3dB was used here D1 :30 sec - relaxation delay TD :64 K O1 :10 kHz towards higher frequencies from the resonance of the CHCl₃ signal NS :8 	 P1 :F1 channel – 90° ¹H transmitter pulse P2 :F1 channel – 180° ¹H transmitter pulse D15 :10 msec - fixed delay SW :80 ppm RG : receiver gain for correct ADC input
Processing parameters Use the same processing parameters for both of SI :32 K WDW :EM FT :fourier transformation baseline correction :ABS	experiments BC_mod :quad LB :1 Hz phase correction :adjust the phase of the CHCl ₃ signal to be negative plot :use XWINPLOT
Experiment 2.7 - Radiation Damping	
pulse program: zg0 compare with Experiment 2.1	
Setting of the needed channels: F1: ¹ H F2: off	
 Acquisition parameters Perform two experiments with different pulses. PL1 :F1 channel - high power level for ¹H transmitter pulse (3 dB) D1 :2 sec - relaxation delay TD :4 K O1 :on resonance of H₂O signal NS :1 	 P0 :F1 channel - ¹H transmitter pulse, a) 360° and b) 180° SW :500 Hz RG : receiver gain for correct ADC input
Processing parameters process the two FIDs with the same parameters SI :2 K WDW :EM FT :fourier transformation baseline correction :ABS	BC_mod :quad LB :0.3 Hz phase correction :adjust the phase to pure absorption plot :use XWINPLOT, both traces should be plotted on the same vertical scale

Experiment 2.8

- Pulse and Receiver Phases

pulse program:

zg 1D-sequence, using a 90° pulse. Result is a routine proton NMR spectrum

Setting of the needed channels:	F1:	^{1}H
-	F2:	off

Acquisition parameters

Display both quadrature channels of the receiver. Record an FID with the offset on resonance and change the transmitter phase in the pulse program so that only the left guadrature channel receives a signal. Then set the offset 50 Hz off resonance and repeat the experiment. Now change the transmitter phase in 90° steps and observe the changes on both FID channels and on the spectrum.

PL1 :F1 channel - high power level for ¹H **P1** :F1 channel – 90° ¹H transmitter pulse transmitter pulse (3 dB) D1 :1 sec - relaxation delay **TD**:4 K SW :500 Hz O1 :50 Hz off resonance of $\textbf{CHCI}_{\scriptscriptstyle 3}$ signal **NS** :1 RG : receiver gain for correct ADC input

 ^{1}H

Processing parameters

SI :2 K WDW :EM FT : fourier transformation

BC mod :quad **LB** :1 Hz phase correction : adjust the phase of the first spectrum for pure absorption and use the same values for the other phase corrections (PK). plot :use XWINPLOT

baseline correction :ABS

Experiment 2.9

- Determination of Radiofrequency Power pulse program: zg compare with Experiment 2.8 Setting of the needed channels: F1: F2: off

Acquisition parameters

PL1 :F1 channel - high power level for ¹H transmitter pulse, 0 dB initial value, to be increased in 3 dB steps. D1 :60 sec - relaxation delay **TD**:4 K **O1** :on resonance of ¹H signal **NS** :1

Processing parameters SI:2 K

WDW : EM FT : fourier transformation P1 :F1 channel - 90° ¹H transmitter pulse, to be determinred for each attenuation level.

SW :500 Hz

RG :receiver gain for correct ADC input

BC mod :quad **LB** :1 Hz phase correction :adjust the phase to pure absorption and use the same values for the next phase correction (PK)..

baseline correction :ABS

Chapter 3

- Routine NMR Spectroscopy and Standard Tests

Summary

Experiment	Pulse program	Description
3.1	zg30	The Standard ¹ H NMR Experiment
3.2	zgdc30	The Standard ¹³ C NMR Experiment
3.3	zg	The Application of Window Functions
3.4	zg	Computer-aided Spectral Analysis
3.5	zg	Line-Shape Test for ¹ H NMR Spectroscopy
3.6	zg	Resolution Test for ¹ H NMR Spectroscopy
3.7	zg	Sensitivity Test for ¹ H NMR Spectroscopy
3.8	zgcw	Line-Shape Test for ¹³ C NMR Spectroscopy
3.9	zg	ASTM Sensitivity Test for ¹³ C NMR Spectroscopy
3.10	zgdc	Sensitivity Test for ¹³ C NMR Spectroscopy
3.11	zg	Quadrature Image Test
3.12	zg	Dynamic Range Test for Signal Amplitudes
3.13	zgphase.mo	13° Phase Stability Test

Experiment 3.1 - The Standard ¹H NMR Experiment

pulse program: zg3 1D	30 9-sequence, usir	ng a 30° fli	p angle	e. Result is a routine proton NMR spectrum.
Setting of the needed	channels:	F1: F2:	¹ H off	
Acquisition parameters PL1 :F1 channel - high power level for ¹ H transmitter pulse P1 :F1 channel - 90° ¹ H transmitter pulse P1 : F1 channel - 90° ¹ H transmitter pulse				
TD : 32 K				SW : 20 ppm
O1 : middle of NS :8	the 'H NMR spe	ectrum		RG : receiver gain for correct ADC input
Processing parameter	ers			
SI :16 K WDW :EM				BC_mod :quad LB :0.1 Hz

FT :fourier to integration baseline co plot :use X Experiment 3 - The Standard ¹³ C	transformation : is done with ABS manual prrection :ABS WINPLOT 3.2 NMR Experiment	or can be do	<pre>phase correction :adjust the phase to pure</pre>
pulse program :	zgdc30 1D-sequence with spectrum with prot	decoupling, on broad-ba	using a 30° flip angle. Result is a standard ¹³ C NMR nd decoupling.
Setting of the need	led channels:	F1: ¹³ (F2: ¹ H	C 1
Acquisition parar PL1 :F1 channel - transmitter pu PL12 :F2 channel decoupling CPD2 :WALTZ16 - defined by c D1 :0.4 sec - relaxa TD :32 K O1 :middle of the ¹³ NS :128 RG :receiver gain f	neters high power level fo lse - power level for CF • CPD decoupling s pdprg2 ation delay ³ C NMR spectrum for correct ADC inp	r ¹³ C PD equence, ut	 P1 :F1 channel - 90° ¹³C transmitter pulse PCPD2 :F2 channel – 90° pulse for decoupling sequence D11 :30 msec - delay for disk I/O SW :250 ppm O2 :middle of ¹H NMR spectrum DS :2
Processing paran SI :16 K WDW :EM FT :fourier transfor referencing :set th peak picking :cho	neters mation ne TMS signal to 0 ose the desired lev	ppm. el	BC_mod :quad LB :2 Hz phase correction :adjust the phases to pure absorption. baseline correction :ABS plot :use XWINPLOT
Experiment 3	3.3 f Window Function	S	
pulse program:	zg compare with Expe	eriment 2.8	
Setting of the need	led channels:	F1: ¹ H F2: of	1 if

Acquisition parameters PL1 :F1 channel - high power level for ¹H transmitter pulse D1 : 1 sec - relaxation delay **TD** : 32 K

P1 :F1 channel - 90° ¹H transmitter pulse

SW : 1 ppm

O1 : center of ODCB multiplet **NS** :1

Processing parameters a) transform FID without any weighting function b) transform FID with EM c) transform FID with GM SI :16 K WDW :EM WDW :GM

FT : fourier transformation

plot :use XWINPLOT

Experiment 3.4

LB :0.07 Hz LB :-0.06 Hz **GB** :0.25 Hz phase correction :adjust the phase to pure absorption. referencing : set the TMS signal to 0 ppm.

phase correction :adjust the phase to

pure absorption.

- Computer-aided S	Spectral Analysis			
pulse program:	zg compare with Expe	eriment 2.8	3	
Setting of the need	led channels:	F1: F2:	¹ H off	
Acquisition parar PL1 :f1 cha transr	neters annel - high power le nitter pulse	evel for ¹ H		P1 :f1 channel - 90° ¹ H transmitter pulse
TD :32 K	relaxation delay			SW :1 ppm
O1 :center	of ODCB multiplet			spinning rate :20 Hz
NS :1				RG :receiver gain for correct ADC input
Processing paran	neters			
SI :32 K				BC_mod :quad
WDW :no				
FT :Fourier	transformation			phase correction adjust the phase to

baseline correction :ABS plot :use XWINPLOT Transfer the spectrum to a PC. The procedure shown in the book was performed with the CALM software, obtainable on the Internet.

Experiment 3.5
- Line-Shape Test for ¹ H NMR Spectroscopy

pulse program: zg compare with Experiment 2.8 Setting of the needed channels: ^{1}H F1: F2: off

BC_mod :quad

RG : receiver gain for correct ADC input

Acquisition param PL1 :f1 chan transm D1 :60 sec - TD :32 K O1 :on resor NS :1	eters inel - high power le itter pulse relaxation delay nance of ¹ H signal	evel for ¹ H	P1 :f1 channel - 90° ¹ H transmitter pulse SW :500 Hz spinning rate :20 Hz RG :receiver gain for correct ADC input
Processing parame SI :32 K WDW :no FT :Fourier t referencing plot :use XW	eters ransformation :set the TMS sign /INPLOT	nal to 0 ppm	 BC_mod :quad phase correction :adjust the phase to pure absorption. CY :1000 and check, whether the satellites have a height of 5.5.
Experiment 3 - Resolution Test for	.6 r ¹ H NMR Spectro	scopy	
pulse program: z	2g compare with Expe	eriment 2.8	
Setting of the neede	ed channels:	F1: ¹ H F2: off	
Acquisition param PL1 :f1 chan transm D1 :1 sec - ro TD :32 K O1 :center of NS :1	eters inel - high power le itter pulse elaxation delay f ODCB multiplet	evel for ¹ H	P1 :f1 channel - 90° ¹ H transmitter pulse SW :1 ppm spinning rate :20 Hz RG :receiver gain for correct ADC input
Processing param SI :32 K WDW :no FT :Fourier t baseline co	eters ransformation rrection :ABS		BC_mod :quad phase correction :adjust the phase to pure absorption. plot :use XWINPLOT
Experiment 3 - Sensitivity Test for	.7 ¹ H NMR Spectros	scopy	
pulse program: z	zg compare with Expe	eriment 2.8	
Setting of the neede	ed channels:	F1: ¹ H F2: off	

Acquisition parameters PL1 :f1 channel - high power level for ¹H P1 :f1 channel - 90° ¹H transmitter pulse

 $\label{eq:transmitter pulse} \begin{array}{l} \mbox{transmitter pulse} \\ \mbox{D1:60 sec - relaxation delay} \\ \mbox{TD:32 K} \\ \mbox{O1:middle of the 1H NMR spectrum} \\ \mbox{NS:1} \end{array}$

Processing parameters

SI 32 K WDW :EM FT :Fourier transformation

baseline correction :ABS

SW :10 ppm

RG :receiver gain for correct ADC input

BC_mod :quad
LB :1 Hz
phase correction :adjust the phase to pure absorption.
plot :use XWINPLOT: the full spectrum should be plotted and the noise between 3 ppm and 5 ppm enlarged to allow a correct peak to peak noise measurement.

Experiment 3.8

- Line-Shape Test for ¹³C NMR Spectroscopy

pulse program: zgcw

1D-sequence with CW decoupling, using 90° flip angle. Depending where O2 is set, different results are possible like an ¹H off-resonance decoupled ¹³C NMR spectrum (O2 on resonance of ¹H TMS signal) or an ¹H single frequency decoupled ¹³C NMR pectrum (O2 on resonance on a special ¹H group).

Setting of the needed channels:	F1:	¹³ C
Ū.	F2:	^{1}H

Acquisition parameters

PL1 :f1 channel - high power level for ¹³C transmitter pulse
PL14 :f2 channel - low power level for ¹H decoupler pulse
D1 :1 sec - relaxation delay
TD :16 K
O1 :on resonance of ¹³C signal
NS :1
spinning rate :20 Hz

Processing parameters

SI :16 K WDW :no FT :Fourier transformation

baseline correction :ABS

CY :set the intensity of the main signal to 1000 and check the line-width at heights 500, 5.5 and 1.1.

P1 :f1 channel - 90° ¹³C transmitter pulse

decoupler attenuation for continous wave decoupling D11 :30 msec - delay for disk I/O SW :200 Hz O2 :on resonance of ¹H signal RG :receiver gain for correct ADC input

BC_mod :quad

phase correction :adjust the phase to pure absorption. referencing :set the TMS signal to 0 ppm plot :use XWINPLOT

Experiment 3.9

- ASTM Sensitivity Test for ¹³C NMR Spectroscopy pulse program: zg compare with Experiment 2.8 ¹³C F1: Setting of the needed channels: F2: off Acquisition parameters P1 :f1 channel - 90° ¹³C transmitter pulse PL1 :f1 channel - high power level for ¹³C transmitter pulse D1 :300 sec - relaxation delay **TD** :32 K SW :200 ppm **O1** :middle of ¹³C NMR spectrum decoupler :off **NS** :1 RG :receiver gain for correct ADC input **Processing parameters** SI :64 K BC_mod :quad WDW :EM LB :3.5 Hz phase correction :adjust the phase to FT : Fourier transformation pure absorption. baseline correction :ABS plot :use XWINPLOT: the full spectrum should be plotted and the noise between 120 ppm and 80 ppm enlarged to allow a correct peak to peak noise measurement.

Experiment 3.10

- Sensitivity Test for ¹³C NMR Spectroscopy

pulse program: zgdc

1D-sequence with F2 decoupling, using 90° flip angle. Result is a standard ¹³C NMR spectrum with proton broad-band decoupling.

Setting of the needed channels:	F1:	¹³ C
-	F2:	^{1}H

Acquisition parameters

P1 :f1 channel - 90° ¹³ C transmitter pulse
PCPD2 :f2 channel – 90° pulse for decoupling sequence
D11 :30 msec - delay for disk I/O
SW :200 ppm
O2 :middle of ¹ H NMR spectrum
RG :receiver gain for correct ADC input

Processing parameters

SI :64 K

BC_mod :quad

WDW :EM FT : Fourier transformation

referencing :set the TMS signal to 0 ppm baseline correction :ABS

LB :0.3 Hz phase correction :adjust the phase to pure absorption.

plot :use XWINPLOT: the full spectrum should be plotted and the noise between 120 ppm and 80 ppm enlarged to allow a correct peak to peak noise measurement.

Experiment 3.11

- Quadrature Image Test

pulse program:	zg compare with Expe	eriment 2.	8	
Setting of the nee	eded channels:	F1: F2:	1H off	
Acquisition para PL1 :f1 ch trans	ameters hannel - high power le smitter pulse – relaxation delay	evel for ¹ H	I	P1 :f1 channel - 90° ¹ H transmitter pulse
TD :8 K 01 :250 F CHCL	Iz towards high frequ	iency of		SW :1000 Hz
NS :1				RG :receiver gain for correct ADC input
Processing para SI :4 K WDW :EN FT :Fourie	ameters A er transformation			BC_mod :quad LB :1 Hz phase correction :adjust the phase to pure absorption.
CY :set th 1000 image toward offset	e intensity of the CH and enlarge the quad signal, which is four ds higher frequencies position.	Cl3 signal drature nd 250 Hz s from the	to	
baseline	correction :ABS			plot :use XWINPLOT

Experiment 3.12

- Dynamic Range Test for Signal Amplitudes

pulse program:	zg compare with E	xperiment	2.8
Setting of the need	led channels:	F1: F2:	¹ H off

Acquisition parameters

PL1 :f1 channel - high power level for ¹H P1 :f1 channel - 90° ¹H transmitter pulse transmitter pulse

D1 :5 sec – relax TD :32 K O1 :middle of ¹ H NS :1	xation delay NMR spectrum	SW :10 ppm RG :receiver gain fo	or correct ADC input
Processing parameter SI :16 K WDW :EM FT :Fourier trans	's sformation	BC_mod :quad LB :0.2 Hz phase correction :	carefully correct the phase of the water signal, try to detect the very small signal of t- butanol at 1.28 ppm, and adjust the phase of this signal as well
integration :inte sig inte the con baseline correc	egrate the four relevant inals and check the egrals for consistency with e molar ratios of the four mpounds in the sample. etion :ABS	plot :use XWINPLC	OT TILS SIGNALAS WEIL
Experiment 3.13 – 13° Phase Stability Te	est		
pulse program: zgpł The amp	nase.mo 13° phase stability test show litudes and measures the pl	wn here transforms p nase stability betwee	phase stability into signal en two r.f. pulses.
Setting of the needed c	hannels: F1: 'H F2: off		
Acquisition parameter Use an automati PL1 :f1 channel transmitter D1 :20 sec – rela TD :4 K O1 :37 Hz to hig CHCl ₃ sign NS :1	rs ion routine which performs t - high power level for ¹ H pulse, 3dB was used axation delay her frequencies from al	his experiment 64 tir P1 :f1 channel - 90 D20 :1 msec - fixed SW :500 Hz RG :receiver gain fo	nes in sequence) ^{° 1} H transmitter pulse I delay or correct ADC input
Processing parameter SI :2 K WDW :EM FT :Fourier trans	's sformation	BC_mod :quad LB :1 Hz phase correction :	Adjust the phse of the first spectrum roughly for dispersion and always use the same digital phase correction
baseline correc	tion :ABS	plot :use XWINPLC	DT

Chapter 4

- Decoupling Techniques

Summary

Experiment	Pulse program	Description
4.1	zg0hd	Decoupler Calibration for
		Homonuclear Decoupling
4.2	zg0cw	Decoupler Calibration for
		Heteronuclear Decoupling
4.3	zg0cw	Low Power Calibration for
		Heteronuclear Decoupling
4.4	zg0hd	Homonuclear Decoupling
4.5		Homonuclear Decoupling at Two
		Frequencies
4.6	zgspt.mo	The Homonuclear SPT
		Experiment
4.7	zgndspt.mo	The Heteronuclear SPT
		Experiment
4.8	zgf2pr.mo	1D Nuclear Overhauser
		Difference Spectroscopy
4.9	noemul	1D NOE Spectroscopy with
		Multiple Selective Irradiation
4.10	zg0cw	¹ H Off-Resonance Decoupled
	-	¹³ C NMR Spectra
4.11	zg0gd	The Gated ¹ H-Decoupling
		Technique
4.12	zg0ig	The Inverse Gated ¹ H-
		Decoupling Technique
4.13	zg0cw	¹ H Single Frequency Decoupling
	Ũ	of ¹³ C NMR Spectra
4.14	zg0cw2.mo	¹ H Low Power Decoupling of ¹³ C
	, , , , , , , , , , , , , , , , , , ,	NMR Spectra
4.15	hetnoe.mo	Measurement of the
		Heteronuclear Overhauser
		Effect

Experiment 4.1

- Decoupler Calibration for Homonuclear Decoupling

 pulse program: zg0hd 1D-sequence with homodecoupling, using p0 for any flip angle.By this technique residual multiplets are obtained in which the spin coupling to the irradiated proton is missing.
 Setting of the needed channels: F1: ¹H F2: ¹H

Acquisition parameters

PL1 :f1 channel - high power level for ¹H transmitter pulse
PL24 :f2 channel - power level for hd/hc

P0 :f1 channel - 45° ¹H transmitter pulse

decoupling, to be varied **D1** :2 sec – relaxation delay **TD** :4 K SW :500 Hz **O1** :on resonance of ¹H signal 01 digmod :homodecoupling-digital **NS**:1 **Processing parameters**

SI :4 K or more, use zero-filling to ensure enough data points for the relatively small Bloch-Siegert shifts WDW :EM FT : Fourier transformation

D12:20 usec - delay for power switching O2:50 Hz towards lower frequency from

RG :receiver gain for correct ADC input

BC_mod :quad

LB :0.1 Hz phase correction :adjust the phase to pure absorption.

baseline correction :ABS

zq0cw

Experiment 4.2

- Decoupler Calibration for Heteronuclear Decoupling

pulse program:

1D-sequence with CW decoupling, using p0 for any flip angle. Depending where O2 is set, different results are possible like an ¹H off-resonance decoupled ¹³C NMR spectrum (O2 on resonance of ¹H TMS signal) or an ¹H single frequency decoupled ¹³C NMR pectrum (O2 on resonance on a special ¹H group).

Setting of the needed channels:	F1:	¹³ C
-	F2:	^{1}H

Acquisition parameters

P0 :f1 channel - 45° ¹³C transmitter pulse **PL1** :f1 channel - high power level for ¹³C transmitter pulse PL14 :f2 channel - power level for cw/hd decoupling, to be varied D1 :2 sec - relaxation delay D11 :30 msec - delay for disk I/O **TD** :4 K SW :500 Hz **O1** :on resonance of ¹³C signal **O2** :50 Hz offset from ¹H signal **NS** :1

Processing parameters

SI :4 K or more, use zero-filling to ensure enough data points to obtain accurate values for the residual splittings WDW :EM **FT** : Fourier transformation

baseline correction :ABS

RG : receiver gain for correct ADC input

BC mod :quad

LB :2 Hz

phase correction :adjust the phase to pure absorption. referencing :set the TMS signal to 0 ppm

Experiment 4.3

- Low Power Calibration for Heteronuclear Decoupl	ing
pulse program: zg0cw compare with Experiment 4.2	
Setting of the needed channels: F1: ¹³ C F2: ¹ H	
Acquisition parameters PL1 :f1 channel - high power level for ¹³ C	P0 :f1 channel - 45° ¹³ C transmitter pulse
transmitter pulse PL14 :f2 channel - power level for cw/hd decoupling to be varied	
D1 :2 sec – relaxation delay TD :2 K	D11 :30 msec - delay for disk I/O SW :100 Hz
O1 :on resonance for carboxyl ¹³ C nucleus of acetic acid	O2 :25 Hz offset from the ¹ H resonance of the CH ₃ group of acetic acid
NS :1	RG :receiver gain for correct ADC input
Processing parameters SI :4 K or more, use zero-filling to ensure enough data points for the reduced	BC_mod :quad
splittings WDW :EM FT :Fourier transformation	LB :0.3 Hz phase correction :adjust the phase to
baseline correction :ABS	pure absorption.

Experiment 4.4

- Homonuclear Decoupling

pulse program:	zg0hd compare with E	xperiment	4.1
Setting of the need	ded channels:	F1: F2:	¹ H ¹ H

Acquisition parameters

PL1 :f1 channel – high power level for ¹ H	P0 :f1 channel - 45° ¹ H transmitter pulse
PL14 :f2 channel - power level for cw/hd	
decoupling	
D1 :1 sec – relaxation delay	D12 :20 usec - delay for power switching
TD :32 K	SW :10 ppm
O1 :middle of the ¹ H NMR spectrum	O2 :on resonance of irradiated proton
NS :8	digmod :homodecoupling-digital
RG : receiver gain for correct ADC input	

Processing parameters

SI :16 K	BC_mod :quad	
WDW :EM	LB :0.3 Hz	

FT :Fourier transformation

baseline correction :ABS

Experiment 4.5 - Homonuclear Decoupling at Two F	Experiment 4.5 - Homonuclear Decoupling at Two Frequencies				
pulse program:					
Setting of the needed channels:	F1: F2:	¹ H ¹ H			
Acquisition parameters					
Processing parameters					
Experiment 4.6 - The Homonuclear SPT Experiment	t				
pulse program: zgspt.mo 1D-sequence, us information of sp	sing selectiv in coupling	/e pop const	pulation transfer to provides the relative sign tants.		
Setting of the needed channels:	F1: F2:	¹ H off			
Acquisition parameters PL1 :f1 channel - high power transmitter pulse, 3 dB	r level for ¹ H was used	1 1	P0 :f1 channel - 30° ¹ H transmitter pulse		
PL21 :f1 channel - low powe 90 dB was used (see D1 :5 sec – relaxation delay TD :8 K O1 :on resonance of a chose line of the sample	r level, here Exp. 2.6) en multiplet	e l	 P28 :f1 channel - 180° ¹H transmitter low power pulse, here 0.8 sec was used D12 :20 usec - delay for power switching SW :2.5 ppm 		
NS :1		I	RG :receiver gain for correct ADC input		
Processing parameters SI :4 K WDW :EM FT :Fourier transformation		 	BC_mod :quad LB :0.1 Hz phase correction :adjust the phase to		
baseline correction :ABS		I	pure absorption. plot :use XWINPLOT		

Experiment 4.7

- The Heteronuclear SPT Experiment

pulse program: zgndspt.mo 1D-sequence with no decoupling. The heteronuclear selective population transfer experiment is especially able for determining the relative sign of long-range spin coupling constants. ^{13}C Setting of the needed channels: F1: ^{1}H F2: Acquisition parameters PL1 :f1 channel - high power level for ¹³C P0 :f1 channel - 45° ¹³C transmitter pulse transmitter pulse PL14 :f2 channel - power level for P10 :f2 channel - 180° ¹H decoupler pulse, decoupling, $\gamma B_2 = 1 \text{ Hz}$, 90 dB was here 0.4 sec was used used here **D1** :2 sec – relaxation delay D11 :30 msec - delay for disk I/O D12:20 usec - delay for power switching SW :200 ppm **TD** :64 K O1 :middle of the ¹³C NMR spectrum O2 :exact transition frequency of a ¹³C satellite: adjust O2 to a frequency 2Hz above that of the left-most line of the proton doublet at 7.5 ppm. **NS**:8 **RG** :receiver gain for correct ADC input **Processing parameters** SI :32 K BC mod :quad WDW :EM **LB** :0.2 Hz FT : Fourier transformation phase correction : use the same values as for the coupled ¹³C spectra (PK) plot :use XWINPLOT

baseline correction :ABS

Experiment 4.8

- 1D Nuclear Overhauser Difference Spectroscopy

pulse program: zgf2pr.mo 1D-sequence with presaturation in F2. The presaturation of different signals and later building of differences (substraction of spectra: one with presaturation outside and one with presaturation of a signal of interest) gives information about the NOE.

Setting of the needed channels: ^{1}H F1: F2: ^{1}H

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H P1 :f1 channel - 90° ¹H transmitter pulse transmitter pulse PL14 :f2 channel - low power level for cw/hd decoupling, here 70 dB was used
 - **D1** :0.1 sec relaxation delay

D20:6 sec - fixed delay

TD :32 K
O1 :middle of the ¹H NMR spectrumSW :10 ppm
O2 :on resonance for the methyl protons in
the first experiment and on resonance
of the residual ¹H signal of CHCl₃ in the
reference spectrumNS :16
RG :receiver gain for correct ADC inputDS :4

Processing parameters

NOE difference spectra can be processed in different ways. Since one wants to observe signal intensity changes of 2% to 10%, one should use an exponential window function with LB=2 Hz to minimize artefacts of substraction. One can either transform the two spectra separatly using a digitally indentical phase correction and substract the two spectra, or, more conveniently, substract the two FIDs directly from each other. In the difference spectrum, adjust the phase of the methyl group signal to be negative and the phase of the reference signal (CHCI₃) to be positive. Evaluate only signals which have correct phase and have therefore not been affected by inadequate spectrometer stability.

Experiment 4.9

- 1D NOE Spectroscopy with Multiple Selective Irradiation

pulse program: noemul

This experiment is a technical variant of the NOE difference experiment. Instead of irradiating the center of a broad multiplet, in the experiment each line of the multiplet is irradiated for a short time with a bandwidth of ca. 1-2 Hz and the irradiating frequency is cycled repeatedly in a stepwise manner through the entire multiplet during the pre-irradiation time.

Setting of the needed channels: F1: ¹H F2: ¹H

Acquisition parameters

PL1 :f1 channel – high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
PL14 :f2 channel – power level for presaturation (85 dB)	
D1 :0.1 sec - relaxation delay	D11 :30 msec - delay for disk I/O
D12 :20 usec – delay for power switching	D20 :irradiation time per frequency, here 400 msec was used
L4 :overall irradiation time: D20*L4, here 3	
TD :32 K	SW :10 ppm
O1 :middle of the ¹ H NMR spectrum	O2 :lists of frequencies within the multiplets to be irradiated
NS :8	DS :4
au-program :noemult	for each signal, which should be irradiated an own list has to be created (noedif.1, noedif.2)
FQ2LIST :noedif.1	average cycles :ns*number of average
RG :receiver gain for correct ADC input	

Processing parameters

NOE difference spectra can be processed in different ways. Since one wants to

observe signal intensity changes of 2% to 10%, one should use an exponential window function with LB=2 Hz to minimize artefacts of substraction. One can either transform the two spectra separatly using a digitally indentical phase correction and substract the two spectra, or, more conveniently, substract the two FIDs directly from each other.

Experiment 4.10 - ¹ H Off-Resonance Decoupled ¹³ C NMR Spectra			
pulse program:	zg0cw compare with Experiment 4.3		
Setting of the need	ded channels: F1: ¹³ C F2: ¹ H		
Acquisition para PL1 :f1 cha trans PL14 :f2 ch dec 2 6	meters annel - high power level for ¹³ C mitter pulse nannel – power level for cw/hd oupling, γB ₂ =3500 Hz (see Exp. and 4.2)	P0 :f1 channel - 45° ¹³ C transmitter pulse	
D1 :0.5 sec TD :64 K O1 :middle NS :512	of the ¹³ C NMR spectrum	 D11 :30 msec - delay for disk I/O SW :200 ppm O2 :on resonance of ¹H TMS signal RG :receiver gain for correct ADC input 	
Processing para	neters		
SI :32 K		BC_mod :quad	
WDW :EM	transformation	LB :1 Hz	
FI.FUUIIEI	แล้าอางาทิลแบท	pure absorption.	
baseline c	orrection :ABS	plot :use XWINPLOT	
Experiment - The Gated ¹ H-De	4.11 ecoupling Technique		
pulse program:	zg0gd 1D-sequence with gated decoup used for determining C,H spin-s Overhauser enhancement.	ling, using p0 for any flip angle. This experiment is pin coupling constants without loosing nuclear	
Setting of the need	ded channels: F1: ¹³ C F2: ¹ H		
Acquisition para PL1 :f1 cha	meters annel - high power level for ¹³ C	P0 :f1 channel - 45° ¹³ C transmitter pulse	
transı PL12 :f2 ch dec PI 13 :f2 ch	mitter pulse nannel - power level for CPD oupling nannel - power level for second	PCPD2 :f2 channel – 90° pulse for decoupling sequence	
CPI CPI CPD2 :WA	D decoupling LTZ16 - CPD decoupling		

sequence, defined by cpdprg2

D1 :2 sec – relaxation delay TD :64 K O1 :middle of the ¹³C NMR spectrum NS :512

Processing parameters

SI :32 K WDW :EM (or GM is also possible) FT :Fourier transformation

baseline correction :ABS

D11 :30 msec - delay for disk I/O
SW :200 ppm
O2 :middle of ¹H NMR spectrum
RG :receiver gain for correct ADC input

BC_mod :quad LB :0.3 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 4.12

- The Inverse Gated ¹H-Decoupling Technique

pulse program: zg0ig

1D-sequence with gated decoupling, using p0 for any flip angle. This experiment yields ¹H-decoupled NMR spectra of X-nuclei without signal enhancement by the nuclear Overhauser effect.

Setting of the needed channels: F1: ¹³C F2: ¹H

Acquisition parameters

PL1 :f1 channel - high power level for 13C
transmitter pulseP0 :
transmitter pulsePL12 :f2 channel - power level for CPD
decouplingPCF
decouplingCPD2 :WALTZ16 - CPD decoupling
sequence, defined by cpdprg2D11D1 :10 sec - relaxation delay
TD :32 KD11
SWO1 :middle of the 13C NMR spectrum
NS :512O2 :
RG

P0 :f1 channel - 45° ¹³C transmitter pulse

PCPD2 :f2 channel – 90° pulse for decoupling sequence

D11 :30 msec - delay for disk I/O
SW :200 ppm
O2 :middle of ¹H NMR spectrum
RG :receiver gain for correct ADC input

Processing parameters SI :64 K WDW :EM FT :Fourier transformation

baseline correction :ABS

BC_mod :quad LB :1 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 4.13

- ¹H Single Frequency Decoupling of ¹³C NMR Spectra

pulse program: zg0cw compare with Experiment 4.2

Setting of the needed channels: F1: ^{13}C F2: ^{1}H

Acquisition parameters

PL1 :f1 channel - high power level for ¹³ C transmitter pulse	P0 :f1 channel - 45° ¹³ C transmitter pulse
PL14 :f2 channel - power level for cw/hd decoupling, γB ₂ =150 Hz (45 dB was used here)	
D1 :1 sec – relaxation delay	D11 :30 msec - delay for disk I/O
TD :64 K	SW :200 ppm
O1 :middle of the ¹³ C NMR spectrum	O2 :center of methyl group ¹ H resonance at 1.6 ppm
NS :8	RG :receiver gain for correct ADC input
Processing parameters	
SI :32 K	BC_mod :quad
WDW :EM	LB :2 Hz
FT :Fourier transformation	phase correction :adjust the phase to pure absorption.

baseline correction :ABS

Experiment 4.14

- ¹H Low Power Decoupling of ¹³C NMR Spectra

pulse program: zg0cw2.mo

¹D-sequence with CW decoupling, using p0 for any flip angle. This technique correlates an ¹H signal with ¹³C signals which are separated by two, three or more bonds.

plot :use XWINPLOT

Setting of the needed channels:	F1:	¹³ C
-	F2:	^{1}H

Acquisition parameters

- PL1 :f1 channel high power level for ¹³C transmitter pulse
 PL12 :f2 channel power level for CPD
- decoupling PL14 :f2 channel - power level for
- decoupler attenuation during acquisition, $\gamma B_2=15$ Hz (70 dB was used here) CPD2 :WALTZ16 - CPD decoupling
- sequence, defined by cpdprg2 D1 :1 sec – relaxation delay D12 :20 usec – delay for power switching TD :64 K
- **O1** :middle of the ¹³C NMR spectrum
- **NS** :8

Processing parameters

SI :32 K WDW :EM FT :Fourier transformation

baseline correction :ABS

P0 :f1 channel - 45° ¹³C transmitter pulse

- PCPD2 :f2 channel 90° pulse for decoupling sequence
- D11 :30 msec delay for disk I/O
- SW :200 ppm
- **O2** :center of ¹H signal of the upfield olefinic proton
- RG :receiver gain for correct ADC input

BC_mod :quad LB :2 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 4.15

- Measurement of the Heteronuclear Overhauser Effect pulse program: hetnoe.mo Experiment to measure the heteronuclear Overhauser effect. ¹³C F1: Setting of the needed channels: F2: ^{1}H Acquisition parameters PL1 :f1 channel - high power level for ¹³C P1 :f1 channel - 90° ¹³C transmitter pulse transmitter pulse PL14 :f2 channel -- power level for cw/hd decoupling D1 :200 sec – relaxation delay D11 :30 msec - delay for disk I/O D12:20 usec - delay for power switching **TD**:1 K SW :500 Hz O1 :on resonance of ¹³C signal of O2 :list of frequencies cyclohexane Parmod :2D FQ2LIST : freglist, contains two different values: first value 200 kHz off resonance, second value on resonance of ¹H signal of cyclohexane **NS**:8 RG :receiver gain for correct ADC input **Processing parameters** au-program :splitser, to get 1D files SI :1 K BC_mod :quad

WDW :EM LB :3 Hz **FT** : Fourier transformation phase correction :adjust the phase of to pure absorption and use the same values for the second experiment. baseline correction :ABS integration : is done manual using wmisc

> and rmisc, measure the two integrals and divide one by the other to obtain n+1.

plot :use XWINPLOT

Chapter 5

- Dynamic NMR Spectroscopy

Summary

Experiment	Pulse program	Description
5.1	zg0	Low Temperature Calibration with Methanol
5.2	zg0	High Temperature Calibration with 1,2-Ethandiol
5.3	zg0hd	Dynamic ¹ H NMR Spectroscopy on Dimethylformamid
5.4	zgdclo.mo	The Saturation Transfer Experiment
5.5		Measurement of the Rotating Frame Relaxation Time T_{10}

1

Experiment	5.1 e Calibration with I	Methanol		
pulse program:	zg0 compare with Exp	periment 2.	.1	
Setting of the need	ded channels:	F1: F2:	¹H off	
Acquisition para PL1 :f1 cha transi	meters annel - high power mitter pulse	level for ¹ H	ł	P0 :f1 channel - 45° ¹ H transmitter pulse
D1 :300 se TD :32 K	c – relaxation dela	У		SW :8 ppm
O1 :middle NS :1	of the ¹ H NMR sp	ectrum		RG :receiver gain for correct ADC input
Processing parar	neters			
SI :16 K				
FT :Fourier	transformation			phase correction :adjust the phase to pure absorption.
baseline c	orrection :ABS			plot :use XWINPLOT
Experiment	5 2			

xperiment 3.2

- High Temperature Calibration with 1,2-Ethandiol

pulse program:	zg0 compare with Experiment 2.1

Setting of the needed channels: F1: $^{1}\mathsf{H}$ F2: off

Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse D1 :300 sec – relaxation delay TD :32 K O1 :middle of the ¹ H NMR spectrum NS :1	 P0 :f1 channel - 45° ¹H transmitter pulse SW :8 ppm RG :receiver gain for correct ADC input
Processing parameters SI :16 K WDW :EM FT :Fourier transformation baseline correction :ABS	BC_mod :quad LB :0.1 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT
Experiment 5.3 - Dynamic ¹ H NMR Spectroscopy on Dimethylforma	amid
pulse program: zg0hd compare with Experiment 4.1	
Setting of the needed channels: F1: ¹ H F2: ¹ H	
 Acquisition parameters PL1 :f1 channel - high power level for ¹H transmitter pulse PL14 :f2 channel - power level for decoupler attenuation corresponding to γB₂=10 Hz 	P0 :f1 channel - 45° ¹ H transmitter pulse
 D1 :300 sec - to equilibrate temperature TD :32 K O1 :middle of the ¹H NMR spectrum digmod :homodecoupling-digital NS :8 	SW :12 ppm O2 :on resonance of the aldehyde proton stable gas flow for temperature regulation RG :receiver gain for correct ADC input
Processing parameters SI :16 K WDW :EM FT :Fourier transformation	BC_mod :quad LB :0.1 Hz phase correction : adjust the phase to
baseline correction :ABS for each temperature run an expanded plot	pure absorption. plot :use XWINPLOT of the signals of the methyl group

Experiment 5.4

- The Saturation Transfer Experiment

pulse program:

zgdclo.mo 1D-sequence with a low power pulse and Waltz-decoupling. One signal is irradiated with a low power pulse and a change is observed in the intensity

irradiated with a low power pulse and a change is observed in the intensity of another signal which is connected with the irradiated one by chemical exchange.

Setting of the needed channels:	F1:	¹³ C
C C C C C C C C C C C C C C C C C C C	F2:	ΊΗ

Acquisition parameters

Acquisition parameters	
PL1 :f1 channel - high power level for ¹³ C	P1 :f1 channel - 90° ¹³ C transmitter pulse
PL9 :f1 channel - power level to saturate only the signal on resonance (70 dB)	P6 :f1 channel - 25 sec pre-irradiation pulse at power level PL9
PL12 :f2 channel - power level for CPD decoupling CPD2 :WALTZ16 - CPD decoupling	PCPD2 :f2 channel – 90° pulse for decoupling sequence
sequence, defined by cpdprg2 D1 :0.1 sec – relaxation delay	D11 :30 msec - delay for disk I/O
TD :8 K	SW :25 ppm
O1 :on resonance of low frequency methyl group signal	O2 :middle of ¹ H NMR spectrum
NS :8	temperature is changed from 300 K up to 350 K
RG :receiver gain for correct ADC input	
Processing parameters	
SI :4 K	BC mod :quad
WDW :EM	LB :2 Hz
FT : Fourier transformation	phase correction :adjust the phase to pure absorption.
baseline correction :ABS	plot :use XWINPLOT

Experiment 5.5

- Measurement of the Rotating Frame Relaxation Time T_{1p}

pulse program:

The $T_{_{1\rho}}$ experiment measures the relaxation time in the rotating frame and provides a means to determine the rate constants k and the chemical shift difference Δv in cases where the low temperature regime cannot be reached. The $T_{_{1\rho}}$ relaxation time becomes an important parameter in 2D experiments which use a spin-lock, such as TOCSY or ROESY.

Setting of the needed channels:	F1:	^{1}H
	F2:	off

Acquisition parameters

Processing parameters

Chapter 6

- 1D Multipulse Sequences

Summary

Experiment	Pulse program	Description
6.1	t1irdc.mo	Measurement of the Spin-Lattice Relaxation Time T ₁
6.2	cpmg	Measurement of the Spin-Spin Relaxation Time T ₂
6.3	jmod	¹³ C NMR Spectra with SEFT
6.4	apt	¹³ C NMR Spectra with APT
6.5	ineptnd	The Basic INEPT Technique
6.6	ineptpnd	INEPT+
6.7	ineptrd	Refocused INEPT
6.8	iineptnd	Reverse INEPT
6.9	dept	DEPT-135
6.10	dept	Editing ¹³ C NMR Spectra with DEPT
6.11	pendant.mo	Multiplicity Determination with PENDANT
6.12	inad1d	1D-INADEQUATE
6.13	invbnd1d	The BIRD Filter
6.14	tango.mo	TANGO
6.15	inv4nd1d	The Heteronuclear Double Quantum Filter
6.16	exp6_16.mo	Purging with a Spin-Lock Pulse
6.17	zgpr	Water Suppression by Presaturation
6.18	p11	Water Suppression by the Jump and Return Method

Experiment 6.1

- Measurement of the Spin-Lattice Relaxation Time T,

pulse program: t1irdc.mo This is an inversion recovery experiment to measure the spin-lattice relaxation time T1.

Setting of the needed channels: F1: ¹³C F2: ¹H

Acquisition parameters

- PL1 :f1 channel high power level for ¹³C transmitter pulse
- PL12 :f2 channel power level for CPD decoupling
 CPD2 :WALTZ16 CPD decoupling sequence, defined by cpdprg2
 D1 :60 sec relaxation delay
 D12 :20 usec delay for power switching
- P1 :f1 channel 90° ¹³C transmitter pulse
- **P2** :f1 channel 180° ¹³C transmitter pulse **PCPD2** :f2 channel – 90° pulse for decoupling sequence
- D11 :30 msec delay for disk I/O
| TD :32 K O1 :middle of the ¹³C NMR spectrum NS :8 VD :variable delay, taken from VD-LIST (0.5;1;3;6;10;16;24;50 [s]) TD1 :8 - number of experiments define VD-LIST | SW :200 ppm O2 :middle of ¹H NMR spectrum DS :4 L4 :number of experiments=number of delays in VD-LIST, here 8 Parmod :2D RG :receiver gain for correct ADC input |
|---|--|
| Processing parameters
au-program :splitser
WDW :EM
XF2 :transformation is only performed in
the F2 direction | SI :16 K
LB :2 Hz
phase correction :to adjust phase, read
spectrum number 8, in
which all signals have
positive phase, and
transfer this phase
correction to all other
spectra (PH_mod: pk) |
| Experiment 6.2 - Measurement of the Spin-Spin Relaxation Time T | 2 |
| pulse program: cpmg
1D-sequence to measure the re
Gill sequence. | elaxation time T2 using the Carr-Purcell-Meiboom- |
| Setting of the needed channels: F1: ¹ H
F2: off | |
| Acquisition parameters PL1 :f1 channel - high power level for ¹H transmitter pulse D1 :150 sec - relaxation delay D20 :10 msec - fixed echo time to allow elimination of diffusion and J-mod. offects | P1 :f1 channel - 90° ¹ H transmitter pulse
P2 :f1 channel - 180° ¹ H transmitter pulse
D11 :30 msec - delay for disk I/O |
| TD :1 K
O1 :on ¹ H resonance
NS :8
VC :variable loop counter taken from vc- | SW :500 Hz
DS :16 |
| list (2; 20; 50; 100; 200; 300; 400; 500;
750; 1000)
Parmod :2D | values in vc-list (10)
define VCLIST |

Processing parameters

DE :as short as possible

SI(F2) :512 W LB(F2) :2 Hz **XF2P** :phase correction only for the rows WDW(F2) :EM XF2 :transformation in F2 direction plot :use XWINPLOT

Experiment 6.3

- ¹³C NMR Spectra with SEFT

pulse program: jmod This experiment uses the SEFT (Spin-Echo Fourier Transform) technique. It is the simplest method of encoding the multiplicity of a ¹³C signal into the phase of a fully decoupled ¹³C NMR spectrum. ^{13}C Setting of the needed channels: F1: F2: ^{1}H Acquisition parameters P1 :f1 channel - 90° ¹³C transmitter pulse **PL1** :f1 channel - high power level for ¹³C transmitter pulse P2 :f1 channel - 180° ¹³C transmitter pulse PL12 :f2 channel - power level for CPD PCPD2 :f2 channel - 90° pulse for decouplina decoupling sequence CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 **D1**:4 sec – relaxation delay D13:3 usec - short delay **D20** :1/[J(C,H)]= 7 msec, calculated from ¹J(C,H)=140 Hz **TD** :64 K SW :200 ppm **O1** :middle of the ¹³C NMR spectrum **O2** :middle of ¹H NMR spectrum **NS** :16 **DS**:4 RG :receiver gain for correct ADC input DE :as short as possible **Processing parameters SI** :32 K BC_mod :quad WDW :EM **LB** :2 Hz FT : Fourier transformation phase correction :adjust the phase for

phase correction :adjust the phase for the signals of the methyl groups to be positive and for the carboxyl nucleus negative plot :use XWINPLOT

baseline correction :ABS

Experiment 6.4

pulse program:	apt The ATP (Attached CH_3 groups.	d Proton Test	technique differentiates between C, CH, CH_2 and
Setting of the need	ded channels:	F1: ¹³ C	
		ΓΖ. Π	
Acquisition para	meters		
PL1 :f1 cha transi	annel - high power le mitter pulse	evel for ¹³ C	P0 :f1 channel - 45° ¹³ C transmitter pulse
			P2 :f1 channel - 180° ¹³ C transmitter pulse
PL12 :f2 ch	nannel – power leve	I for CPD	PCPD2 :f2 channel – 90° pulse for

decoupling CPD2 :WALTZ16 – CPD decoupling	decoupling sequence
sequence, defined by cpdprg2 D1 :2 sec – relaxation delay D20 :1/[J(C,H)]= 7 msec, calculated from ¹ J(C,H)=140 Hz	D11 :30 msec - delay for disk I/O D12 :20 usec - delay for power switching
 D21 :set equal to preacquisition delay DE TD :64 K O1 :middle of the ¹³C NMR spectrum NS :512 RG :receiver gain for correct ADC input 	SW :200 ppm O2 :middle of ¹ H NMR spectrum DS :8
Processing parameters	
SI :32 K WDW :EM FT :Fourier transformation	BC_mod :quad LB :2 Hz phase correction :adjust the phase for the TMS signal positive and for the carboxyl nucleus negative
referencing :set the TMS signal to 0 ppm baseline correction :ABS	plot :use XWINPLOT
Experiment 6.5 - The Basic INEPT Technique	
pulse program: ineptnd The INEPT (Insensitive Nuclei E increase the sensitivity of hetero X, H spin coupling. The result is	Enhanced by Polarization Transfer) experiment o nuclei by a polarization transfer from protons via a coupled X-nucleus NMR spectrum.
Setting of the needed channels: F1: ¹³ C F2: ¹ H	
Acquisition parameters PL1 :f1 channel - high power level for ¹³ C transmitter pulse	P1 :f1 channel - 90° ¹³ C transmitter pulse
PL2 :f2 channel - high power level for ¹ H decoupler pulse	P2 :f1 channel - 180° ¹³ C transmitter pulse P3 :f2 channel - 90° ¹ H decoupler pulse
D1 :10 sec – relaxation delay	 P4 :f2 channel - 180° ¹H decoupler pulse D4 :1/[4J(C,H)]= 1.18 msec, calculated from ¹J(C,H)=212 Hz
 TD :4 K O1 :on resonance of ¹³C NMR signal NS :1 for the first and 4 for the second experiment RG :receiver gain for correct ADC input 	SW :500 Hz O2 :on resonance of ¹ H NMR signal DS :16

Processing parameters SI :2 K WDW :EM FT :Fourier transformation

BC_mod :quad LB :2 Hz phase correction :adjust the phase for the signals positive baseline correction :ABS

and negative plot :use XWINPLOT

Experiment 6.6	
pulse program: ineptpnd This INEPT version yields co with correct intensities withir	oupled polarization-enhanced NMR spectra of X-nuclein the multiplets.
Setting of the needed channels: F1: F2:	¹³ C ¹ H
Acquisition parameters PL1 :f1 channel - high power level for ¹³ transmitter pulse	 P1 :f1 channel - 90° ¹³C transmitter pulse P2 :f1 channel - 180° ¹³C transmitter pulse
PL2 :f2 channel - high power level for ¹ ⊢ decoupler pulse	P3 :f2 channel - 90° ¹ H decoupler pulse
D1 :2 sec – relaxation delay	D3 :0.375/[J(C,H)]= 2.68 msec, calculated from ¹ J(C,H)=140 Hz
 D4 :1/[4J(C,H)]= 1.78 msec, calculated from ¹J(C,H)=140 Hz TD :64 K O1 :middle of the ¹³C NMR spectrum NS :128 RG :receiver gain for correct ADC input 	SW :200 ppm O2 :middle of ¹ H NMR spectrum DS :16
Processing parameters SI :32 K WDW :EM FT :Fourier transformation	BC_mod :quad LB :2 Hz phase correction : adjust the phase for the signals positive and negative
baseline correction :ABS	plot :use XWINPLOT
Experiment 6.7 - Refocused INEPT	
pulse program: ineptrd This variant of INEPT spect enhanced NMR spectra of X	roscopy yields proton-decoupled and polarization- <-nuclei.
Setting of the needed channels: F1: F2:	¹³ C ¹ H
Acquisition parameters PL1 :f1 channel - high power level for ¹³ transmitter pulse	P1 :f1 channel - 90° ¹³ C transmitter pulse
PL2 :f2 channel - high power level for ¹ H	P3 :f2 channel - 90° ¹ H decoupler pulse

decoupler pulse

PL12 :f2 channel - power level for CPD decoupling	P4 :f2 channel - 180° ¹ H decoupler pulse PCPD2 :f2 channel – 90° pulse for decoupling sequence
CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2	
D1 :2 sec – relaxation delay	D3 :1/[3J(C,H)]= 2.38 msec, calculated from ¹ J(C,H)=140 Hz
D4 :1/[4J(C,H)]= 1.78 msec, calculated from ¹ J(C,H)=140 Hz	D12 :20 usec - delay for power switching
TD :64 K	SW :200 ppm
O1 :middle of the ¹³ C NMR spectrum	O2 :middle of ¹ H NMR spectrum
NS :128	DS :16
RG :receiver gain for correct ADC input	
Processing parameters	
SI :32 K	BC_mod :quad

SI :32 K WDW :EM FT :Fourier transformation BC_mod :quad LB :2 Hz phase correction :adjust the phase for the signals positive and negative plot :use XWINPLOT

baseline correction :ABS

Experiment 6.8

- Reverse INEPT

pulse program: iineptnd

This experiment is an inverse INEPT sequence without decoupling. Starting from X-nucleus magnetization, the X, H spin coupling is observed by proton detection.

plot :use XWINPLOT

Setting of the needed channels:	F1:	^{1}H
-	F2:	¹³ C

Acquisition parameters

PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
·	P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 channel - high power level for ¹³ C decoupler pulse	P3 :f2 channel - 90° ¹³ C decoupler pulse
	P4 :f2 channel - 180° ¹³ C decoupler pulse
D1 :30 sec – relaxation delay	D4 :1/[4J(C,H)]= 1.19 msec, calculated from ¹ J(C,H)=214 Hz
TD :4 K	SW :500 Hz
O1 :on resonance of ¹ H NMR signal	O2 :on resonance of ¹³ C NMR signal
NS :8	DS :16
RG :receiver gain for correct ADC input	
Processing parameters	
SI :2 K	BC_mod :quad
WDW :EM	LB :0.5 Hz
FT :Fourier transformation	phase correction :adjust the phase for the satellites positive and negative

baseline correction :ABS

Experiment 6.9 - DEPT-135

pulse program: Setting of the need	dept The DEPT (Distortionless Enha a polarization transfer from prot ded channels: F1: ¹³ C	ncement by Poarization Transfer) expensions to an X-nucleus to increase the sign	riment uses nal strength.
-	F2: ¹ H		
Acquisition para PL1 :f1 cha trans PL2 :f2 cha decou	meters annel - high power level for ¹³ C mitter pulse annel - high power level for ¹ H upler pulse	P0 :f1 channel - 135° ¹³ C transmitter p P1 :f1 channel - 90° ¹³ C transmitter p P2 :f1 channel - 180° ¹³ C transmitter p P3 :f2 channel - 90° ¹ H decoupler put	oulse ulse oulse se ulse
PL12 :f2 cf dec CPD2 :WA seq D1 :2 sec - D12 :20 us TD :64 K O1 :middle NS :512 RG :receive	nannel - power level for CPD oupling LTZ16 - CPD decoupling uence, defined by cpdprg2 - relaxation delay ec – delay for power switching of the ¹³ C NMR spectrum er gain for correct ADC input	 PCPD2 :f2 channel – 90° pulse for decoupling sequence D2 :1/[2J(C,H)]= 3.5 msec, calculated ¹J(C,H)=140 Hz SW :200 ppm O2 :middle of ¹H NMR spectrum DS :8 	from
Processing para SI :32 K WDW :EM FT :Fourier baseline c	meters • transformation orrection :ABS	BC_mod :quad LB :2 Hz phase correction :adjust the phase for the TMS signal positive plot :use XWINPLOT	or

Experiment 6.10

- Editing ¹³C NMR Spectra with DEPT

pulse program:	dept compare with Exp	eriment 6.	9
Setting of the need	ded channels:	F1: F2:	¹³ C ¹ H
Acquisition parameters			

- **PL1** :f1 channel high power level for ¹³C transmitter pulse
- **PL2** :f2 channel high power level for ¹H decoupler pulse

P1 :f1 channel - 90° ¹³C transmitter pulse

P2 :f1 channel - 180° ¹³C transmitter pulse **P3** :f2 channel - 90° ¹H decoupler pulse

- P4 :f2 channel 180° ¹H decoupler pulse
 P0 :f1 channel use 45°, 90° and 135° ¹H decoupler pulse for three successive spectra a, b and c. Spectrum a will give the signals of CH, CH₂ and CH₃ groups positive; b gives only the signals of CH groups, and c gives the signals of CH and CH₃ groups positive and the signals of CH₂ groups negative. The second spectrum b gives a clear indication whether the decoupler pulse is determined correctly.
- PL12 :f2 channel power level for CPD decoupling
- CPD2 :WALTZ16 CPD decoupling sequence, defined by cpdprg2 D1 :2 sec – relaxation delay
- PCPD2 :f2 channel 90° pulse for decoupling sequence
- **D2** :1/[2J(C,H)]= 3.5 msec, calculated from ¹J(C,H)=140 Hz

D12 :20 usec - delay for power switchingTD :64 KSW :200 ppmO1 :middle of the ¹³C NMR spectrumO2 :middle of ¹H NMR spectrumNS :512DS :8RG :receiver gain for correct ADC input

Processing parameters

 SI :32 K
 BC_mod :quad

 WDW :EM
 LB :2 Hz

 FT :Fourier transformation
 phase correction :adjust the phase for spectrum a to pure absorption, for spectrum b also and for spectrum c adjust the phase of the CH and the CH₃ groups positive and the CH₂ groups negative. For editing purposes the three spectra have to be further manipulated. This is done in the dual made. Substraction of b from a violde another matching and where the

dual mode. Substraction of b from a yields spectrum d, where the signals of CH_2 and CH_3 groups both remain positive. Substraction of b from c yields spectrum e, where the signals of CH_2 are negative and those of the CH_3 groups remain positive. Substraction of e from d yields f with only signals of CH_2 groups, whereas addition of e to d yields spectrum g with only signals of the CH_3 groups.

baseline correction :ABS

plot :use XWINPLOT

Experiment 6.11

- Multiplicity Determination with PENDANT

pulse program: pendant.mo

The PENDANT (Polarization Enhancement During Attached Nucleus Testing) method is a method for distinguishing CH, CH₂, CH₃ and quaternary carbons with the same sensitivity like DEPT.

Setting of the needed channels:F1: ¹³C F2: ¹H

Acquisition parameters

PL1 :f1 channel - high power level for ¹³C transmitter pulse
 PL2 :f2 channel - high power level for ¹H decoupler pulse
 PL12 :f2 channel - power level for CPD decoupling
 PL12 :f2 channel - power level for CPD decoupling
 PL12 :F2 channel - power level for CPD decoupling
 PL12 :F2 channel - power level for CPD decoupling
 PL12 :F2 channel - power level for CPD decoupling
 PL12 :F2 channel - power level for CPD decoupling
 PL12 :F2 channel - power level for CPD decoupling

sequence, defined by cpdprg2 D1 :2 sec – relaxation delay D12 :20 usec – delay for power switching TD :64 K O1 :middle of ¹³ C NMR spectrum NS :16 RG :receiver gain for correct ADC input	D4 :1/[4J(C,H)]= 1.72 msec, calculated from ${}^{1}J(C,H)=145$ Hz D15 :5/[8J(C,H)]= 4.31 msec, calculated from ${}^{1}J(C,H)=145$ Hz SW :250 ppm O2 :middle of ${}^{1}H$ NMR spectrum DS :8 DE :as short as possible
Processing parameters SI :32 K WDW :EM FT :Fourier transformation	BC_mod :quad LB :2 Hz phase correction :adjust the phase for the signals of the methyl groups to be positive and for the carcoxyl nucleus negative.
Experiment 6.12 - 1D-INADEQUATE	
pulse program: inad1d This is a 1D-INADEQUATE seq	uence.
Setting of the needed channels: F1: ¹³ C F2: ¹ H	
 Acquisition parameters PL1 :f1 channel - high power level for ¹³C transmitter pulse PL12 :f2 channel - power level for CPD decoupling CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 D1 :3 sec - relaxation delay D11 :30 msec - delay for disk I/O TD :32 K O1 :40 ppm downfield from TMS (middle of that range) NS :512 RG :receiver gain for correct ADC input 	 P1 :f1 channel - 90° ¹³C transmitter pulse P2 :f1 channel - 180° ¹³C transmitter pulse PCPD2 :f2 channel – 90° pulse for decoupling sequence D4 :1/[4J(C,C)]= 7.6 msec, calculated from ¹J(C,C)=33 Hz D13 :3 usec - short delay SW :60 ppm (spectral range for C₆H₁₃OH) O2 :middle of ¹H NMR spectrum DS :16
Processing parameters	
SI :64 K	BC_mod :quad
WDW :EM FT :Fourier transformation	LB :0.5 Hz phase correction :adjust the signals positive and negative

baseline correction :ABS

g plot :use XWINPLOT

Experiment 6.13 - The BIRD Filter

pulse program: invbnd1d With this experiment a suppression for signals from protons bond to ¹²C is performed with a BIRD (Bilinear Rotation Decoupling) sandwich. It rotates the magnetization of the protons attached to ¹²C into the -z direction of the rotating frame, but leaves the magnetization of the ¹³C- bond protons unchanged. If one waits a suitable time after the BIRD sandwich, the signals of the protons bond to ¹²C are at the null point and therefore not excited during the following pulse sequence. The sequence is without decoupling.

Setting of the needed channels: F1: ${}^{1}H$ F2: ${}^{13}C$

Acquisition parameters

PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
	P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 channel - high power level for ¹³ C decoupler pulse	P4 :f2 channel - 180° ¹³ C decoupler pulse
D1 :60 sec – relaxation delay	D2 :1/[2J(C,H)]= 2.38 msec, calculated from ¹ J(C,H)=214 Hz
D7 :20 sec - to be varied	D13 :3 usec - short delay
TD :4 K	SW :500 Hz
O1 :on ¹ H resonance	O2 :on ¹³ C resonance
NS :4	DS :4
RG : receiver gain for correct ADC input	

Processing parameters

SI :2 K WDW :EM FT :Fourier transformation BC_mod :quad LB :1 Hz phase correction :correct the satellites positive plot :use XWINPLOT

baseline correction :ABS

Experiment 6.14

- TANGO

pulse program:	tango.mo The TANGO (Test introduces a 90° ph bond to ¹² C.	ing for Adjace nase angle be	ent Nuclei with a Gy tween the protons I	ration Operator) sequence bond to ¹³ C and the protons
Setting of the need	ded channels:	F1: ¹ H F2: ¹³ C		
Acquisition para	meters	1		e e 144
PL1 :f1 cha transi	annel - high power le mitter pulse	evel for 'H	P1 :f1 channel - 9	0° 'H transmitter pulse
	1 - 1. ¹ . 1	13 0	P2 :f1 channel - 1	80° ¹ H transmitter pulse
PL2 :f2 cha decou	annei - nigh power le upler pulse	evel for "C	P4 :12 channel - 1	80° C decoupler pulse

D2 :1/[2J(C,H)]= 2.38 msec, calculated D1 :20 sec - relaxation delay from ${}^{1}J(C,H)=214$ Hz D12:20 usec - delay for power switching **TD**:4 K SW :500 Hz **O1** :on ¹H resonance **O2** :on ¹³C resonance **NS** :8 **DS** :8 RG :receiver gain for correct ADC input **Processing parameters** SI:2 K BC_mod :quad **LB** :1 Hz WDW :EM FT : Fourier transformation phase correction :correct the satellites positive. baseline correction :ABS plot :use XWINPLOT Experiment 6.15 The Heteronuclear Double Quantum Filter pulse program : inv4nd1d This experiment suppress the main signal of protons attached to ¹²C or ¹⁴N using a double quantum filter, where single quantum magnetization is filtered out by the phase cycle. Setting of the needed channels: F1: ^{1}H ^{13}C F2: Acquisition parameters P1 :f1 channel - 90° ¹H transmitter pulse **PL1** :f1 channel - high power level for ¹H transmitter pulse P3 :f2 channel - 90° ¹³C decoupler pulse PL2 :f2 channel - high power level for ¹³C decoupler pulse D1 :200 sec - relaxation delay D2 :1/[2J(C,H)]= 2.38 msec, calculated from ${}^{1}J(C,H)=214$ Hz D12:20 usec - delay for power switching D13:3 usec **TD**:4 K SW :500 Hz **O1** :on ¹H resonance O2 :on ¹³C resonance **DS**:8 **NS**:8 RG : receiver gain for correct ADC input **Processing parameters** BC_mod :quad SI :2 K WDW :EM **LB** :0.1 Hz FT : Fourier transformation phase correction :correct the satellites positive baseline correction :ABS plot :use XWINPLOT

Experiment 6.16

- Purging with a Spin-Lock Pulse

pulse program : exp6_16.mo This experiment uses a spin-lock pulse to select protons attached to ¹³C.

Setting of the needed channels: F1: ¹ H F2: ¹³ C	
Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse, 3 dB was used here	P1 :f1 channel - 90° ¹ H transmitter pulse
	P2 :f1 channel - 180° ¹ H transmitter pulse P28 :f1 channel - spin-lock pulse, 2 msec, be sure, that your power is not to high! The transmitter pulse with power level pl1 should be not shorter than 6 usec.
PL2 :f2 channel - high power level for ¹³ C decoupler pulse	P4 :f2 channel - 180° ¹³ C decoupler pulse
D1 :10 sec – relaxation delay TD :4 K O1 :on ¹ H resonance NS :1 RG :receiver gain for correct ADC input	 D4 :1/[4J(C,H)]= 1.16 msec, calculated from ¹J(C,H)=215 Hz SW :500 Hz O2 :on ¹³C resonance DS :4
Processing parameters SI :2 K WDW :EM FT :Fourier transformation baseline correction :ABS	BC_mod :quad LB :0.1 Hz phase correction :correct the satellites up and down plot :use XWINPLOT

Experiment 6.17
- Water Suppression by Presaturation

pulse program:	zgpr 1D-sequence with huge solvent signa	F1 presat al.	urat	ion. Sometimes, there is a need to suppress the
Setting of the need	led channels:	F1: F2:	¹ H off	
Acquisition parar PL1 :f1 cha transr PL9 :f1 cha presa	neters annel - high power le nitter pulse annel - power level f turation	evel for ¹ H ^f or		P1 :f1 channel - 90° ¹ H transmitter pulse
D1 :2 sec – D13 :3 use	relaxation delay			D12 :20 usec - delay for power switching
TD :32 K	,			SW :10 ppm
O1 :on reso	onance of water sig	nal		DS :2
NS :8	-			RG :receiver gain for correct ADC input
for inverse	probeheads: spin	ner off		

Processing parameters	
SI :16 K	BC_mod :quad

WDW :no phase correction :adjust the phase to pure absorption. baseline correction :ABS **FT** :Fourier transformation **referencing** :set the TMS signal to 0 ppm

plot :use XWINPLOT

Experiment 6.18 - Water Suppression by the Jump and Return Method				
pulse program:	p11 Water suppression with the jurn exchangeable protons.	np and return method which does not affect		
Setting of the need	ded channels: F1: ¹ H F2: of	f		
Acquisition para PL1 :f1 cha trans	meters annel - high power level for ¹ H mitter pulse	P0 :f1 channel - 90° ¹ H transmitter pulse		
D1 :2 sec -	- relaxation delay	 P1 :f1 channel - 90° 'H transmitter pulse D19 :125 usec - delay for binominal water suppression (D19=(1/2*d), d=distance of next null (in Hz)) 		
TD :32 K O1 :on res NS :8	onance of water signal	SW :10 ppm DS :2 RG :receiver gain for correct ADC input		
Processing para SI :16 K WDW :EM	meters	BC_mod :quad LB :0.1 Hz		
FT :Fourie	r transformation	phase correction :adjust the phase of the small signals to be positive, the water signal is in dispersion		
baseline c plot :use >	correction :ABS (WINPLOT	referencing :set the TMS signal to 0 ppm		

Chapter 7

- NMR Spectroscopy with Selective Pulses

Summary

Experiment	Pulse program	Description
7.1	selzg	Determination of a Shaped 90° ¹ H Transmitter Pulse
7.2	decp90sp.mo	Determination of a Shaped 90° ¹ H Decoupler Pulse
7.3	decp90sp.mo	Determination of a Shaped 90° ¹³ C Decoupler Pulse
7.4	dante.mo	Selective Excitation with DANTE
7.5	selco	SELCOSY
7.6	selincor.mo	SELINCOR: Selective Inverse H,C Correlation via ¹ J (C,H)
7.7	selina	SELINQUATE
7.8	selmlzf	Selective TOCSY
7.9	selinapt.mo	INAPT
7.10	sellr.mo	Determination of Long-Range C,H Coupling Constants
7.11	selreso.mo	SELRESOLV
7.12	serf.mo	SERF

Experiment 7.1

- Determination of a Shaped 90° ¹H Transmitter Pulse

pulse program: selzg An experiment to determine the 90° shaped pulse. It must be determined by varying the attenuation of the transmitter and not the pulse duration.

Setting of the needed channels:	F1:	¹Η
-	F2:	off

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- **SP1** :f1 channel power level for shaped pulse, to be varied in steps of 2 dB, initial value 90 dB
- **D1** :20 sec relaxation delay

TD :4 K

- **O1** :on ¹H resonance
- PHCOR :difference in phases between power level SP1 and PL1
- $\ensuremath{\textbf{RG}}$:receiver gain for correct ADC input

Processing parameters

SI :2 K WDW :EM **P1** :f1 channel - 90° ¹H transmitter pulse

P2 :f1 channel - 180° ¹H transmitter pulse
P11 :f1 channel – 90° (or 270°) shaped pulse, 50 msec was used here

SW :500 Hz **NS** :1 Gaussian shape with 1024 data points was used

BC_mod :quad LB :0.1 Hz

phase correction :adjust the phase to pure absorption.

baseline correction :ABS

Experiment 7.2 - Determination of a Shaped 90° ¹ H Decoupler Puls	e
pulse program: decp90sp.mo This experiment is used to calib	prate the shaped 90° decoupler pulse duration.
Setting of the needed channels: F1: ¹³ C F2: ¹ H	;
Acquisition parameters	· · · · · · · · · · · · · · · · · · ·
PL1 :f1 channel - high power level for "C transmitter pulse	P1 :f1 channel - 90° ¹ °C transmitter pulse
PL2 :f2 channel - high power level for ¹ H decoupler pulse	P3 :f2 channel - leave at 0 for the determination of the correct attenuation of the shaped pulse. For phase determination set to hard 90° ¹ H decoupler pulse.
PL21 :f1 channel - low power level, 15 dB was used here	P28 :f1 channel - spin-lock pulse, length=P13
SP2 :2 channel - power level for shaped	P13 :f2 channel – 90° shaped pulse, 30
D1 :10 sec – relaxation delay	D2 :1/[2J(C,H)]= 2.36 msec, calculated from ¹ J(C,H)=212 Hz
TD :4 K	SW :500 Hz
O1 :on ^{1°} C resonance NS :1	O2 :on 'H resonance Gaussian shape with 1024 data points was used
RG :receiver gain for correct ADC input	
Processing parameters	
	BC_mod :quad
FT :Fourier transformation	phase correction :adjust the satellites up and down
baseline correction :ABS	plot :use XWINPLOT
Experiment 7.3	

- Determination of a Shaped 90° ¹³C Decoupler Pulse

pulse program:	decp90sp.mo compare with E	xperiment	7.2
Setting of the nee	ded channels:	F1: F2:	¹H ¹³C

Acquisition parameters

PL1 :f1 channel - high power level for ¹H P1 :f1 channel - 90° ¹H transmitter pulse transmitter pulse

PL2 :f2 channel - high power level for ¹³C P3 :f2 channel - leave at 0 for the decoupler pulse determination of the correct attenuation of the shaped pulse. For phase determination set to hard 90° ¹³C decoupler pulse. PL21 :f1 channel - low power level, typical P28 :f1 channel - spin-lock pulse, attenuation 12 dB length=P13 SP2 :f2 channel - power level for shaped P13 :f2 channel - 90° shaped pulse, 10 pulse, to be varied, initial value 80 msec dB D1 :10 sec - relaxation delay D2 :1/[2J(C,H)]= 2.33 msec, calculated from ${}^{1}J(C,H)=215$ Hz **TD** :4 K SW :500 Hz O1 :on ¹H resonance O2 :on ¹³C resonance **NS**:1 Gaussian shape with 1024 data points was used RG :receiver gain for correct ADC input

Processing parameters

SI :2 K WDW :EM FT : Fourier transformation BC_mod :quad **LB** :0.1 Hz phase correction :adjust the satellites up and down plot :use XWINPLOT

Experiment 7.4

- Selective Excitation	ion with DANTE			
pulse program:	dante.mo 1D-sequence to e possible.	xcite a sin	gle r	esonance selectively, also with older instruments
Setting of the need	ded channels:	F1: F2:	¹³ C ¹ H	
Acquisition para	meters			
PL9 :f1 cha transi	annel - low power le mitter pulse	evel for ¹³ C	,	P0 :f1 channel - 1° ¹³ C transmitter pulse
PL12 :f2 ch dec CPD2 :WA seq	nannel - power leve oupling LTZ16 - CPD deco uence, defined by c	I for CPD upling pdprg2		PCPD2 :f2 channel – 90° pulse for decoupling sequence
D1 :2 sec -	- relaxation delay	1 1 0		D12 :20 usec - delay for power switching
D15 :0.5 m DAN1	sec –yielding a tota	al length of msec	f	L4 :number of pulse P0, here 50 was used
TD :4 K				SW :10 ppm
O1 :on ¹³ C methyl	resonance of the so group	elected		O2 :middle of ¹ H NMR spectrum
DS :4				NS :128
RG :receive	er gain for correct A	ADC input		

P2 :f1 channel - 180° ¹H transmitter pulse

baseline correction :ABS

Processing parameters SI :2 K

WDW :EM FT :Fourier transformation

baseline correction :ABS

BC_mod :quad LB :0.5 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 7.5 - SELCOSY	
pulse program: selco This is a 1D variant of the 2D connectivity information as the	COSY. The selective COSY method yields the same e homonuclear decoupling technique.
Setting of the needed channels: F1: ¹ F2: c	H off
Acquisition parameters PL1 :f1 channel - high power level for ¹ H	P1 :f1 channel - 90° ¹ H transmitter pulse
 SP1 :f1 channel - power level for shaped pulse D1 :2 sec - relaxation delay D14 :~1/[2J(H,H)], typically 37 msec, calculated from ¹ I(H H)=8 Hz 	 P11 :f1 channel – 90° shaped pulse, 50 msec was used here D13 :3 usec - short delay
 TD :32 K O1 :on resonance of selected signal or us SPOFFS NS :16 RG :receiver gain for correct ADC input 	SW :10 ppm Gaussian shape with 1024 data points was used DS :4
Processing parameters SI :16 K WDW :EM FT :Fourier transformation	BC_mod :quad LB :0.1 Hz phase correction :note that the selective COSY produces antiphase signals of the active coupling partners
plot :use XWINPLOT	partiters

Experiment 7.6	
- SELINCOR: Selective Inverse H,C Correlation via ¹ J (C,H)	
	Ĩ

pulse program: selincor.mo This experiment is the selective 1D version of the 2D inverse H,C correlation. The experiment correlates a selected carbon atom with the attached proton via one bond C,H coupling, using proton sensitivity for observation.

Setting of the needed channels: F1: ¹H F2: ¹³C

Acquisition parameters

PL0 :f2 channel - 120 dB fixed power level

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- PL2 :f2 channel high power level for ¹³C decoupler pulse
- **SP2** :f2 channel power level for shaped pulse
- D1 :1 sec relaxation delay
- D7 :2.5 sec BIRD delay, to be optimized for minimum FID; observe in the set-up mode the incoming FID and adjust D7 for minimum intensity
- **TD** :32 K
- **O1** :middle of ¹H NMR signal
- NS :32

Gaussian shape with 1024 data points was **RG** :receiver gain for correct ADC input used

Processing parameters

SI :16 K
 WDW :EM or MC (if the phase of the satellites are not very pure)
 FT :Fourier transformation

- P1 :f1 channel 90° ¹H transmitter pulse P2 :f1 channel - 180° ¹H transmitter pulse
- **P3** :f2 channel 90° ¹³C decoupler pulse
- P4 :f2 channel 90° ¹³C decoupler pulse
- P13 :f2 channel 90° or 270° shaped pulse, 5 msec
- **D2** :1/[2J(C,H)]= 3.57 msec, calculated from ¹J(C,H)=140 Hz
- **D20** :same length as selective pulse P13, 5 msec was used here
- **SW** :10 ppm
- **O2** :on resonance of selected ¹³C nucleus **DS** :4
- BC_mod :quad

LB :0.1 Hz

phase correction :adjust the phase to pure absorption (WDW=MC no phase correction is necessary)

plot :use XWINPLOT

Experiment 7.7		
- SELINQUATE		

pulse program: selina

This is the selective version of the INADEQUATE (Incredible Natural Abundance Double QUAtum Transfer). It is possible to measure specific ¹³C, ¹³C coupling constants over one or more bonds selectively with the high digital resolution of an 1D method. The experiment yields connectivity information for the irradiated carbon nucleus and ¹³C, ¹³C spin coupling constants with high accuracy.

Setting of the needed channels: F1: ${}^{13}C$ F2: ${}^{1}H$

Acquisition parameters

- **PL1** :f1 channel high power level for ¹³C transmitter pulse
- SP1 :f1 channel power level for shaped pulse
- PL12 :f2 channel power level for CPD decoupling
- P1 :f1 channel 90° ¹³C transmitter pulse

P2 :f1 channel - 180° ¹³C transmitter pulse
P11 :f1 channel - 270° shaped pulse, 10 msec was used here
PCPD2 :f2 channel - 90°pulse for decoupling sequence CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 D1 :4 sec - relaxation delay D4 :1/[4J(C,C)]= 7.6 msec, calculated from D13 :3 usec - short delay $^{1}J(C,C)=33$ Hz, for long range couplings J(C,C)=4 Hz= 62.5 msec **TD** :16 K O1 : on resonance of selected signal or use SPOFFS NS :256 PHCOR3 : difference of phases between power level SP1 and PL1 **RG** :receiver gain for correct ADC input

D11 :30 msec - delay for disk I/O

SW :23 ppm O2 :middle of ¹H NMR spectrum

DS:4

Gaussian shape with 1024 data points was used

Processing parameters

SI :8 K WDW :EM FT : Fourier transformation BC_mod :quad **LB** :2 Hz phase correction :.note that the experiment yields 13C satellites in antiphase. The residual signal of the molecule containing only one 13C atom should not be used for phasing.

1

plot :use XWINPLOT

Experiment - Selective TOCS	7.8 Y			
pulse program:	selmlzf.mo This experiment SpectroscopY) r a response from	is the sele nethod. O all proton	ective ne pro s that	1D version of the 2D TOCSY (TOtal Correlation oton is excited by a shaped pulse and this produces are connected by spin coupling within a chain.
Setting of the nee	ded channels:	F1: F2:	¹ H off	
Acquisition para PL0 :f1 cha PL1 :f1 cha trans SP1 :f1 cha pulse PL10 :f1 cha spin	meters annel - 120 dB, fix annel - high powe mitter pulse annel - power leve hannel - power leve lock, 12 dB was	ked power r level for el for shap vel for TOC	level ¹ H ed CSY-	 P1 :f1 channel - 90° ¹H transmitter pulse P11 :f1 channel - 270° shaped pulse, 50 msec was used here P5 :f1 channel - 60° low power pulse
D1 :2 sec - D9 :200 ms	- relaxation delay sec – TOCSY mix	ing time		 P6 :f1 channel - 90° low power pulse [40 usec] P7 :f1 channel - 180° low power pulse P17 :f1 channel - trim pulse [2.5 msec] D11 :30 msec - delay for disk I/O D14 :delay for evolution after shaped pulse: for self-refocussing pulse 20 usec
D13 :3 use	•c – short delay			

	VD :variable delay, taken from vd-list to be used for z-filter:	L4 :number of delays in VD-list (10)
	Example for z-filter list:	
	0.004s;0.016s;0.010s;0.006s;0.004s;0.	
	010s;0.017s;0.011s;0.018s;0.012s	
	TD :32 K	SW :10 ppm
	O1 :on resonance of selected signal or use SPOFFS	define VDLIST
	PHCOR1 :difference in phases between power level SP1 and PL10	Gaussian shape with 1000 data points was used
	NS :8	DS :4
	RG :receiver gain for correct ADC input	
Proces	ssing parameters	
	SI :16 K	BC_mod :quad
	WDW :EM	LB :0.1 Hz
	FT :Fourier transformation	phase correction :adjust the phase to pure absorption.
	baseline correction :ABS	plot :use XWINPLOT

Experiment 7.9

pulse program: selinapt.mo

This experiment is the selective version of INEPT. Here only a particular proton is excited and used for polarization transfer, in order to identify ¹³C nuclei that are connected to this proton via spin-spin coupling. The experiment is mainly used for detecting long-range interactions and provides a good method for assigning quaternary carbon nuclei.

Setting of the needed channels:	F1:	¹³ C
-	F2:	^{1}H

Acquisition parameters

PL0 :f2 channel - 120 dB, fixed power level P1 :f1 channel - 90° ¹³C transmitter pulse PL1 :f1 channel - high power level for ¹³C transmitter pulse P2 :f1 channel - 180° ¹³C transmitter pulse P13 :f2 channel - 90°° rectangular shaped SP2 :f2 channel - power level for shaped pulse, here 67 dB was used ¹H decoupler pulse, here 20 msec P14 :f2 channel - 180° rectangular shaped ¹H decoupler pulse PCPD2 :f2 channel - 90° pulse for PL12 :f2 channel - power level for CPD decoupling sequence decoupling CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 **D1** :3 sec – relaxation delay D20 :10 msec - fixed delay D21 :20 msec - fixed delay TD :32 K SW :55 ppm O1 :center of aromatic region of the ¹³C O2 :on resonance of selected ¹H NMR NMR spectrum signal Rectangular shaped pulse with 1000 data points was used NS :64 RG :receiver gain for correct ADC input

Processing parameters SI :16 K WDW :EM FT :Fourier transformation

BC_mod :quad LB :2 Hz phase correction :note that the sign of the signals may be positive or negative plot :use XWINPLOT

baseline correction :ABS

Experiment 7.10

- Determination of Long-Range C,H Coupling Constants

pulse program: sellr.mo The experiment presented here demonstrates a 2D method related to 2D Jresolved spectroscopy and employing a selective pulse. It yields directly the desired spin coupling constant of a chosen C,H pair free of other passive spin couplings. Unlike the original method the pulse sequence given here uses a shaped RE-BURP pulse. F1: ¹³C Setting of the needed channels: ^{1}H F2: Acquisition parameters PL1 :f1 channel - high power level for ¹³C P1 :f1 channel - 90° ¹³C transmitter pulse transmitter pulse P2 :f1 channel - 180° ¹³C transmitter pulse SP2 :f2 channel - power level for shaped P14 :f2 channel - 180°shaped pulse, 40 RE-BURP pulse, 46 dB was used msec was used here PL12 :f2 channel - power level for CPD PCPD2 :f2 channel - 90° pulse for decoupling sequence decoupling CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 D0:3 usec - incremented delay D1 :2 sec - relaxation delay D11 :30 msec - delay for disk I/O D12:20 usec - delay for power switching Parmod :2D ND0:2 TD2:1 K data points in F2 TD1 :128 data points in F1 SW2 :200 ppm SW1 :50 Hz O1 :middle of the ¹³C NMR spectrum O2 :on resonance of the methyl group at 1.8 ppm **DS** :16 **NS**:8 RE-BURP shape with 256 points was used DE :as small as possible **INO** :1/[2*SW1] RG :receiver gain for correct ADC input **Processing parameters**

SI(F2) :512 WSI(F1) :256 WWDW(F2) :SINEWDW(F1) :SINESSB(F2) :2SSB(F1) :2PH-mod(F2) :noPH-mod(F1) :mcMC2 :QFXFB :fourier transformation in both
directionsphase correction :not necessaryplot :use XWINPLOT

pulse program: selreso.mo The experiment presented here demonstrates a 2D J-resolved spectroscopy and employing a selective pulse. It yields directly the desired spin coupling constant of a chosen C,H pair independent of other passive spin couplings. In contrast to Experiment 7.10, however, the SELRESOLV method is a proton detected experiment and hence more sensitivity.

Setting of the needed channels:	F1:	^{1}H	
5	F2:	¹³ C	

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- PL2 :f2 channel high power level for ¹³C decoupler pulse
- PL19 :f1 channel power level for CPD decoupling, 28 dB
- **SP2** :f2 channel power level for shaped pulse, here 66 dB was used
- CPD1 :WALTZ16 CPD decoupling sequence, defined by cpdprg1
- **D0** :3 usec incremented delay **D1** :6 sec – relaxation delay
- **DI** .6 sec relaxation delay \mathbf{D} .1/(2.1/(2.11)) = 50 mass as
- **D6** :1/[2J(C,H)]= 50 msec, calculated from ⁿJ(C,H)=10 Hz **Parmod** :2D

TD2 :2 K data points in F2

SW2 :1 ppm

- O1 :center of methyl group region of ¹H NMR spectrum NS :16
- IN0 :1/[2*SW1]
- **RG** :receiver gain for correct ADC input

Processing parameters

SI(F2) :2 K WDW(F2) :SINE SSB(F2) :0 PH-mod(F2) :no MC2 :QF

phase correction :not necessary

serf.mo

P1 :f1 channel - 90° ¹H transmitter pulse

P2 :f1 channel - 180° ¹H transmitter pulse **P3** :f2 channel - 90° ¹³C decoupler pulse

PCPD1 :f1 channel - 90° pulse for decoupling sequence, 100 usec
P13 :f2 channel - 90° shaped pulse, 10 msec was used here
half Gaussian shape

D11 :30 msec - delay for disk I/O D12 :20 usec - delay for power switching

ND0 :2

TD1 :32 data points in F1
SW1 :45 Hz
O2 :on resonance of the olefinic carbon atom C-2 at 123.6 ppm
DS :16
DE :as small as possible

SI(F1) :128 W WDW(F1) :SINE SSB(F1) :0 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT

Experiment 7.12 - SERF

pulse program:

The SERF (Selective ReFocussing) experiment is a 2D method. It directly yields the desired coupling constant of a chosen spin pair without other passive spin couplings.

F2: off

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- SP1 :f1 channel power level for E-BURP2, here 55 dB was used
- SP5 :f1 channel power level for RE-BURP, here 45 dB was used

D0 :3 usec – incremented delay D12 :20 usec - delay for power switching Parmod :2D TD2 :1 K data points in F2 SW2 :8 ppm O1 :middle of ¹H NMR spectrum NS :4 IN0 :1/[2*SW1] RG :receiver gain for correct ADC input calibrate the double selective RE-BURP shape, so that this pulse acts simultaneously on the olefinic proton at 6.9 ppm and the methyl group at 1.8 ppm

P28 :f1 channel - 5 msec purging pulse

P11 :f1 channel - 90° shaped pulse, E-BURP2 pulse, 50 msec length

P12 :f1 channel - 180° shaped pulse, double selective RE-BURP pulse, 50 msec length

D1 :2 sec – relaxation delay

ND0 :2 TD1 :64 data points in F1 SW1 :50 Hz

DS :16 **DE** :as small as possible

the E-BURP2 shape acts on the olefinic signal at 6.9 ppm

Processing parameters

SI(F2) :512 W WDW(F2) :SINE SSB(F2) :0 PH-mod(F2) :no MC2 :QF

phase correction :not necessary

SI(F1) :128 W WDW(F1) :SINE SSB(F1) :0 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT

Chapter 8

- Auxiliary Reagents, Quantitative Determinations and Reaction Mechanism

Summary

Experiment	Pulse program	Description
8.1	zg30	Signal Separation Using a Lanthanide Shift Reagent
8.2	zg30	Signal Separation of Enantiomers Using a Chiral Shift Reagent
8.3	zg30	Signal Separation of Enantiomers Using a Chiral Solvating Agent
8.4	zg30	Determination of Enantiomeric Purity with Pirkle's Reagent
8.5	zg0dc	Determination of Enantiomeric Purity by ³¹ P NMR
8.6	zg30	Determination of Absolute Configuration by the Advanced Mosher Method
8.7	zg30	Aromatic Solvent-Induced Shift (ASIS)
8.8	zg30	NMR Spectroscopy of OH- Protons and H/D Exchange
8.9	zgdc30	Isotope Effects on Chemical Shielding
8.10	zgdc30	pK _a Determination with ¹³ C NMR
8.11	zg0dc	The Relaxation Reagent Cr(acac) ₃
8.12	zg30	Determination of Paramagnetic Susceptibility by NMR
8.13	zg0 and zg0dc	¹ H and ¹³ C NMR of Paramagnetic Compounds
8.14	zgdc30	The CIDNP Effect
8.15	zg0	Quantitative ¹ H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka
8.16	zgig	Quantitative ¹³ C NMR Spectroscopy with Inverse Gated ¹ H-Decoupling
8.17	zg30	NMR Using Liquid-Crystal Solvents

Experiment 8.1

- Signal Separation Using a Lanthanide Shift Reagent

pulse program: zg30 compare with Experiment 3.1

Setting of the needed channels:	F1: F2:	¹ H off	
Acquisition parameters PL1 :f1 channel - high power l transmitter pulse D1 :0.1 sec – relaxation delay TD :32 K O1 :middle of the ¹ H NMR spec NS :8	level for ¹	Η	 P1 :f1 channel - 90° ¹H transmitter pulse SW :15 ppm RG :receiver gain for correct ADC input
Processing parameters SI :16 K WDW :EM FT :Fourier transformation baseline correction :ABS			BC_mod :quad LB :0.1 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT
Experiment 8.2 - Signal Separation of Enantiomers U	lsing a Ch	niral \$	Shift Reagent
pulse program: zg30 compare with Exp	eriment 3	8.1	
Setting of the needed channels:	F1: F2:	¹H off	
Acquisition parameters PL1 :f1 channel - high power l transmitter pulse D1 :0.1 sec – relaxation delay	level for ¹	Н	P1 :f1 channel - 90° ¹ H transmitter pulse
O1 :middle of the ¹ H NMR spe signals at -3 ppm) NS :8	ectrum (al	SO	RG :receiver gain for correct ADC input

Processing parameters SI :16 K

WDW :EM FT :Fourier transformation

baseline correction :ABS

BC_mod :quad LB :0.1 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 8.3

- Signal Separation of Enantiomers Using a Chiral Solvating Agent

pulse program:	zg30
	compare with Experiment 3.1

Setting of the needed channels:	F1:	^{1}H
-	F2:	off

Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse D1 :0.1 sec – relaxation delay TD :32 K O1 :middle of the ¹ H NMR spectrum NS :8	 P1 :f1 channel - 90° ¹H transmitter pulse SW :15 ppm RG :receiver gain for correct ADC input 	
Processing parameters SI :16 K WDW :EM FT :Fourier transformation baseline correction :ABS	BC_mod :quad LB :0.1 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT	
Experiment 8.4 - Determination of Enantiomeric Purity with Pirkle's	Reagent	
pulse program: zg30 compare with Experiment 3.1		
Setting of the needed channels: F1: ¹ H F2: off		
Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse D1 :0.1 sec – relaxation delay TD :32 K O1 :middle of the ¹ H NMR spectrum NS :8	 P1 :f1 channel - 90° ¹H transmitter pulse SW :15 ppm RG :receiver gain for correct ADC input 	
Processing parameters SI :16 K WDW :GM LB :-0.5 Hz FT :Fourier transformation baseline correction :ABS	BC_mod :quad GB :0.2 phase correction :adjust the phase to pure absorption. plot :use XWINPLOT	
Experiment 8.5		

- Determination of Enantiomeric Purity by ³¹P NMR

pulse program:	zg0dc compare with Ex	periment	2.2
Setting of the need	ded channels:	F1: F2:	³¹ P 1H

Acquisition parameters PL1 :f1 channel - high power level for ¹³C P0 :f1 channel - 30° ¹³C transmitter pulse

transmitter pulse PL12 :f2 channel - power level for CPD PCPD2 :f2 channel - 90° pulse for decoupling decoupling sequence CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 **D1** :2 sec – relaxation delay D11 :30 msec - delay for disk I/O **TD** :16 K SW :20 ppm **O1** :middle of the ³¹P NMR spectrum **O2** :middle of ¹H NMR spectrum **NS**:32 RG :receiver gain for correct ADC input **Processing parameters** SI :8 K BC_mod :quad WDW :EM LB :3 Hz FT : Fourier transformation phase correction :adjust the phase to pure absorption. integration : is done with ABS or can be referencing : reference against external done manual 85% H_3PO_4 with $\delta p=0$ baseline correction :ABS plot :use XWINPLOT **Experiment 8.6** - Determination of Absolute Configuration by the Advanced Mosher Method pulse program: zg30 compare with Experiment 3.1 Setting of the needed channels: F1: ^{1}H F2: off

Acquisition parameters

measure both solutions with the same parameters
 PL1 :f1 channel - high power level for ¹³C transmitter pulse
 D1 :0.1 sec - relaxation delay
 TD :32 K
 O1 : middle of ¹H NMR spectrum
 NS :8
 RG :receiver gain for correct ADC input

Processing parameters

 process both FIDs with the same parameters

 SI :16 K
 BC_mod :quad

 WDW :EM
 LB :0.1 Hz

 FT :Fourier transformation
 phase correction :adjust the phase to pure absorption.

 baseline correction :ABS
 plot :use XWINPLOT

 use the dual display mode to extract the chemical shift differences of the two spectra

Experiment 8.7

- Aromatic Solvent-Induced Shift (ASIS)

pulse program: zg30 compare with Experiment 3.1

Setting of the needed channels:	F1:	¹Η
-	F2:	off

Acquisition parameters

record the spectra of the compound dissolved in both solutions PL1 :f1 channel - high power level for ¹³C transmitter pulse D1 :0.1 sec - relaxation delay TD :32 K O1 : middle of ¹H NMR spectrum NS :8 RG :receiver gain for correct ADC input

Processing parameters

SI :16 K WDW :EM FT :Fourier transformation

baseline correction :ABS

 $\begin{array}{l} \textbf{BC_mod}: \mbox{quad} \\ \textbf{LB}: \mbox{0.1 Hz} \\ \textbf{phase correction}: \mbox{adjust the phase to} \\ pure absorption. \\ \textbf{referencing}: \mbox{reference both spectra to} \\ \delta H=0 \mbox{ and inspect the} \\ \mbox{aromatic region} \\ \textbf{plot}: \mbox{use XWINPLOT} \end{array}$

Experiment 8.8

- NMR Spectroscopy of OH-Protons and H/D Exchange

pulse program:	zg30 compare with E	xperiment	3.1	
Setting of the need	ded channels:	F1: F2:	¹ H off	

Acquisition parameters

record a spectrum, remove the tube from the magnet, add a drop of D₂O, and shake the NMR tube thoroughly and record again a spectrum PL1 :f1 channel - high power level for ¹³C P1 :f1 channel - 90° ¹³C transmitter pulse D1 :0.1 sec – relaxation delay TD :32 K SW :20 ppm O1 : middle of ¹H NMR spectrum NS :8 RG :receiver gain for correct ADC input

Processing parameters	
SI :16 K	BC_mod :quad
WDW :EM	LB :0.1 Hz
FT :Fourier transformation	phase correction :adjust the phase to pure absorption.
baseline correction :ABS	plot :use XWINPLOT

Experiment 8.9

- Isotope Effects on Chemical Shielding

pulse program:	zgdc30 compare with E	xperiment	3.2
Setting of the nee	ded channels:	F1: F2:	¹³ C ¹ H

Acquisition parameters

first measure mixture of the deuterated solvents alone, then add the mixture of the undeuterated solvents and repeat the measurement **PI 1** :f1 channel - 90° ¹³C transmitter pulse

PL1 : I channel - high power level for C	P1 : 1 channel - 90° C transmitter pulse
PL12 :f2 channel - power level for CPD	PCPD2 :f2 channel –90° pulse for
decoupling	decoupling sequence
CPD2 :WALTZ16 - CPD decoupling	
sequence, defined by cpdprg2	
D1 :1 sec – relaxation delay	D11 :30 msec - delay for disk I/O
TD :64 K	SW :200 ppm
O1 :middle of the ¹³ C NMR spectrum	O2 :middle of ¹ H NMR spectrum
NS :256	RG :receiver gain for correct ADC input
assing narameters	

Processing parameters	
SI :64 K	BC_mod :quad
WDW :EM	LB :0.3 Hz
FT : Fourier transformation	phase correction :adjust the phase to pure absorption.
baseline correction : ABS	plot :use XWINPLOT

Experiment 8.10

- pK_a Determination with ¹³C NMR

pulse program:	zgdc30 compare with Experiment 3.2

Setting of the needed channels: F1: ${}^{13}C$ F2: ${}^{1}H$

Acquisition parameters

- PL1 :f1 channel high power level for ¹³C transmitter pulse
 PL12 :f2 channel power level for CPD decoupling
 CPD2 :WALTZ16 CPD decoupling sequence, defined by cpdprg2
 D1 :2 sec relaxation delay
 TD :64 K
 O1 :middle of the ¹³C NMR spectrum
 NS :32
- P1 :f1 channel 90° ¹³C transmitter pulse
- PCPD2 :f2 channel –90° pulse for decoupling sequence
- D11 :30 msec delay for disk I/O
- **SW** :200 ppm
- **O2** :middle of ¹H NMR spectrum
- RG :receiver gain for correct ADC input

Processing parameters SI :32 K WDW :EM FT :Fourier transformation

BC_mod :quad LB :2 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

baseline correction :ABS

Experiment 8.11

- The Relaxation Reagent Cr(acac)₃

pulse program:	zg0dc compare with Exp	periment 2	2.2	
Setting of the need	ded channels:	F1: F2:	¹³ C ¹ H	

Acquisition parameters

 PL1 :f1 channel - high power level for ¹³C
 P0

 transmitter pulse
 PL12 :f2 channel - power level for CPD
 PC

 decoupling
 CPD2 :WALTZ16 - CPD decoupling
 sequence, defined by cpdprg2

 D1 :0.5 sec - relaxation delay
 D1

 TD :64 K
 SW

 O1 :middle of the ¹³C NMR spectrum
 O2

 NS :64
 RG

P0 :f1 channel - 45° ¹³C transmitter pulse

PCPD2 :f2 channel –90° pulse for decoupling sequence

D11 :30 msec - delay for disk I/O
SW :250 ppm
O2 :middle of ¹H NMR spectrum
RG :receiver gain for correct ADC input

Processing parameters SI :32 K

WDW :EM FT :Fourier transformation

baseline correction :ABS

BC_mod :quad LB :2 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 8.12

- Determination of Paramagnetic Susceptibility by NMR				
pulse program:	zg30 compare with Expe	eriment 3.	1	
Setting of the need	led channels:	F1: F2:	¹ H off	
Acquisition parar PL1 :f1 cha transr	neters annel - high power la nitter pulse	evel for ¹ H	I	P1 :f1 channel - 90° ¹ H transmitter pulse
D1 :0.1 sec TD :32 K O1 :middle NS :8	of the ¹ H NMR spe	ctrum		SW :15 ppm RG :receiver gain for correct ADC input

Processing parameters SI :16 K WDW :EM FT :Fourier transformation

BC_mod :quad LB :0.1 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

baseline correction :ABS

Experiment 8	Experiment 8.13			
a) pulse program: 2	zg0 compare with Expe	eriment 2.	1	
Setting of the neede	ed channels:	F1: F2:	¹ H off	
Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse, here 3 dB was used				P0 :f1 channel - 45° ¹ H transmitter pulse
D1 :0.1 sec TD :64 K O1 :25 ppm	 relaxation delay to lower frequencies 	es from		SW :110pm
NS sig NS :8	nai			RG :receiver gain for correct ADC input
Processing param SI :32 K WDW :EM FT :Fourier t	eters transformation			BC_mod :quad LB :5 Hz phase correction : adjust the phase to pure absorption.
baseline co	rrection :ABS			plot :use XWINPLOT
b) pulse program:	zg0dc compare with Expe	eriment 2.	2	
Setting of the neede	ed channels:	F1: F2:	¹³ C ¹ H	
Acquisition param PL1 :f1 char transm PL12 :f2 cha deco	neters nnel - high power le hitter pulse annel - power level upling	evel for ¹³ 0 for CPD	C	 P0 :f1 channel - 45° ¹³C transmitter pulse PCPD2 :f2 channel –90° pulse for decoupling sequence
CPD2 :WAL sequ D1 :0.1 sec TD :64 K O1 :400 ppn TMS sig	1∠16 - CPD decou ence, defined by c – relaxation delay n to higher frequen nal	ipling pdprg2 icies from		 SW :990 ppm O2 :on resonance of the previously determined ¹H NMR frequency of the cobaltocene signal RG :receiver gain for correct ADC input

Processing parameters SI :16 K WDW :EM FT :Fourier transformation

baseline correction :ABS

BC_mod :quad LB :100 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 8.14 - The CIDNP Effect pulse program: zgdc30 compare with Experiment 3.2 ¹³C Setting of the needed channels: F1: F2: ^{1}H Acquisition parameters PL1 :f1 channel - high power level for ¹³C P1 :f1 channel - 90° ¹³C transmitter pulse transmitter pulse PCPD2 :f2 channel -90° pulse for PL12 :f2 channel – power level for CPD decoupling sequence decoupling **CPD2** :WALTZ16 – CPD decoupling sequence, defined by cpdprg2 D1 :1 sec - relaxation delay D11 :30 msec - delay for disk I/O TD :32 K SW :250 ppm **O1** :middle of the ¹³C NMR spectrum O2 :middle of ¹H NMR spectrum **NS**:16 RG : receiver gain for correct ADC input prepare with edc 20 data sets and use the set the temperature to 120°C and start au-program multizg to measure the 20 immediately the automatic program spectra **Processing parameters** BC_mod :quad SI :16 K WDW :EM LB :2 Hz FT : Fourier transformation phase correction :adjust the phase to pure absorption. plot :use XWINPLOT baseline correction :ABS

Experiment 8.15

- Quantitative ¹H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka

pulse program:	zg0 compare with Ex	periment 2	2.1	
Setting of the need	ded channels:	F1: F2:	¹ H off	
Acquisition para PL1 :f1 cha transr	meters annel - high power mitter pulse	level for ¹	Н	P0 :f1 channel - 45° ¹ H transmitter pulse
D1 :5 sec – TD :32 K or	 relaxation delay r more (use a larg 	e data set	to	SW :10 ppm

get 10 points/Hz digital resolution) O1 :middle of the ¹H NMR spectrum NS :16 (obtain a good S/N, at least 35:1)

RG :receiver gain for correct ADC input

BC_mod :quad LB :0.1 Hz phase correction :adjust the phase to pure absorption. baseline correction :ABS

Experiment 8.16

Processing parameters SI :64 K

WDW :EM

FT : Fourier transformation

integration :manual

plot :use XWINPLOT

Quantitative ¹³C NMR Spectroscopy with Inverse Gated ¹H-Decoupling

pulse program: zgig

1D-sequence with inverse gated decoupling, using a 90° pulse. This experiment yields ¹H-decoupled NMR spectra of X-nuclei without signal enhancement by the nuclear Overhauser effect.

Setting of the needed channels: F1: ${}^{13}C$ F2: ${}^{1}H$

Acquisition parameters

PL1 :f1 channel - high power level for ¹³C transmitter pulse

PL12 :f2 channel - power level for CPD decoupling

CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2

- D1 :10 sec relaxation delay
- **TD** :2 K (short aq to avoid NOE build-up during acquisition)
- O1 :middle of aromatic region of the ¹³C NMR spectrum
 NS :160

Processing parameters

SI :8 K WDW :EM FT :Fourier transformation

integration :manual plot :use XWINPLOT P1 :f1 channel - 90° ¹³C transmitter pulse

PCPD2 :f2 channel - 90° pulse for decoupling sequence

D11 :30 msec - delay for disk I/O SW :20 ppm

O2 :middle of aromatic region of ¹H NMR spectrumRG :receiver gain for correct ADC input

BC_mod :quad LB :2 Hz phase correction :adjust the phase to pure absorption. baseline correction :ABS

Experiment 8.17

- NMR Using Liquid-Crystal Solvents

pulse program: zg30

compare with Experiment 3.1

Setting of the needed channels:	F1:	^{1}H
-	F2:	off

Acquisition parameters

PL1 :f1 channel - high power level for ¹H transmitter pulse
D1 :1 sec - relaxation delay

TD :64 K

O1 :on resonance of the 1H benzene signal in isotropic phase

P1 :f1 channel - 90° ¹H transmitter pulse

D11 :30 msec - delay for disk I/O

SW :22 ppm

DE :100 usec, to avoid break through of the matrix signal

NS :8 RG :receiver gain for correct ADC input set the temperature to 330 K and measure the liquid crystal alone, go back to 300 K and measure again. Add the benzene and measure at 300 K.

Processing parameters

SI :32 K WDW :EM FT :Fourier transformation

BC_mod :quad LB :0.3 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

baseline correction :ABS

Chapter 9

- Heteronuclear NMR Specroscopy

Summary

Experiment	Pulse program	Description
9.1	dept	¹ H-Decoupled ¹⁵ N NMR Spectra with DEPT
9.2	deptnd	¹ H-Coupled ¹⁵ N NMR Spectra with DEPT
9.3	zg30	¹⁹ F NMR Spectroscopy
9.4	dept	²⁹ Si NMR Spectroscopy with DEPT
9.5	exp9_5.mo	²⁹ Si NMR Spectroscopy with Spin-Lock Polarization
9.6	zgdc30	¹¹⁹ Sn NMR Spectroscopy
9.7	zgdc	² H NMR Spectroscopy
9.8	zgdc	¹¹ B NMR Spectroscopy
9.9	aring2.mo	¹⁷ O NMR Spectroscopy with RIDE
9.10	zg aring	^{47/49} Ti NMR Spectroscopy with ARING

Experiment 9.1 - ¹ H-Decoupled ¹⁵ N NMR Spectra with DEPT				
pulse program: dept compare with Experiment 6.9				
Setting of the needed channels: F1: ¹⁵ N F2: ¹ H				
Acquisition parameters PL1 :f1 channel - high power level for ¹⁵ N transmitter pulse PL2 :f2 channel - high power level for ¹ H decoupler pulse	 P1 :f1 channel - 90° ¹⁵N transmitter pulse P2 :f1 channel - 180° ¹⁵N transmitter pulse P0 :f2 channel - 45° ¹H decoupler pulse (optimum for NH₂) P3 :f2 channel - 90° ¹H decoupler pulse P4 :f2 channel - 180° ¹H decoupler pulse 			
 PL12 :f2 channel - power level for CPD decoupling CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 	PCPD2 :f2 channel - 90° pulse for decoupling sequence			

D2 :1/[2J(N,H)]= 5.6 msec, calculated from ¹J(N,H)=90 Hz SW :350 ppm (chemical shift range of NHgroups)

DS :8

O2 :middle of ¹H NMR spectrum

O1 :220 ppm upfield from CH₃NO₂ (middle of NH region) **NS** :4

TD :32 K

RG :receiver gain for correct ADC input

Processing parameters

SI :16 K WDW :EM **FT** : Fourier transformation

baseline correction :ABS

BC_mod :quad LB :2 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 9.2

- ¹H-Coupled ¹⁵N NMR Spectra with DEPT

pulse program:	deptnd DEPT experiment	without de	cou	bling.		
Setting of the need	led channels:	F1: F2:	¹⁵ N ¹ H			
Acquisition parar	neters					
PL1 :f1 channel - high power level for ¹⁵ N transmitter pulse			l	P1 :f1 channel -	90° ¹⁵ N transmitter pulse	
				P2 :f1 channel -	180° ¹⁵ N transmitter pulse	
PL2 :f2 channel - high power level for ¹ H decoupler pulse				P0 :f1 channel -	45° ¹ H decoupler pulse	
				P3 :f2 channel -	90° ¹ H decoupler pulse	
				P4 :f2 channel -	180° ¹ H decoupler pulse	
D1 :2 sec -	relaxation delay			D2 :1/[2J(N,H)]= ¹ J(N,H)=90 F	5.6 msec, calculated from	
TD :32 K				SW :350 ppm		
O1 :220 pp	O1 :220 ppm upfield from CH ₂ NO ₂			O2 :middle of ¹ H	NMR spectrum	
NS :32	• 3	2		DS :8	•	
RG :receive	er gain for correct A	DC input				
Processing parar	neters					
SI :16 K				BC_mod :quad		
WDW :EM				LB :1 Hz		
FT :Fourier	transformation			phase correctio	n :adjust the phase to pure absorption.	
baseline correction :ABS				plot :use XWINPLOT		

Experiment 9.3 - ¹⁹F NMR Spectroscopy

pulse program: zg30 compare with Experiment 3.1 ¹⁹F Setting of the needed channels: F1: F2: off

Acquisition parameters

transmitter pulse D1 :1 sec - relaxation delay **TD** :64 K SW :300 ppm (typical range for fluorine bound to carbon) O1 :about 100 ppm upfield from CCl₃F (center of that range) RG :receiver gain for correct ADC input **NS**:1 **Processing parameters** BC_mod :quad SI :32 K WDW :EM LB :0.1 Hz FT : Fourier transformation phase correction : adjust the phase to pure absorption. baseline correction :ABS plot :use XWINPLOT **Experiment 9.4** ²⁹Si NMR Spectroscopy with DEPT pulse program: dept compare with Experiment 6.9 ²⁹Si Setting of the needed channels: F1: F2: ^{1}H Acquisition parameters P1 :f1 channel - 90° 29 Si transmitter pulse PL1 :f1 channel - high power level for ²⁹Si transmitter pulse P2 :f1 channel - 180° ²⁹Si transmitter pulse P0 :f2 channel - 16.8° ¹H decoupler pulse PL2 :f2 channel - high power level for ¹H decoupler pulse corresponding to the 12 equivalent protons of the sample P3 :f2 channel - 90° ¹H decoupler pulse P4 :f2 channel - 180° ¹H decoupler pulse PL12 :f2 channel - power level for CPD PCPD2 :f2 channel - 90° pulse for decoupling decoupling sequence CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 D1 :1 sec - relaxation delay D2 :1/[2J(Si,H)]= 0.07 sec, calculated from ²J(Si,H)=7 Hz SW :250 ppm **TD** :64 K **O1** :70 ppm upfield from ²⁹Si signal of TMS **O2** :middle of ¹H NMR spectrum NS:32 **DS**:64 RG :receiver gain for correct ADC input **Processing parameters** BC_mod :quad SI :32 K WDW :EM LB :3 Hz phase correction :adjust the phase to FT : Fourier transformation pure absorption. baseline correction :ABS plot :use XWINPLOT
Experiment 9.5
- ²⁹Si NMR Spectroscopy with Spin-Lock Polarization

pulse program:	exp9_5.mo With the spin-lock demonstated for t well for nuclei with	technique a s he liquid state n no directly a	superior polarization can be achieved, which is here . This type of polarization transfer in liquids works ttached hydrogen atom.
Setting of the need	ded channels:	F1: ²⁹ S F2: ¹ H	ii
Acquisition parar PL2 :f2 cha decou PL10 :f1 ch PL15 :f2 ch PL12 :f2 ch decou CPD2 :WAI sequ D1 :4 sec – D12 :20 use TD :4 K O1 :on reso L4 :32, the corresp NS :1	meters annel - high power upler pulse, here 3 hannel - low power hannel - low power hannel - low power hannel - power leve bupling LTZ16 - CPD deco upling LTZ16 - CPD deco up	level for ¹ H dB was used level el for CPD pupling cpdprg2 er switching al of TMS l be 152 msec = 7 Hz	 P3 :f2 channel - 90° ¹H decoupler pulse P6 :f1 channel - 90° ²⁹Si transmitter pulse, 50 usec was used P9 :f2 channel - 90° ¹H decoupler pulse, 50 usec was used PCPD2 :f2 channel - 90° pulse for decoupling sequence, here 100 usec was used D9 :152 msec - delay for spin-lock D11 :30 msec - delay for disk I/O SW :500 Hz O2 :on resonance of ¹H NMR signal of TMS RG :receiver gain for correct ADC input
Processing parar SI :2 K WDW :EM FT :Fourier baseline c	neters transformation orrection :ABS		BC_mod :quad LB :1 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT
Experiment 9	9.6 roscopy		
pulse program: Setting of the need	zgdc30 compare with Exp ded channels:	Deriment 3.2 F1: ¹¹⁹ F2: ¹ H	Sn
Acquisition parar	neters		

PL1 :f1 channel - high power level for ¹¹⁹Sn P1 :f1 channel - 90° ¹¹⁹Sn transmitter transmitter pulse pulse PL12 :f2 channel – power level for CPD PCPD2 :f2 channel - 90° pulse for decoupling decoupling sequence

CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 D1 :1 sec – relaxation delay D11 :30 msec - delay for disk I/O TD :32 K SW :600 ppm (Sn chemical shift range typical for $R_{4-n}SnX_n$) **O2** :middle of ¹H NMR spectrum **O1** :100 ppm upfield from $Sn(CH_3)_4$ (center of that chemical shift range) **NS**:8 RG :receiver gain for correct ADC input **Processing parameters** SI:16 K BC_mod :quad WDW :EM LB :3 Hz FT : Fourier transformation phase correction :adjust the phase to pure absorption. baseline correction :ABS plot :use XWINPLOT

Experiment 9.7

- H NMR Spectroscopy			
pulse program:	zgdc compare with I	Experiment (3.10
Setting of the needed channels:		F1: F2:	² H ¹ H

Acquisition parameters

PL1 :f1 channel - high power level for ²H transmitter pulse
PL12 :f2 channel - power level for CPD decoupling
CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2
D1 :100 msec - relaxation delay
TD :8 K
O1 :middle of the ²H NMR spectrum
NS :256

Processing parameters

SI :4 K WDW :EM FT :Fourier transformation

baseline correction :ABS

plot :use XWINPLOT

P1 :f1 channel - 90° ²H transmitter pulse

PCPD2 :f2 channel - 90° pulse for decoupling sequence

D11 :30 msec - delay for disk I/O SW :8 ppm O2 :middle of ¹H NMR spectrum

RG :receiver gain for correct ADC input

BC_mod :quad LB :2 Hz phase correction :adjust the phase to pure absorption. integration :is done with ABS or can be done manual

Experiment 9.8

¹¹B NMR Spectroscopy

pulse program: zgdc compare with Experiment 3.10

74

Setting of the needed channels:	F1:	¹¹ B
-	F2:	^{1}H

Acquisition parameters	
PL1 :f1 channel - high power level for ¹¹ B	P1 :f1
Iransmiller pulse	
decoupling	FUFD
CPD2 :WALTZ16 - CPD decoupling	
sequence, defined by cpdprg2	
D1 :100 msec – relaxation delay	D11 ::
D2 :1/[2J(C,H)]= 2.36 msec, calculated from ¹ J(C,H)=212 Hz	D12 :2
TD :4 K	SW :3

O1 :middle of the ¹¹B NMR spectrum **NS** :8

P1 :f1 channel - 90° ¹¹B transmitter pulse

PCPD2 :f2 channel - 90° pulse for decoupling sequence

D11 :30 msec - delay for disk I/O **D12** :20 usec - delay for power switching

SW :36 ppm

O2 :middle of ¹H NMR spectrum

 $\ensuremath{\textbf{RG}}$:receiver gain for correct ADC input

BC_mod :quad LB :2 Hz phase correction :adjust the phase to pure absorption.

referencing :use the external reference of the standard; be sure not to change the magnetic field between the two measurements baseline correction :ABS

plot :use XWINPLOT

Experiment 9.9

Processing parameters SI :2 K

WDW :EM

FT : Fourier transformation

- ¹⁷O NMR Spectroscopy with RIDE

pulse program: aring2.mo The RIDE (Ring Down Elimination) pulse sequence, is used to eliminate probehead ringing, which occurs for quadrupolar nuclei with a relatively low y-value like 170.

Setting of the needed channels: F1: ¹⁷O F2: off

Acquisition parameters

PL1 :f1 channel - high power level for ¹⁷ O transmitter pulse	P1 :f1 channel - 90° ¹⁷ O transmitter pulse
·	P2 :f1 channel - 180° ¹⁷ O transmitter pulse
D1 :10 msec – relaxation delay	D13 :3 usec - short delay
TD :4 K	SW :500 ppm
O1 :200 ppm downfield from ¹⁷ O water signal	O2 :middle of ¹ H ¹³ C NMR spectrum
NS :4 [*] 128	DE :15 usec
RG :receiver gain for correct ADC input	

Processing parameters

SI :2 K	BC_mod :quad

WDW :EM FT :Fourier transformation LB :200 Hz phase correction :adjust the phase to pure absorption. plot :use XWINPLOT

Experiment 9.10 - ^{47/49}Ti NMR Spectroscopy with ARING a) pulse program: zg compare with Experiment 2.8 ^{47/49}Ti Setting of the needed channels: F1: F2: off Acquisition parameters PL1 :f1 channel - high power level for ^{47/49}Ti P1 :f1 channel - 90° ^{47/49}Ti transmitter transmitter pulse pulse **D1** :10 msec – relaxation delay DE :10 usec **TD** :8 K SW :600 ppm O1 :middle of the titanium NMR spectrum **NS**:8 RG :receiver gain for correct ADC input **Processing parameters** SI:2 K BC_mod :quad WDW :EM LB :15 Hz phase correction :adjust the phase to FT : Fourier transformation pure absorption. plot :use XWINPLOT baseline correction :ABS b) pulse program: aring A 1D sequence to suppress probe-head ringing. ^{47/49}Ti Setting of the needed channels: F1: F2: off Acquisition parameters **PL1** :f1 channel - high power level for ¹⁷O P1 :f1 channel - 90° ¹⁷O transmitter pulse transmitter pulse P2 :f1 channel - 180° ¹⁷O transmitter pulse D1 :10 msec - relaxation delay D13:3 usec - short delay **SW** :600 ppm **TD** :8 K **O1** : middle of the titanium NMR spectrum DE :10 usec RG :receiver gain for correct ADC input **NS** :8 **Processing parameters** SI :2 K BC mod :quad WDW :EM LB :15 Hz FT : Fourier transformation phase correction :adjust the phase to pure absorption. baseline correction :ABS plot :use XWINPLOT

baseline correction :ABS

Chapter 10

- The Second Dimension

Summary

Experiment	Pulse program	Description
10.1	jres	2D J-Resolved ¹ H NMR
		Spectroscopy
10.2	hjres	2D J-Resolved ¹³ C NMR
		Spectroscopy
10.3	cosy90	The Basic H,H-COSY-
		Experiment
10.4	cosylr	Long-Range COSY
10.5	cosytp	Phase-Sensitive COSY
10.6	cosytp	Phase-Sensitive COSY-45
10.7	ecos3ntp	E.COSY
10.8	cosydfprtp	Double Quantum Filtered COSY
10.0	hxcondto mo	
10.9	Tixcolidip.mo	(FUCOUP)
10.10	hxco	C,H Correlation by Polarization
		Transfer (HETCOR)
10.11	hxco	Long-Range C,H Correlation by
		Polarization Transfer
10.12	coloc	C,H Correlation via Long-Range
		Couplings (COLOC)
10.13	inv4nd	The Basic HMQC Experiment
10.14	invbtp	Phase-Sensitive HMQC with
		BIRD Filter and GARP
		Decoupling
10.15	exp10_15.mo	Poor Man's Gradient HMQC
10.16	invblrndtp.mo	Phase-Sensitive HMBC with
		BIRD Filter
10.17	invindtp.mo	The Basic HSQC Experiment
10.18	mlevtp	The HOHAHA or TOCSY
		Experiment
10.19	noesytp	The NOESY Experiment
10.20	roesytp.2	The CAMELSPIN or ROESY
		Experiment
10.21	hoesy	The HOESY Experiment
10.22	inad	2D-INADEQUATE
10.23	noesytp	The EXSY Experiment
10.24	coxyf3.mo/ inv4xyf3.mo	X, Y Correlation

Experiment 10.1

- 2D J-Resolved ¹H NMR Spectroscopy

pulse program:

jres: In the 2D J-resolved experiment chemical shift and spin-spin coupling informations are separated and displayed on different axes of the 2D matrix.

Setting of the needed channels:	F1:	^{1}H
-	F2:	off

Acquisition parameters

PL1 :f1 channel - high power level for ¹H transmitter pulse

D0 :3 usec - incremented delay Parmod :2D TD2 :1 K data points in F2 SW2 :8 ppm O1 :middle of ¹H NMR spectrum NS :4 DE :as small as possible RG :receiver gain for correct ADC input P1 :f1 channel - 90° ¹H transmitter pulse

P2 :f1 channel - 180° ¹H transmitter pulse D1 :2 sec - relaxation delay ND0 :2 TD1 :128 data points in F1 SW1 :40 Hz

DS :16 **IN0** :1/[2*SW1]

SI(F1) :256 W WDW(F1) :SINE SSB(F1) :0 PH-mod(F1) :mc XFB :fourier transformation in both directions SYMJ plot :use XWINPLOT

TILT

Processing parameters SI(F2) :512 W

SSB(F2):0

MC2 :QF

WDW(F2) :SINE

PH-mod(F2) :no

phase correction :not necessary

Experiment 10.2

- 2D J-Resolved ¹³C NMR Spectroscopy

pulse program: hjres In the 2D J-resolved experiment chemical shift and spin-spin coupling informations of a ¹H coupled ¹³C NMR spectrum are separated and displayed on different axes of the 2D matrix.

Setting of the needed channels:	F1:	"C
	F2:	^{1}H

Acquisition parameters

DE :as short as possible

PL1 :f1 channel - high power level for 13C
transmitter pulseP1 :
transmitter pulsePL12 :f2 channel - power level for CPD
decouplingP2 :
PCF
D1 :2 sec - relaxation delayD1 :2 sec - relaxation delayD12
ND0
TD2 :1 K data points in F2SW2 :175 ppm
O1 : middle of 13C NMR spectrum
NS :32SW2
D3 :
D3 :
D3 :

RG : receiver gain for correct ADC input

P1 :f1 channel - 90° ¹³C transmitter pulse

P2 :f1 channel - 180° ¹³C transmitter pulse
PCPD2 :f2 channel - 90° pulse for decoupling sequence
D0 :3 usec - incremented delay

D12 :20 usec - delay for power switching ND0 :2 TD1 :64 data points in F1 SW1 :250 Hz O2 :middle of ¹H NMR spectrum DS :16 IN0 :1/[2*SW1] **Processing parameters** SI(F2) :512 W SI(F1) :256 W WDW(F2) :QSINE WDW(F1) :QSINE SSB(F2):2 SSB(F1):2 PH-mod(F1) :mc PH-mod(F2) :no **MC2** :QF XFB : fourier transformation in both directions SYMJ phase correction :not necessary plot :use XWINPLOT **Experiment 10.3** - The Basic H,H-COSY-Experiment pulse program: cosy90 The COSY (Correlation SpectroscopY) pulse sequence generates a 2D NMR spectrum in which the signals of a normal ¹H NMR spectrum are correlated with each other. Cross-peaks appear if the spin coupling is present. Setting of the needed channels: F1: ^{1}H F2: off Acquisition parameters P1 :f1 channel - 90° ¹H transmitter pulse **PL1** :f1 channel - high power level for ¹H transmitter pulse D0:3 usec - incremented delay D1 :2 sec - relaxation delay Parmod :2D **ND0** :1 TD2:1 K data points in F2 TD1 :128 data points in F1 SW2 :8 ppm SW1 :8 ppm **O1** : middle of ¹H NMR spectrum **NS**:4 **DS**:16 **INO** :1/[1*SW1] RG :receiver gain for correct ADC input **Processing parameters** SI(F1) :512 W SI(F2) :512 W WDW(F2) :SINE WDW(F1) :SINE SSB(F1):0 SSB(F2):0 PH-mod(F2) :no PH-mod(F1) :mc MC2 :QF XFB : fourier transformation in both directions SYM :may be performed phase correction :not necessary plot :use XWINPLOT Experiment 10.4 Long-Range COSY

pulse program: cosylr With the long-range variant of the standard COSY pulse sequence it is possible to observe cross-signals between protons which are connected by a very small coupling constant.

Setting of the needed channels: F1: ¹H

F2: off

Acquisition parameters	
PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
D0 :3 usec - incremented delay	
D1 :2 sec – relaxation delay	D6 :200 msec
Parmod :2D	ND0 :1
TD2 :1 K data points in F2	TD1 :128 data points in F1
SW2 :8 ppm	SW1 :8 ppm
O1 : middle of ¹ H NMR spectrum	
NS :4	DS :16
IN0 :1/[SW1]	RG :receiver gain for correct ADC input
Processing parameters	
SI(F2) :512 W	SI(F1) :512 W
WDW(F2) :SINE	WDW(F1):SINE
SSB(F2) :0	SSB(F1) :0
PH-mod(F2) :no	PH-mod(F1) :mc
MC2 :QF	XFB :fourier transformation in both directions
SYM :may be performed	phase correction : not necessary

plot :use XWINPLOT

Phase-Sensitive COSY

pulse program: cosytp

Additional to the COSY90 the information of the spin coupling constants can be taken from the phase-sensitive COSY.

Setting of the needed channels: F1: ¹H F2: off

Acquisition parameters

channel - 90° ¹ H transmitter pulse ec - relaxation delay
ec - relaxation delay
56 data points in F1
.5 ppm
ceiver gain for correct ADC input

Processing parameters SI(F2) :1 K WDW(F2) :GM LB(F2) : depending on the GB(F2) : resolution PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation PHC1(F2) :should be 0 before first transformation

SI(F1) :1 K WDW(F1) :GM LB(F1) : depending on the GB(F1) : resolution PH-mod(F1) :pk PHC0(F1) :should be 0 before first transformation PHC1(F1) :should be 0 before first transformation

MC2 :TPPI		D-phase corre	XFB :fourier transformation in both directions extension routine, adjust strong diagonal peaks
XF2P :will the	at the left be executed after c	and right of th orrection of	 a spectrum in dispersion XF1P :will be executed after correction of the columns
plot :use X	WINPLOT		
Experiment '	10.6 COSY-45		
pulse program:	cosytp Additional to the C taken from the ph smaller angle for t which are the cross be narrower and c	COSY90 the ir ase-sensitive he second pu s-signals with cross signals r	formation of the spin coupling constants can be COSY. The difference to Experiment 10.5 is a lse. The intensities of the autocorrelation signals, in the multiplets, become smaller; the diagonal will hear the diagonal can be observed more easily.
Setting of the need	led channels:	F1: ¹ H F2: off	
Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse D0 :3 usec - incremented delay Parmod :2D TD2 :2 K data points in F2 SW2 :1.5 ppm O1 : middle of ¹ H NMR spectrum NS :4 IN0 :1/[2*SW1]		evel for ¹ H ay um	 P1 :f1 channel - 90° ¹H transmitter pulse P0 :f1 channel - 45° ¹H transmitter pulse D1 :2 sec - relaxation delay ND0 :2 TD1 :256 data points in F1 SW1 :1.5 ppm DS :16 RG :receiver gain for correct ADC input
Processing paran SI(F2) :1 K WDW(F2) : LB(F2) : GB(F2) : PH-mod(F2) : PHC0(F2) : MC2 :TPPI phase corr XF2P :will b the i plot :use X	neters GM depending or resolution 2) :pk should be 0 before transformation should be 0 before transformation rection :use the 2E at the left be executed after or rows WINPLOT	h the first first D-phase correct and right of th orrection of	SI(F1) :1 K WDW(F1) :GM LB(F1) : depending on the GB(F1) : resolution PH-mod(F1) :pk PHC0(F1) :should be 0 before first transformation PHC1(F1) :should be 0 before first transformation XFB :fourier transformation in both directions ction routine, adjust strong diagonal peaks re spectrum in dispersion XF1P :will be executed after correction of the columns

Experiment 10.7 - E.COSY

bulse program: ecos3ntp The extraction of correct spin coupling constants may be hindered due to mutu cancellation of nearby positive and negative signals. E.COSY (Exclusive Correlation SpectroscopY) provides a solution of this problem, since cross-pea patterns are simplified, displaying only signals of transitions which are directly connected in the energy level diagram, so that signals of the passive spin in a coupling network disappear.			
Setting of the need	led channels: F1: F2:	¹ H off	
Acquisition parar PL1 :f1 cha transr D0 :3 usec D11 :30 ms Parmod :21 TD2 :2 K da SW2 :1.5 p O1 : middle NS :12 IN0 :1/[2*S	meters annel - high power level for nitter pulse - incremented delay sec - delay for disk I/O D ata points in F2 pm e of ¹ H NMR spectrum W1]	¹ H	P1 :f1 channel - 90° ¹ H transmitter pulse D1 :2 sec - relaxation delay D13 :3 usec - short delay ND0 :2 TD1 :256 data points in F1 SW1 :1.5 ppm DS :16 RG :receiver gain for correct ADC input
Processing parar SI(F2) :1 K WDW(F2) : LB(F2) : PH-mod(F2) : PHC0(F2) : PHC1(F2) : MC2 :TPPI phase corr	neters EM depending on the 2) :pk should be 0 before first transformation should be 0 before first transformation	correc	SI(F1) :1 K WDW(F1) :EM LB(F1) : depending on the PH-mod(F1) :pk PHC0(F1) :should be 0 before first transformation PHC1(F1) :should be 0 before first transformation XFB :fourier transformation in both directions ction routine, adjust strong diagonal peaks

at the left and right of the spectrum in dispersion

XF2P :will be executed after correction of the rows plot :use XWINPLOT

e spectrum in dispersion XF1P :phase correction in F1 is usually not necessary

Experiment 10.8

- Double Quantum Filtered COSY with Presaturation

pulse program: cosydfprtp This COSY pulse sequence includes a water suppression technique: the presaturation and, the COSY variant with the double quantum filter.

Setting of the needed channels: F1: ¹H F2: off

Acquisition parameters **PL1** :f1 channel - high power level for ¹H **P1** :f1 channel - 90° ¹H transmitter pulse transmitter pulse PL9 :f1 channel - power level for presaturation, typically in the range of 65 dB D0:3 usec - incremented delay D1 :2 sec - relaxation delay D11: 30 msec - delay for disk I/O D12:20 usec - delay for power switching D13:3 usec - short delay Parmod :2D ND0:2 TD2:2 K data points in F2 TD1 :256 data points in F1 SW1 :10 ppm SW2 :10 ppm O1 :on resonance of water signal **NS**:64 **DS**:16 IN0 :1/[2*SW1] RG :receiver gain for correct ADC input **Processing parameters** SI(F2) :1 K SI(F1) :1 K WDW(F2) :GM WDW(F1) :GM depending on the LB(F2) : depending on the LB(F1) : GB(F2) : resolution GB(F1) : resolution PH-mod(F2) :pk PH-mod(F1) :pk PHC0(F2) : should be 0 before first PHC0(F1) : should be 0 before first transformation transformation PHC1(F2) : should be 0 before first PHC1(F1) : should be 0 before first transformation transformation MC2 :TPPI **XFB** : fourier transformation in both directions phase correction :use the 2D-phase correction routine, adjust strong diagonal peaks at the left and right of the spectrum in dispersion XF1P :will be executed after correction of **XF2P** :will be executed after correction of the rows the columns plot :use XWINPLOT

Experiment 10.9

- Fully Coupled C,H Correlation (FUCOUP)

pulse program: hxcondtp.mo

This sequence describes the simplest C,H correlation method, consisting only of three r.f. pulses. It leads to a 2D spectrum where the C,H spin coupling remains to be seen in both dimensions; therefore it has been called FUCOUP (Fully COUPled).

Setting of the needed channels:	F1:	¹³ C
-	F2:	^{1}H

Acquisition parameters

PL1 :f1 channel - high power level for ¹³ C transmitter pulse	P1 :f1 channel - 90° ¹³ C transmitter pulse
PL2 :f2 channel - high power level for ¹ H decoupler pulse	P3 :f2 channel - 90° ¹ H decoupler pulse
D0:3 usec - incremented delay	D1 :10 sec - relaxation delay
D11 : 30 msec – delay for disk I/O	D12 :20 usec - delay for power switching
Parmod :2D	ND0 :2
TD2 :512 data points in F2	TD1 :64 data points in F1

SW2 O1 :: () NS :2 IN0 :	2 :500 Hz on resonance of ¹³ C NMR signal of CHCl ₃ 2 1/[2*SW1]	 SW1 :500 Hz O2 :on resonance of ¹H NMR signal of CHCl₃ DS :16 RG :receiver gain for correct ADC input 	
Processing	parameters		
SI(F2	2) :512 W	SI(F1) :128 W	
ŴĎV	V(F2) :E M	WDW(F1) :EM	
LB(F	2) : depending on the resolution	LB(F1) : depending on the resolution	
PH-n	nód(F2) :pk	PH-mod(F1) :pk	
PHC	0(F2) :should be 0 before first transformation	PHC0(F1) :90	
PHC	1(F2) :should be 0 before first	PHC1(F2) :should be 0 before first	
		transformation	
MC2	:1PPI	XFB :fourier transformation in both directions	
phas	phase correction :use the 2D-phase correction routine, adjust the phase in F2 to give antiphase signals and 00° phase correction in F1		
XF2F	 will be executed after correction of the rows 	plot :use XWINPLOT	

- C,H Correlation by Polarization Transfer (HETCOR)

pulse program: hxco

This 2D-method leads to a C,H correlation by polarization transfer. Cross signals for all protons and ¹³C nuclei which are connected by a ¹³C, ¹H coupling over one bond are detected.

Setting of the needed channels:	F1:	¹³ C
-	F2:	^{1}H

Acquisition parameters

NS:32

IN0 :1/[2*SW1]

- PL1 :f1 channel high power level for ¹³C transmitter pulse
- PL2 :f2 channel high power level for ¹H decoupler pulse
- PL12 :f2 channel power level for CPD decoupling
- CPD2 :WALTZ16 decoupling sequence, defined by cpdprg2
- D0:3 usec incremented delay
- D2 :1/[2J(C,H)]= 3.45 msec, calculated from ¹J(C,H)=145 Hz
 D11 : 30 msec delay for disk I/O
 Parmod :2D
 TD2 :1 K data points in F2
 SW2 :175 ppm
 O1 : middle of ¹³C NMR spectrum
- P1 :f1 channel 90° ¹³C transmitter pulse
 P2 :f1 channel 180° ¹³C transmitter pulse
 P3 :f2 channel 90° ¹H decoupler pulse
 PCPD2 :f2 channel 90° pulse for decoupling sequence
 D1 :2 sec relaxation delay
 D3:1/[3JC,H)]= 2.29ec, calculated from ¹J(C,H)=145 Hz
 D12 :20 usec delay for power switching
 ND0 :2
 TD1 :128 data points in F1
- SW1 :8 ppm
 - **O2** :middle of ¹H NMR spectrum
 - **DS** :16
 - RG :receiver gain for correct ADC input

Processing parameters

SI(F2) :512 W WDW(F2) :QSINE SSB(F2) :2 PH-mod(F2) :no MC2 :QF SI(F1) :256 W WDW(F1) :QSINE SSB(F1) :2 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT

phase correction :not necessary

Experiment 10.11

- Long-Range C,H Correlation by Polarization Transfer

pulse program: hxco In this case it is possible to observe cross-signals for C,H spin pairs connected by two- or three-bond couplings ²J(C,H) or ³J(C,H). This can be achieved with the same pulse sequence as used in the Experiment 10.8 by adjusting the appropriate delays.

Setting of the needed channels: F1: ¹³C F2: ¹H

Acquisition parameters

PL1 :f1 channel - high power level for ¹³ C transmitter pulse	P1 :f1 channel - 90° ¹³ C transmitter pulse
·	P2 :f1 channel - 180° ¹³ C transmitter pulse
PL2 :f2 channel - high power level for ¹ H decoupler pulse	P3 :f2 channel - 90° ¹ H decoupler pulse
PL12 :f2 channel - power level for CPD	PCPD2 :f2 channel - 90° pulse for
decoupling	decoupling sequence
CPD2 :WALTZ16 - CPD decoupling	
sequence, defined by cpdpra2	
D0 :3 usec - incremented delay	D1 :2 sec - relaxation delay
D2 :1/[2J(C,H)]= 50 msec, calculated from	D3 :1/[3J(C,H)]= 33 msec, calculated from
J(C,H)=10 Hz	$^{\text{D}}J(C,H)=10$ Hz
D11: 30 msec – delay for disk I/O	D12 :20 usec - delay for power switching
Parmod :2D	ND0 :2
TD2 :1 K data points in F2	TD1 :128 data points in F1
SW2 :175 ppm	SW1 :8 ppm
O1 : middle of ¹³ C NMR spectrum	O2 :middle of ¹ H NMR spectrum
NS :64	DS :16
INO :1/[2*SW1]	RG :receiver gain for correct ADC input
Processing parameters	
SI(F2) :512 W	SI(F1) :256 W
WDW(F2) :QSINE	WDW(F1) :QSINE
SSB(F2) :2	SSB(F1) :2

PH-mod(F1) :mc

directions

plot :use XWINPLOT

XFB : fourier transformation in both

phase correction :not necessary

PH-mod(F2) :no

MC2 :QF

85

- C,H Correlation via Long-Range Couplings (COLOC)

pulse program:	coloc The COLOC (Correlation spectr to get cross-signals for protons a couplings.	oscopy via Long range Couplings) is a 2D-method, and ¹³ C nuclei connected by two- or three-bond		
Setting of the need	ded channels: F1: ¹³ C F2: ¹ H			
Acquisition para PL1 :f1 cha transi	meters annel – high power level for ¹³ C mitter pulse	P1 :f1 channel - 90° ¹³ C transmitter pulse		
PL2 :f2 cha decou	annel – high power level for ¹ H upler pulse	P3 :f2 channel - 90° ¹ H decoupler pulse		
PL12 :f2 cł dec CPD2 :WA seg	nannel - power level for CPD oupling LTZ16 - CPD decoupling uence, defined by codpra2	P4 :f2 channel - 180° ¹ H decoupler pulse PCPD2 :f2 channel - 90° pulse for decoupling sequence		
D0 :3 usec D6 :25 mse than TI	 incremented delay note that D6 must be larger D1 times 1/[2*SW1] 	D1 :2 sec - relaxation delay D11 : 30 msec - delay for disk I/O		
D12 :20 us	ec – delay for power switching	D18 :1/[3J(C,H)]= 33 msec, calculated from ⁿ J(C,H)=10 Hz		
Parmod :2 TD2 :1 K d SW2 :175 p O1 : middle NS :128 IN0 :1/[2*S	D ata points in F2 opm e of ¹³ C NMR spectrum W1]	ND0 :2 TD1 :64 data points in F1 SW1 :8 ppm O2 :middle of ¹ H NMR spectrum DS :16 RG :receiver gain for correct ADC input		
Processing para	neters			
SI(F2) :512 WDW(F2) SSB(F2) :2 PH-mod(F MC2 :QF	2 W :QSINE 2 2) :no	SI(F1) :256 W WDW(F1) :QSINE SSB(F1) :2 PH-mod(F1) :mc XFB :fourier transformation in both directions		
phase cor	rection :not necessary	plot :use XWINPLOT		
Experiment	Experiment 10.13			

- The Basic HMQC Experiment

pulse program: inv4nd This is the basic HMQC (Heteronuclear Multiple Quantum Coherence) method. It is the simplest form of an inverse H,X correlation technique. The suppression of the unwanted signals is performed only by the phase cycle. This experiment is without decoupling.

Setting of the needed channels: F1: ${}^{1}H$ F2: ${}^{13}C$

Acquisition parameters P1 :f1 channel - 90° ¹H transmitter pulse **PL1** :f1 channel - high power level for ¹H transmitter pulse P2 :f1 channel - 180° ¹H transmitter pulse PL2 :f2 channel - high power level for ¹³C P3 :f2 channel - 90° ¹³C decoupler pulse decoupler pulse D0:3 usec - incremented delay D1 :2 sec - relaxation delay D2 :1/[2J(C,H)]= 3.5 msec, calculated from ¹J(C,H)=145 Hz Parmod :2D ND0:2 TD2:1 K data points in F2 TD1 :128 data points in F1 SW2 :8 ppm SW1 :175 ppm **O1** : middle of ¹H NMR spectrum O2 : middle of ¹³C NMR spectrum **NS**:8 **DS**:16 IN0 :1/[2*SW1] RG :receiver gain for correct ADC input **Processing parameters** SI(F2) :512 W SI(F1):256 W

WDW(F2) :QSINE SSB(F2):2 PH-mod(F2) :no MC2 :QF

phase correction :not necessary

WDW(F1) :QSINE SSB(F1):2 PH-mod(F1) :mc XFB : fourier transformation in both directions plot :use XWINPLOT

Experiment 10.14

Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling

pulse program: invbtp This experiment gives an inverse H,C correlation. The suppression of the H-¹²C signals is performed with a BIRD sandwich and the decoupling is done with GARP (Globally optimized Alternating-phase Rectangular Pulses).

Setting of the needed channels:	F1:	^{1}H
-	F2:	¹³ C

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- PL2 :f2 channel high power level for ¹³C decoupler pulse
- PL12 :f2 channel power level for CPD decoupling
- CPD2 :GARP- CPD decoupling sequence, defined by cpdprg2
- **D0** :3 usec incremented delay
- ¹J(C,H)=145 Hz

Parmod :2D

TD2 :1 K data points in F2 SW2 :8 ppm

- **P1** :f1 channel 90° ¹H transmitter pulse
- **P2** :f1 channel 180° ¹H transmitter pulse P3 :f2 channel - 90° ¹³C decoupler pulse
- P4 :f2 channel 180° ¹³C decoupler pulse PCPD2 :f2 channel - 90° pulse for decoupling sequence
- D1 :1 sec relaxation delay

D2:1/[2J(C,H)]= 3.5 msec, calculated from D7:ca. 1 sec - BIRD delay to be optimized for minimum FID; observe in the set-up mode the incoming FID and adjust D7 for minimum intensity **ND0**:4

> TD1 :128 data points in F1 SW1 :175 ppm

O1 :middle of ¹H NMR spectrum NS :8 INO :1/[4*SW1]

Processing parameters

SI(F2) :512 W WDW(F2) :GM LB(F2) : depending on the GB(F2) : resolution PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation PHC1(F2) :should be 0 before first transformation MC2 :TPPI

O2 :middle of ¹³C NMR spectrum **DS** :16 **RG** :receiver gain for correct ADC input

SI(F1) :256 W WDW(F1) :GM LB(F1) : depending on the GB(F1) : resolution PH-mod(F1) :pk PHC0(F1) :can be set by au-program calcphinv PHC1(F1) :can be set by au-program calcphinv XFB :fourier transformation in both directions au-program :calcphinv (to calculate phase for F1)

plot :use XWINPLOT

Experiment 10.15

- Poor Man's Gradient HMQC

pulse program: exp10_15.mo A spin-lock pulse in connection with the BIRD sequence, reduces unwanted signals nearly to the level known from pulsed field gradients and allows the use of a higher receiver gain.

Setting of the needed channels:	F1:	^{1}H
0	F2:	¹³ C

Acquisition parameters

PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
	P2 :f1 channel - 180° ¹ H transmitter pulse
	Not more!
PL2 :f2 channel - high power level for ¹³ C decoupler pulse	P3 :f2 channel - 90° ¹³ C decoupler pulse
	P4 :f2 channel - 180° ¹³ C decoupler pulse
PL12 :f2 channel - power level for CPD decoupling	PCPD2 :f2 channel - 90° pulse for decoupling sequence
CPD2 :GARP- CPD decoupling sequence, defined by cpdprg2	
D0 :3 usec - incremented delay	D1 :1 sec - relaxation delay
D2 :1/[2J(C,H)]= 3.5 msec, calculated from ¹ J(C,H)=145 Hz	D7 :ca. 1 sec - BIRD delay to be optimized for minimum FID; observe in the set-up mode the incoming FID and adjust D7 for minimum intensity
D4 :1/[4J(C,H)]= 1.75 msec, calculated from ¹ J(C,H)=145 Hz	
Parmod :2D	ND0 :4

TD2 :1 K data points in F2 SW2 :8 ppm O1 :middle of ¹H NMR spectrum NS :2 IN0 :1/[4*SW1]

Processing parameters

SI(F2) :512 W WDW(F2) :GM LB(F2) : depending on the GB(F2) : resolution PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation PHC1(F2) :should be 0 before first transformation MC2 :TPPI phase correction :use the 2D-phase

correction routine, correct the signals positive XF2P :will be executed after correction of the rows TD1 :128 data points in F1
SW1 :175 ppm
O2 :middle of ¹³C NMR spectrum
DS :16
RG :receiver gain for correct ADC input

SI(F1) :256 W WDW(F1) :GM LB(F1) : depending on the GB(F1) : resolution PH-mod(F1) :pk PHC0(F1) :can be set by au-program calcphinv PHC1(F1) :can be set by au-program calcphinv XFB :fourier transformation in both directions au-program :calcphinv (to calculate phase for F1)

plot :use XWINPLOT

Experiment 10.16

- Phase-Sensitive HMBC with BIRD Filter

pulse program:	invblrndtp.mo To obtain long-range H,C correla (Heteronuclear Multiple Bond Co method is to suppress correlatio without decoupling.	ations a special sequence called HMBC prrelation) was developed. The purpose of this ns via ¹ J(C,H). This is a phase-sensitive version
Setting of the need	ded channels: F1: ¹ H F2: ¹³ C	
Acquisition para	meters	D1 if t channel 000 ¹ L transmitter pulse
FLI.II Cha transi		PT .IT channel - 90 H transmitter pulse
transi		P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 cha decou	annel - high power level for ¹³ C upler pulse	P3 :f2 channel - 90° ¹³ C decoupler pulse
		P4 :f2 channel - 180° ¹³ C decoupler pulse
D0 :3 usec	 incremented delay 	D1 :1 sec - relaxation delay
D2 :1/[2J(C ¹ J(C,H)	C,H)]= 3.5 msec, calculated from =145 Hz	D6 :1/[2J(C,H)]= 50 msec, calculated from ⁿ J(C,H)=10 Hz
D7 :ca. 1 s for min mode t for min	ec – BIRD delay to be optimized imum FID; observe in the set-up he incoming FID and adjust D7 imum intensity	D15 :46.5 msec - D6-D2
Parmod :2	D	ND0 :4
TD2 :1 K d	ata points in F2	TD1 :128 data points in F1
SW2 :8 ppi	m	SW1 :175 ppm
O1 :middle	of ¹ H NMR spectrum	O2 :middle of ¹³ C NMR spectrum

NS :128 IN0 :1/[4*SW1]

Processing parameters

LB(F2) :

GB(F2) :

MC2 : TPPI

SI(F2) :512 W **WDW(F2)** :GM

PH-mod(F2) :pk

resolution

positive

XF2P :will be executed after correction of

transformation

transformation

DS:16 RG :receiver gain for correct ADC input

SI(F1) :256 W **WDW(F1)** :GM depending on the LB(F1): depending on the GB(F1) : resolution PH-mod(F1) :pk PHC0(F2) :should be 0 before first PHC0(F1) : can be set by au-program calcphinv PHC1(F2) : should be 0 before first PHC1(F1) :can be set by au-program calcphinv **XFB** : fourier transformation in both directions phase correction :use the 2D-phase au-program :calcphinv (to calculate phase correction routine, for F1) correct the signals

plot :use XWINPLOT

Experiment 10.17

- The Basic HSQC Experiment

the rows

pulse program: invindtp.mo

> The HSQC (Heteronuclear Single Quantum Coherence) method performs the H,C correlation via the ¹³C chemical shift evolution of a single quantum coherence. In this sequence the signals are not broadened by homonuclear H,H couplings in F1. This experiment is without decoupling.

Setting of the needed channels:	F1:	¹Η
-	F2:	¹³ C

Acquisition parameters

P1 :f1 channel - 90° ¹ H transmitter pulse
P2 :f1 channel - 180° ¹ H transmitter pulse
P3 :f2 channel - 90° ¹³ C decoupler pulse
P4 :f2 channel - 180° ¹³ C decoupler pulse
D1 :2 sec - relaxation delay
ND0 :4
TD1 :128 data points in F1
SW1 :175 ppm
O2 :middle of ¹³ C NMR spectrum
DS :16
RG :receiver gain for correct ADC input

Processing parameters SI(F2) :512 W WDW(F2) :EM

SI(F1) :256 W WDW(F1) :EM

LB(F2) : depending on the resolution PH-mod(F2) :pk PHC0(F2) :should be 0 before first	LB(F1) : depending on the resolution PH-mod(F1) :pk PHC0(F1) :can be set by au-program
transformation	calcphinv
PHC1(F2) :should be 0 before first transformation	PHC1(F1) : can be set by au-program calcphinv
MC2 :TPPI	XFB :fourier transformation in both directions
phase correction :use the 2D-phase correction routine, correct the signals positive	au-program :calcphinv (to calculate phase for F1)
XF2P :will be executed after correction of the rows	plot :use XWINPLOT

- The HOHAHA or TOCSY Experiment

pulse program: mlevtp The TOCSY (Total Correlation SpectroscopY) method can give a total correlation of all protons of a chain with each other. This is the phase-sensitive variant. ^{1}H Setting of the needed channels: F1: F2: off

Acquisition parameters

PL1 :f1	channel ·	- high	power	level	for 'H
tra	ansmitter	pulse	1		

- spinlock
- **D0** :3 usec incremented delay D9:200 msec - TOCSY mixing time Parmod :2D TD2:1 K data points in F2 SW2 :10 ppm **O1** : middle of ¹H NMR spectrum **NS**:4 IN0 :1/[2*SW1]

Processing parameters SI(F2) :512 W WDW(F2) :EM LB(F2) : depending on the resolution PH-mod(F2) :pk PHC0(F2) : should be 0 before first transformation PHC1(F2) : should be 0 before first transformation MC2 :TPPI

P1 :f1 channel - 90° ¹H transmitter pulse

- PL10 :f1 channel power level for TOCSY- P5 :f1 channel 60° ¹H transmitter low power pulse
 - **P6** :f1 channel 90° ¹H transmitter low power pulse
 - P7 :f1 channel 180° ¹H transmitter low power pulse
 - P17 :f1 channel 2.5 msec trim pulse
 - D1 :2 sec relaxation delay
 - D12:20 usec delay for power switching ND0:2
 - TD1 :128 data points in F1
 - SW1 :10 ppm

DS :16 RG :receiver gain for correct ADC input

SI(F1) :512 W WDW(F1) :EM LB(F1) : depending on the resolution PH-mod(F1) :pk PHC0(F1) : should be 0 before first transformation PHC1(F1) : should be 0 before first transformation XFB : fourier transformation in both directions

phase corr XF2P :will & the plot :use X	ection :use the 2D-phase correction routine, correct the signals positive. be executed after correction of rows WINPLOT	XF1P :will be executed after correction of the columns
Experiment ' - The NOESY Exp	10.19 eriment	
pulse program:	noesytp The NOESY (Nuclear Overhaus 2D equivalent of the NOE different which are caused by dipolar cross relationship.	er Enhancement SpectroscopY) experiment is the ence experiment and yields correlation signals ss-relaxation between nuclei in a close spatial
Setting of the need	led channels: F1: ¹ H F2: off	
Acquisition parar PL1 :f1 cha transr D0 :3 usec D8 :2 sec – Parmod :21 TD2 :1 K da SW2 :10 pp O1 :middle NS :16 IN0 :1/[2*SV	neters Innel - high power level for ¹ H nitter pulse - incremented delay mixing time D ata points in F2 om of ¹ H NMR spectrum W1]	P1 :f1 channel - 90° ¹ H transmitter pulse D1 :2 sec - relaxation delay ND0 :2 TD1 :256 data points in F1 SW1 :10 ppm DS :16 RG :receiver gain for correct ADC input
Processing paran SI(F2) :512 WDW(F2) : LB(F2) : de PH-mod(F2 PHC0(F2) : PHC1(F2) : MC2 :TPPI phase corr	neters W EM pending on the resolution 2) :pk should be 0 before first transformation should be 0 before first transformation ection :use the 2D-phase correction routine.	SI(F1) :512 W WDW(F1) :EM LB(F1) : depending on the resolution PH-mod(F1) :pk PHC0(F1) :should be 0 before first transformation PHC1(F1) :should be 0 before first transformation XFB :fourier transformation in both directions
XF2P :will t the i plot :use X	adjust the phase of the diagonal signals so that they are negative. be executed after correction of rows WINPLOT	XF1P :will be executed after correction of the columns

- The CAMELSPIN or ROESY Experiment

roesytp.2 pulse program: This is a 2D version of the ROESY (Rotating frame Overhauser Enhancement SpectroscopY) experiment. It is an experiment to measure NOE, but under spinlock conditions. It is used for molecules with a molar mass in the order of 1000 to 3000, because the cross-signals measured with the NOESY (Nuclear Overhauser Enhancement SpectroscopY) may disappear.

Setting of the needed channels:	F1:	¹Η
-	F2:	off

Acquisition parameters

- PL1 :f1 channel high power level for ¹H P1 :f1 channel - 90° ¹H transmitter pulse transmitter pulse PL11 :f1 channel - power level for ROESY- P25 :f1 channel - 180° pulse at transmitter
 - spinlock, 23 dB was used here
 - D0:3 usec incremented delay
 - D1 :2 sec relaxation delay

L4 :832 for 300 msec spin-lock. The loop parameter must be an even number. Parmod :2D TD2:1 K data points in F2 SW2 :10 ppm **O1** : middle of ¹H NMR spectrum **NS**:16

ND0:2 TD1 :256 data points in F1 **SW1** :10 ppm

DS:16 RG :receiver gain for correct ADC input

Processing parameters SI(F2) :512 W WDW(F2) :EM LB(F2) :depending on the resolution PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation PHC1(F2) :should be 0 before first transformation

MC2 :TPPI

IN0 :1/[2*SW1]

SI(F1) :512 W WDW(F1) :QSINE SSB(F1):2 PH-mod(F1) :pk PHC0(F1) :should be 0 before first transformation PHC1(F1) : should be 0 before first transformation **XFB** : fourier transformation in both directions

phase correction : use the 2D-phase correction routine, adjust the phase of the diagonal signals negative, so that the ROESY correlation signals are positive.

XF2P :will be executed after correction of the rows plot :use XWINPLOT

XF1P :will be executed after correction of the columns

attenuation of spin-lock, here 180 usec P15 :f1 channel - pulse for ROESY spinlock, here 300 msec

D12:20 usec - delay for power switching

- The HOESY Experiment pulse program: hoesy The HOESY (Heteronuclear Overhauser Enhancement SpectroscopY) is a 2D experiment to measure the heteronuclear Overhauser effect. Setting of the needed channels: F1: 6Li F2: ^{1}H Acquisition parameters PL1 :f1 channel - high power level for ⁶Li P1 :f1 channel - 90° ⁶Li transmitter pulse transmitter pulse **P2** :f1 channel - 180° ⁶Li transmitter pulse PL2 :f2 channel - high power level for ¹H **P3** :f2 channel - 90° ¹H decoupler pulse decoupler pulse PL12 :f2 channel - power level for CPD PCPD2 :f2 channel - 90° pulse for decoupling decoupling sequence CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 **D0** :3 usec - incremented delay **D1** :6 sec - relaxation delay D9:1.7 sec - mixing time D12:20 usec - delay for power switching Parmod :2D ND0:2 TD1 :128 data points in F1 TD2 :512 data points in F2 SW2 :4 ppm SW1 :9 ppm **O1** : middle of ⁶Li NMR spectrum **O2** :middle of ¹H NMR spectrum NS:32 **DS**:16 IN0 :1/[2*SW1] RG :receiver gain for correct ADC input

Processing parameters

SI(F2) :256 W WDW(F2) :EM LB(F2) :depending on the resolution PH-mod(F2) :no MC2 :QF

phase correction :not necessary

SI(F1) :256 W WDW(F1) :EM LB(F1) : depending on the resolution PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT

Experiment 10.22 - 2D-INADEQUATE

pulse program:	inad The INADEQUTE (Incredible Natural Abundance DoublE QUAntum Transfer Experiment) is a 2D experiment. It observe ¹³ C, ¹³ C couplings over two bonds and suppress the strong ¹² C signals.				
Setting of the need	ded channels:	F1: ¹³ C F2: ¹ H	;		
Acquisition para PL1 :f1 cha transi	meters annel - high power mitter pulse	level for ¹³ C	P1 :f1 channel - P2 :f1 channel -	90° ¹³ C transmitter pulse 180° ¹³ C transmitter pulse	

PL12 :f2 channel - power level for CPD decoupling CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 **D0** :3 usec - incremented delay D4 :1/[4J(C,C)]= 7.6 msec, calculated from D11 : 30 msec - delay for disk I/O $^{1}J(C,C)=33$ Hz Parmod :2D ND0:1 TD2:1 K data points in F2 **O1** : middle of ⁱ³C NMR spectrum SW2 :60 ppm **NS** :128 **DS** :16

INO :1/[2*SW2]

PCPD2 :f2 channel - 90° pulse for decoupling sequence

D1 :3 sec - relaxation delay

TD1 :128 data points in F1

SW1 :120 ppm (double quantum frequency) RG :receiver gain for correct ADC input

Processing parameters

SI(F2) :512 W WDW(F2) :SINE SSB(F2):2 PH-mod(F2) :no MC2 :QF

SI(F1) :256 W WDW(F1) :SINE SSB(F1):2 PH-mod(F1) :mc XFB : fourier transformation in both directions plot :use XWINPLOT

phase correction :not necessary

Experiment 10.23

- The EXSY Experiment

pulse program: noesytp

The 2D EXSY (Exchange SpectroscopY) method can indicate chemical exchange before line-broadening occurs. the pulse sequence is exactly the same as that used for phase-sensitive NOESY.

Setting of the needed channels:

F1: ^{1}H F2: off

Acquisition parameters

PL1 :f1 channel - high power level for ¹H transmitter pulse D0:3 usec - incremented delay **D8**:1 sec – mixing time Parmod :2D TD2 :512 data points in F2 SW2 :0.7 ppm O1 : middle of methyl group region **NS**:4 IN0 :1/[2*SW1]

Processing parameters

SI(F2) :256 W WDW(F2) :EM LB(F2) :depending on the resolution PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation

P1 :f1 channel - 90° ¹H transmitter pulse

D1 :2 sec - relaxation delay

ND0:2

TD1 :32 data points in F1 SW1 :0.7 ppm

DS:16 RG :receiver gain for correct ADC input

SI(F1) :256 W WDW(F1) :EM LB(F1): depending on the resolution PH-mod(F1) :pk PHC0(F1) :should be 0 before first transformation

PHC1(F2) : should be 0 before first	PHC1(F1) :should be 0 before first
transformation	transformation
MC2 :TPPI	XFB : fourier transformation in both
	directions
phase correction : use the 2D-phase corre	ction routine, phase correction is usually
only necessary in F2, th the diagonal signals	e cross-signals have the same phase as
<pre>XF2P :will be executed after correction of the rows plot :use XWINPLOT</pre>	XF1P :will be executed after correction of the columns

- X, Y Correlation

a) pulse program: coxyf3.mo

This experiment correlates two hetero-atoms X and Y with each other under complete proton decoupling. For this experiment a tripleresonance probe-head and a three-channel spectrometer are required.

Setting of the needed channels:	F1:	^m Y (¹³ C)
	F2:	¹ H
	F3:	ⁿ X (³¹ P)

Acquisition parameters

PL1 :f1 channel - high power level for ¹³C transmitter pulse

PL3 :f3 channel - high power level for ³¹P decouple decoupler pulse
 PL12 :f2 channel - power level for CPD/BB decoupling
 PCPD2 :f2 channel - 90° pulse for decoupling sequence
 D0 :3 usec - incremented delay
 P1 :2 sec - relaxation delay

D11 :30 msec – delay for disk I/O

Parmod :2D

Processing parameters

SI(F2) :512 W WDW(F2) :SINE

SSB(F2):0

MC2 :QF

PH-mod(F2) :no

TD2 :1 K data points in F2 SW2 :12 ppm O1 :middle of ¹³C NMR spectrum O3 :middle of ³¹P NMR spectrum NS :8 IN0 :1/[2*SW1] P1 :f1 channel - 90° ¹³C transmitter pulse

P2 :f1 channel - 180° ¹³C transmitter pulse **P21** :f3 channel - 90° ³¹P decoupler pulse

PCPD2 :f2 channel - 90° pulse for decoupling sequence
D1 :2 sec - relaxation delay
D22 :1/[2J(X,Y)]= 25 msec, calculated from "J(X,Y)=20 Hz
ND0 :2
TD1 :64 data points in F1
SW1 :1 ppm

O2 :middle of ¹H NMR spectrum

DS :16

RG :receiver gain for correct ADC input

SI(F1) :256 W WDW(F1) :SINE SSB(F1) : 0 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT

phase correction :not necessary

b) pulse program: inv4xyf3.mo compare with Experiment 10.24 a)

Setting of the needed channels:	F1:	ⁿ X (³¹ P)
-	F2:	¹ H
	F3:	^m Y (¹³ C)

Acquisition parameters

- PL1 :f1 channel high power level for ³¹P transmitter pulse
- PL3 :f3 channel high power level for ¹³C decoupler pulse PL12 :f2 channel - power level for CPD/BB PCPD2 :f2 channel - 90° pulse for decoupling CPD2 :WALTZ16 - CPD decoupling sequence, defined by cpdprg2 D0:3 usec - incremented delay D11 :30 msec - delay for disk I/O

Parmod :2D TD2:256 data points in F2 SW2 :1 ppm O1 :middle of ³¹P NMR spectrum O3 :middle of ¹³C NMR spectrum **NS** :8 IN0 :1/[2*SW1]

Processing parameters

SI(F2) :512 W WDW(F2) :SINE **SSB(F2)**: 0 PH-mod(F2) :no MC2 :QF

phase correction :not necessary

P1 :f1 channel - 90° ³¹P transmitter pulse

P2 :f1 channel - 180° ³¹P transmitter pulse P21 :f3 channel - 90° ¹³C decoupler pulse

decoupling sequence

D1 :2 sec - relaxation delay D22 :1/[2J(X,Y)]= 25 msec, calculated from ⁿJ(X,Y)=20 Hz ND0:2 TD1 :128 data points in F1 SW1 :12 ppm O2 :middle of ¹H NMR spectrum

DS:16 RG :receiver gain for correct ADC input

SI(F1):256 W WDW(F1) :SINE SSB(F1): 0 PH-mod(F1) :mc XFB : fourier transformation in both directions plot :use XWINPLOT

Chapter 11 - NMR Spectroscopy with Pulsed Field Gradients

Summary				
Experiment	Pulse program	Description		
11.1	calibgp	Calibration of Pulsed Field Gradients		
11.2	preempgp2.mo	Gradient Preemphasis		
11.3	calibam.mo	Gradient Amplifier Test		
11.4	zggp30.mo	Determination of Pulsed Field Gradient Ring-Down Delays		
11.5	zggpse	The Pulsed Gradient Spin-Echo Experiment		
11.6		Excitation Pattern of Selective Pulses		
11.7	exp11_7.mo	The Gradient zz-Filter		
11.8	selcogp.mo	gs-SELCOSY		
11.9	selgpml.mo	gs-SELTOCSY		
11.10	selnogp.3	DPFGSE-NOE		
11.11	selincorgp.mo	gs-SELINCOR		
11.12		GRECCO		
11.13	p3919gp	WATERGATE		
11.14	dpfgse.mo	Water Suppression by Excitation Sculpting		

Experiment 11.1

- Calibration of Pulsed Field Gradients

pulse program: calibgp Calibration of gradient strength

This experiment needs a special sample, preparation as described in the book.

Setting of the needed channels:	F1: F2:	¹ H off	
Acquisition parameters			
PL1 :f1 channel - high power transmitter pulse	[·] level for ¹	H	P1 :f1 channel - 90° ¹ H transmitter pulse
·			P2 :f1 channel - 180° ¹ H transmitter pulse
			P16 : 10 msec - homospoil/gradient pulse
D1 :1 sec - relaxation delay			D11 :delay for disk I/O
D12 :delay for power switching	ng		
D16 :100 usec - delay for homospoil/gradient rec	overy		D28 :equal to aq
TD :2 K			SW :100 KHz
O1 :on resonance of water s	ignal		gpz 1 :1%
NS :2			RG :receiver gain for correct ADC input

Processing parameters SI :1 K BC_mod :quad WDW :EM LB :20 Hz FT : Fourier transformation phase correction :mc Measure the width of the dip (Hz), and calculate the gradient strength G_z according to the Equation. Experiment 11.2 - Gradient Preemphasis preempgp2.mo pulse program: In this experiment it is described how to adjust the preemphasis using a sample of chloroform. Setting of the needed channels: F1: ^{1}H F2: off Acquisition parameters **P0** :f1 channel - 10° ¹H transmitter power PL1 :f1 channel - high power level for ¹H transmitter pulse pulse P16 : 1 msec - homospoil/gradient pulse D1 :0.1 sec - relaxation delay D16 :300 msec-50 usec - delay for homospoil/gradient recovery, will be varied SW :5000 Hz **TD**:4 K **O1** :1000 Hz off resonance from CHCl₂ **NS** :1 signal GPNAM1 : rectangular.1 gpz 1 :75% RG :receiver gain for correct ADC input **Processing parameters** No processing required

Experiment 11.3

Gradient Amplifier Test

pulse program: calibam.mo

The simple test checks whether positive and negative gradient pulses have the same effect and thus detects any imbalance of the configuration.

Setting of the needed channels:	F1:	^{1}H
	F2:	off

Acquisition parameters

PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter power pulse
	P16 : 1 msec - homospoil/gradient pulse
D1 :5 sec - relaxation delay	D16 :100 usec - delay for homospoil/gradient recovery
TD :4 K	SW :500 Hz
O1 :on resonance of CHCl ₃ signal	NS :16
gpnam1 :SINE.100	gpz 1 :50%

gpnam2 :SINE.100 DS :4

Processing parameters

SI :2 K WDW :EM FT :Fourier transformation

baseline correction :ABS **plot** :use XWINPLOT **gpz 2** :-50% **RG** :receiver gain for correct ADC input

BC_mod :quad LB :2 Hz phase correction :adjust to pure absorption. referencing :set the TMS signal to 0 ppm

Experiment 11.4

 Determination of Pulsed Field Gradient Ring-Down Delays 				
pulse program:	zggp30.mo The experiment described here demonstrates a calibration routine to define a suitable ringdown delay.			
Setting of the need	ded channels:	F1: F2:	¹ H off	
Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse D1 :5 sec - relaxation delay D11 :30 msec - delay for disk I/O TD :4 K O1 :on resonance of CHCl ₃ signal gpnam1 :rectangular.1 RG :receiver gain for correct ADC input			 P1 :f1 channel - 90° ¹H transmitter power pulse P16 : 1msec - homospoil/gradient pulse D16 :1sec - 1 usec - to be varied SW :500 Hz NS :1 gpz 1 :80% 	
Processing paran SI :2 K WDW :EM FT :Fourier baseline c	meters transformation orrection :ABS			BC_mod :quad LB :2 Hz phase correction : adjust the signals to pure absorption. plot :use XWINPLOT

Experiment 11.5

- The Pulsed Gradient Spin-Echo Experiment

pulse program: zggpse This spin-echo experiment can be used to determine the strength of field gradients, if the diffusion constant of the sample is accurately known by other means.

Setting of the needed channels: F1: ¹H F2: off

Acquisition parameters PL1 :f1 channel - high power level for ¹H

100

D1 :2 sec - relaxation delay

TD :1 K O1 :on resonance of water signal gpnam1 :SINE.100 gpnam2 :SINE.100 NS :2

P2 :f1 channel - 180° ¹H transmitter pulse P16 : 4 msec - homospoil/gradient pulse, variable strength from 0 to 0.2 T/m in 10 steps D16 :500 usec - delay for homospoil/gradient recovery SW :1000 Hz gpz 1 :1%

gpz 2 :1% **RG** :receiver gain for correct ADC input

Processing parameters

Process all 10 spectra identically. SI :512 W WDW :EM FT :Fourier transformation

BC_mod :quad LB :5 Hz phase correction :adjust the phase to pure absorption.

baseline correction :ABS

integration :integrate the water signal in all spectra and refer all integrals to the integral value of the starting spectrum with gradient stength of 0. Compile a table of integral ratios I_g/I₀ vs. gradient strength G used, where the gradient stength is determined as described in Experiment 11.1.

Experiment 11.6

- Excitation Pattern of Selective Pulses

a) pulse program:

The width of the excitation of a selective pulse corresponds only very roughly to the inverse of ist duration. This method produces an image of the excitation pattern in one scan and provide determinations of the excitation pattern of a a) 90° and a b) 180° selective pulse.

Setting of the needed channels:	F1:	¹Η
-	F2:	off

Acquisition parameters

Processing parameters

b) pulse program:

compare with Exp. 11.6 a)

Setting of the needed channels: F1: ¹H F2: off

Acquisition parameters

Processing parameters

ovp11 7 mo		
exp11_7.mo In many exoeriments one wants to selectively observe protons that are attached to 13C or 15N. The strong signals of protons attached to 12C or 14N need to be suppressed in order to be able to adjust the receiver gain for the desired signals only. One technique to achieve this goal is to dephase unwanted signals with pulsed field gradients after storing the desired magnetization as z-magnetization.		
ded channels: F1: ¹ H F2: ¹³ C		
meters annel - high power level for ¹ H mitter pulse annel - high power level for ¹³ C upler pulse - relaxation delay sec - delay for ospoil/gradient recovery resonance SINE.100 er gain for correct ADC input	 P1 :f1 channel - 90° ¹H transmitter pulse P2 :f1 channel - 180° ¹H transmitter pulse P4 :f2 channel - 180° ¹³C decoupler pulse P16 : 1.5 msec - homospoil/gradient pulse D4 :1/[4J(C,H)]= 1.17 msec, calculated from ¹J(C,H)=214 Hz SW :500 Hz O2 :on ¹³C resonance DS :16 gpz 1 :5% 	
meters • transformation orrection :ABS 11.8	BC_mod :quad LB :0.1 Hz phase correction :adjust the phase of the satellites up and down plot :use XWINPLOT	
	13C or 15N. The strong signals suppressed in order to be able to only. One technique to achieve pulsed field gradients after stori ded channels: F1: ¹ H F2: ¹³ C meters annel - high power level for ¹ H mitter pulse annel - high power level for ¹³ C upler pulse - relaxation delay sec - delay for spoil/gradient recovery esonance GINE.100 er gain for correct ADC input meters transformation orrection :ABS	

pulse program: selcogp.mo This is the advanced 1D variant of the most common 2D experiment. Instead of recording the full 2D matrix, one can simply measure one "row" by replacing the first 90° pulse of the COSY experiment with a soft pulse, thus looking only for spin couplings that affect the particular proton excited.

Setting of the needed channels: F1: ¹H F2: off

Acquisition parameters

P1 :f1 channel - 90° ¹H transmitter power PL1 :f1 channel - high power level for ¹H transmitter pulse pulse P2 :f1 channel - 180° ¹H transmitter power pulse SP1 :f1 channel - power level for shaped P12 :f1 channel - 180° shaped pulse, 50 pulse, here 64 dB was used msec was used here P16: 2 msec - homospoil/gradient pulse D16 :500 usec - delay for D1 :2 sec - relaxation delay homospoil/gradient recovery **D2** : 30-60 msec, adjusted to $\approx 1/[2J(H,H)]$ TD :32 K SW :10 ppm O1 :on resonance of selected signal or use PHCOR2 :difference of phases between power level SP1 and PL1 spoffs gpnam1 :SINE.100 gpz 1 :40% gpnam2:SINE.100 gpz 2:40% gpnam3:SINE.100 gpz 3:7% gpnam4 :SINE.100 gpz 4:7% gpnam5:SINE.100 **gpz 5** :20% gpnam6:SINE.100 gpz 6 :-20% **NS** :1 **DS**:4 Gaussian shape with 1024 data points was RG :receiver gain for correct ADC input used

Processing parameters SI :16 K

WDW :EM FT :Fourier transformation BC_mod :quad LB :0.5 Hz phase correction :note that the signals of the coupling partners show the active coupling in antiphase plot :use XWINPLOT

baseline correction :ABS

Experiment	11.9		
pulse program:	ogram: selgpml.mo This is the 1D variant of the gs-TOCSY experiment. Compared with the selective TOCSY method, the gradient-selected method gives clean results without the need of phase cycling, using only one scan.		
Setting of the nee	ded channels: F1: F2:	¹ H off	
Acquisition para PL1 :f1 ch trans	meters annel - high power level fo mitter pulse	or ¹ H	 P1 :f1 channel - 90° ¹H transmitter power pulse P2 :f1 channel - 180° ¹H transmitter power pulse
PL10 :f1 channel - power level for TOCSY- spinlock		P5 :f1 channel - 60° low power pulse	
SP1 :f1 channel - power level for shaped pulse, here 62 dB was used		 P6 :f1 channel - 90° low power pulse P7 :f1 channel - 180° low power pulse P12 :f1 channel - 180° shaped pulse, 50 msec was used here 	

P16: 1 msec - homospoil/gradient pulse D16:500 usec - delay for D1 :2 sec - relaxation delay homospoil/gradient recovery D9 :250 msec; 76 msec; 215 msec -D20 :1msec - equal to the effective length mixing time (3 different experiments) of the gradient pulse **TD**:32 K SW :10 ppm PHCOR2 : difference of phases between **O1** : on resonance of selected signal or use spoffs power level SP1 and PL1 gpnam1 :SINE.100 gpz 1: 7% gpnam2:SINE.100 gpz 2 : -3% gpnam3 :SINE.100 gpz 3 :-10% **NS** :1 **DS** :2 Gaussian shape with 1024 data points was **RG** :receiver gain for correct ADC input used

Processing parameters	
SI :16 K	BC_mod :quad
WDW :EM	LB :0.1 Hz
FT :Fourier transformation	phase correction :adjust the signals to
baseline correction :ABS	plot :use XWINPLOT

Experiment 11.10 - DPFGSE-NOE

pulse program: selnogp.3

Using pulsed field gradients, unwanted signals can be better suppressed and, with a selective excitation pulse tailored to the multiplet under consideration, the desired NOE effects can be recorded without interference from other signals.

Setting of the needed channels:	F1:	^{1}H
	F2:	off

Acquisition parameters

PL0 :120 dB

P1 :f1 channel - 90° ¹H transmitter power PL1 :f1 channel - high power level for ¹H transmitter pulse pulse P2 :f1 channel - 180° ¹H transmitter power pulse SP1 :f1 channel - power level for shaped P12 :f1 channel - 180° shaped pulse, 50 pulse, here 62 dB was used msec was used here, Gaussian shape P16 : 1 msec - homospoil/gradient pulse D8:0.7 sec - mixing time D1 :2 sec - relaxation delay D16:500 usec - delay for D20 :d8*0.5-p16-d16 homospoil/gradient recovery TD :32 K SW :10 ppm O1 :middle of ¹H NMR spectrum NS:32 gpnam1 :SINE.100 gpz 1 : 11% gpnam2 :SINE.100 **gpz 2** : 17% gpnam3:SINE.100 **gpz 3** : 40% gpnam4:SINE.100 **gpz 4** :-40 % **DS**:4 RG :receiver gain for correct ADC input

Processing parameters SI :16 K WDW :EM FT :Fourier transformation

BC_mod :quad LB :0.3 Hz phase correction :adjust a negative phase for the irradiated multiplet plot :use XWINPLOT

baseline correction :ABS

Experiment 11.11 - gs-SELINCOR

pulse program: selincorgp.mo

This experiment yields 1D proton spectra in which the desired proton signal is selected via a selective pulse on the directly bonded ¹³C nucleus using the ¹J(C,H) spin coupling. The HSQC (Heteronuclear Single Quantum Coherence) method is used and the elimination of protons bond to ¹²C is achieved by pulsed field gradients.

Setting of the needed channels: F1: ¹H F2: ¹³C

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- PL2 :f2 channel high power level for ¹³C decoupler pulse
- PL12 :f2 channel power level for CPD decoupling
- PL21 :f1 channel power level for spinlock pulse
- **SP2** :f2 channel power level for shaped pulse, here 66 dB was used
- CPD2 :WALTZ16 CPD decoupling sequence, defined by cpdprg2
- D1 :2 sec relaxation delay
- D11 :30 msec delay for disk I/O

DELTA :d4-p16-d16 TD :32 K O1 :middle of ¹H spectrum

NS :128 gpnam1 :SINE.100 gpnam2 :SINE.100 gpnam3 :SINE.100 gpnam4 :SINE.100 gpnam5 :SINE.100 RG :receiver gain for correct ADC input

Processing parameters SI :16 K

- **P1** :f1 channel 90° ¹H transmitter pulse
- **P2** :f1 channel 180° ¹H transmitter pulse **P3** :f2 channel - 90° ¹³C decoupler pulse
- P4 :f2 channel 180° ¹³C decoupler pulse PCPD2 :f2 channel - 90° pulse for decoupling sequence
- P28 :f1 channel spin-lock pulse, same length as p13 (40 msec)
- P14 :f2 channel 180° shaped pulse, 40 msec was used here
- P16 : 1.5 msec homospoil/gradient pulse
- **D4** :1/[4J(C,H)]= 1.8 msec, calculated from ¹J(C,H)=140 Hz
- D16 :100 usec delay for homospoil/gradient recovery
- DELTA2 :d4-p16-d16-4u
- **SW** :10 ppm
- O2 :on resonance of chosen ¹³C NMR
- signal DS :16
- **DJ** . 10
- **gpz 1** :5% **gpz 1** :5%
- gpz 1 :-40%
- gpz 1 :40%
- gpz 1 :-20%

BC_mod :quad

WDW :EM FT :Fourier transformation LB :0.5 Hz phase correction :adjust the signals to pure absorption. plot :use XWINPLOT

baseline correction :ABS

Experiment 11.12 - GRECCO

pulse program:

The GRECCO (Gradient Enhanced Carbon Coupling) experiment selectively detects ${}^{2}J(C,C)$ and ${}^{3}J(C,C)$ carbon couplings, which are useful for a conformational analysis.

Setting of the needed channels:	F1:	¹³ C
Ū.	F2:	^{1}H

Acquisition parameters

Processing parameters

WDW :EM

Experiment '	11.13		
pulse program:	p3919gp This is a pulsed fie	eld gradient	method to suppress the water signal.
Setting of the need	ded channels:	F1: ¹ F2: 0	H off
Acquisition para	neters		
PL1 :f1 cha transr	annel - high power mitter pulse	level for ¹ H	P1 :f1 channel - 90° ¹ H transmitter power pulse
PL18 :f1 ch 19 pu	nannel - low power Ise (watergate)	level for 3-9	- P0 :f1 channel 90° pulse at PL18
			P16 : 2 msec - homospoil/gradient pulse P28 : f1 channel - 90° pulse at PL18
D1 :1 sec -	relaxation delay		D16 :500 usec - delay for homospoil/gradient recovery
D19 :150 u suppr d=dis usual	sec - delay for binc ession, D19=(1/(2* tance of next null (i ly 2*DW	omial water d)), in Hz),	
TD :32 K			SW :10 ppm
O1 :on wat	er resonance		NS :16
gpnam1 :S	SINE.100		gpz 1 : 20%
DS :4	SINE. IOU		RG :receiver gain for correct ADC input
Processing parar	neters		
SI :16 K			BC mod :quad

LB :0.5 Hz

106

FT : Fourier transformation

baseline correction :ABS **plot** :use XWINPLOT

Experiment 11.14 - Water Suppression by Excitation Sculpting dpfgse.mo pulse program: The WATERGATE technique has problems with baseline roll and signal phasing. A new technique, termed DPFGSE (Double Pulsed Field Gradient Spin Echo), also being called Excitation Sculpting solves this problem by applying the WATERGATE sequence twice. Setting of the needed channels: F1: ^{1}H F2: off Acquisition parameters **P1** :f1 channel - 90° ¹H transmitter power **PL1** :f1 channel - high power level for ¹H transmitter pulse pulse PL18 :f1 channel - low power level for 3-9-P0 :f1 channel -- 90° pulse at PL18 19 pulse (watergate) P16: 1 msec - homospoil/gradient pulse P28 : f1 channel - 90° pulse at PL18 D1 :1 sec - relaxation delay D16 :500 usec - delay for homospoil/gradient recovery D19:250 usec TD :32 K SW :10 ppm O1 :on water resonance **NS**:16 gpnam1 :SINE.100 **gpz 1** : 40% gpnam2 :SINE.100 **gpz 2** : 40% gpnam3:SINE.100 gpz 3:7% gpnam4 :SINE.100 gpz 4:7% **DS**:4 RG :receiver gain for correct ADC input **Processing parameters**

SI :16 K WDW :EM FT :Fourier transformation BC_mod :quad LB :0.5 Hz phase correction :ignore the phase of the water signal and adjust the others to pure absorption. plot :use XWINPLOT

baseline correction :ABS

Chapter 12

- 2D NMR Spectroscopy with Field Gradients

Summary

Experiment	Pulse program	Description
12.1	cosygp	gs-COSY
12.2	cosydfgptp.mo	Phase-Sensitive gs-DQF-COSY
12.3	inv4gp	gs-HMQC
12.4	inv4gplpIrnd	gs-HMBC
12.5	inv4acgplplr.mo	ACCORD-HMBC
12.6	invietgpsi	Phase-Sensitive gs-HSQC with
		Sensitivity Enhancement
12.7	mlevgp.mo	gs-TOCSY
12.8	inv4gpml	gs-HMQC-TOCSY
12.9		2Q-HMBC
12.10	ineptinadgp.mo	Gradient-Selected ¹ H-Detected
		2D INEPT-INADEQUATE
12.11	noesygpst	gs-NOESY
12.12	invietgpno.mo	gs-HSQC-NOESY
12.13		gs-HOESY
12.14	inv4gpnd.mo	¹ H, ¹⁵ N Correlation with gs-
		HMQC

Experiment 12.1

- gs-COSY

pulse program: cosygp This COSY pulse sequence can be achieved with only one scan per T1 increment Setting of the needed channels: F1: ^{1}H F2: off Acquisition parameters P1 :f1 channel - 90° ¹H transmitter pulse **PL1** :f1 channel - high power level for ¹H transmitter pulse P0 :f1 channel - 90° ¹H transmitter pulse P16 :2 msec - homospoil/gradient pulse **D0** :3 usec - incremented delay D1 :2 sec - relaxation delay D13 :3 usec - short delay D16 :500 usec - delay for homospoil/gradient recovery Parmod :2D ND0:1 TD2:1 K data points in F2 TD1 :256 data points in F1 SW1 :10 ppm

SW2 :10 ppm **O1** : middle of ¹H NMR spectrum **NS** :1 gpnam1 :SINE.100 gpnam2:SINE.100 **INO** :1/[SW1]

DS:16 gpz 1:10% gpz 2 : 10% RG :receiver gain for correct ADC input
Processing parameters SI(F2) :512 W WDW(F2) :SINE SSB(F2) :0 PH-mod(F2) :no MC2 :QF SYM (may be performed) phase correction :not necessary	SI(F1) :512 W WDW(F1) :SINE SSB(F1) :0 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT
Experiment 12.2 - Phase-Sensitive gs-DQF-COSY	
pulse program: cosydfgptp.mo 2D homonuclear shift correlatio sensitive using TPPI.	n, using gradients as double quantum filter, phase
Setting of the needed channels: F1: ¹ H F2: off	
 Acquisition parameters PL1 :f1 channel - high power level for ¹H transmitter pulse D0 :3 usec - incremented delay D13 :3 usec - short delay D20 :2 msec - same length as gradient pulse 	 P1 :f1 channel - 90° ¹H transmitter pulse P2 :f1 channel - 180° ¹H transmitter pulse P16 :2 msec - homospoil/gradient pulse D1 :2 sec - relaxation delay D16 :500 usec - delay for homospoil/gradient recovery
Parmod :2D TD2 :2 K data points in F2 SW2 :10 ppm O1 : middle of ¹ H NMR spectrum NS :4 gpnam1 :SINE.100 gpnam2 :SINE.100 IN0 :1/[2*SW1]	ND0 :2 TD1 :512 data points in F1 SW1 :10 ppm DS :16 gpz 1 : 10% gpz 2 : 20% RG :receiver gain for correct ADC input
Processing parameters SI(F2) :1 K WDW(F2) :EM or GM LB(F2) : depending on the GB(F2) : resolution PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation PHC1(F2) :should be 0 before first transformation MC2 :TPPI phase correction :use the 2D-phase correction routine plot :use XWINPLOT	SI(F1) :1 K WDW(F1) :EM or GM LB(F1) : depending on the GB(F1) : resolution PH-mod(F1) :pk PHC0(F1) :90 PHC1(F1) :should be 0 before first transformation XFB :fourier transformation in both directions XF2P :will be executed after correction of the rows

Experiment 12.3 - gs-HMQC

pulse program: inv4gp This is a HMQC experiment with pulsed field gradients and a BIRD filter to suppress the signals of protons bond to ¹²C. Setting of the needed channels: F1: ^{1}H ¹³C F2· Acquisition parameters P1 :f1 channel - 90° ¹H transmitter pulse **PL1** :f1 channel - high power level for ¹H transmitter pulse **P2** :f1 channel - 180° ¹H transmitter pulse PL2 :f2 channel - high power level for ¹³C P3 :f2 channel - 90° ¹³C decoupler pulse decoupler pulse P16 :2 msec - homospoil/gradient pulse PL12 :f2 channel - power level for CPD PCPD2 :f2 channel - 90° pulse for decoupling sequence decoupling CPD2 :GARP - CPD decoupling sequence, defined by cpdprg2 **D0**:3 usec - incremented delay D12:20 usec - delay for power switching D1 :2 sec - relaxation delay **D2** :1/[2J(C,H)]= 3.57 msec, calculated D13:3 usec - short delay from ${}^{1}J(C,H)=140$ Hz D16:500 usec - delay for **D20** :D2-P16-D13-D12, but ≥D16 homospoil/gradient recovery Parmod :2D ND0:2 TD2:1 K data points in F2 TD1 :256 data points in F1 SW2 :10 ppm SW1 :165 ppm O2 :middle of ¹³C NMR spectrum **O1** : middle of ¹H NMR spectrum **NS**:1 **DS**:16 gpnam1 :SINE.100 **gpz 1** : 50% gpnam2 :SINE.100 **gpz 2** : 30% gpnam3:SINE.100 **gpz 3** : 40.1 RG :receiver gain for correct ADC input IN0 :1/[2*SW1] **Processing parameters** SI(F2) :512 W SI(F1) :512 W WDW(F1) :QSINE WDW(F2) :EM **LB(F2)** :5 Hz SSB(F1) :3 PH-mod(F2) :no

phase correction :not necessary

PH-mod(F1) :mc **XFB** : fourier transformation in both directions plot :use XWINPLOT

Experiment 12.4 - gs-HMBC

MC2 :QF

inv4gplplrnd pulse program:

This is a HMBC (Heteronuclear Multiple Bond Correlation) pulse sequence to obtain a H,C correlation via ${}^{2}J(C,H)$ and ${}^{3}J(C,H)$. It is a gradient-selected version without decoupling.

 ^{1}H Setting of the needed channels: F1: ^{13}C F2:

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- PL2 :f2 channel high power level for ¹³C decoupler pulse

D0:3 usec - incremented delay **D2** :1/[2J(C,H)]= 3.57 msec, calculated from ${}^{1}J(C,H)=140$ Hz D13:3 usec - short delay

Parmod :2D TD2:1 K data points in F2 SW2 :10 ppm **O1** : middle of ¹H NMR spectrum NS:2 gpnam1 :SINE.100 gpnam2 :SINE.100 gpnam3 :SINE.100 IN0 :1/[2*SW1]

Processing parameters

SI(F2) :512 W WDW(F2) :EM LB(F2) :5 Hz PH-mod(F2) :no MC2 :QF

phase correction :not necessary

P1 :f1 channel - 90° ¹H transmitter pulse **P2** :f1 channel - 180° ¹H transmitter pulse **P3** :f2 channel - 90° ¹³C decoupler pulse P16 :2 msec - homospoil/gradient pulse D1 :2 sec - relaxation delay **D6** :1/[2J(C,H)]= 60 msec, calculated from [°]J(C,H)=8 Hz D16:500 usec - delay for homospoil/gradient recovery ND0:2 TD1 :256 data points in F1 SW1 :165 ppm O2 :middle of ¹³C NMR spectrum **DS**:16 **gpz 1** : 50% **gpz 2** : 30% **gpz 3** : 40.1

XFB : fourier transformation in both directions plot :use XWINPLOT

Experiment 12.5

- ACCORD-HMBC

pulse program:

inv4acgplplr.mo This is a HMBC (Heteronuclear Multiple Bond Correlation) pulse sequence to obtain a H,C correlation via ²J(C,H) and ³J(C,H). It is a gradient-selected version without decoupling.

Setting of the needed channels: F1: ^{1}H ¹³C F2:

Acquisition parameters

- PL1 :f1 channel high power level for ¹H transmitter pulse
- PL2 :f2 channel high power level for ¹³C decoupler pulse
- PL12 :f2 channel power level for CPD decoupling, 12 dB
- P1 :f1 channel 90° ¹H transmitter pulse

P2 :f1 channel - 180° ¹H transmitter pulse P3 :f2 channel - 90° ¹³C decoupler pulse

PCPD2 :f2 channel - 90° pulse for decoupling sequence, 70 usec P16 :1 msec - homospoil/gradient pulse

RG :receiver gain for correct ADC input SI(F1) :512 W WDW(F1) :QSINE SSB(F1):3 PH-mod(F1) :mc

CPD2 :GARP - CPD decoupling sequence, defined by cpdprg2 **D0** :3 usec - incremented delay **D2** :1/[2J(C,H)]= 3.57 msec, calculated from ${}^{1}J(C,H)=140$ Hz D16:50 usec - delay for homospoil/gradient recovery D21 :1s/(2*(cnst7)-0.146*(cnst7-cnst6))p16-d16=2.1 msec cnst6 :J(XH)min, here 128 Hz Parmod :2D **TD2** :2 K data points in F2 SW2 :10 ppm **O1** : middle of ¹H NMR spectrum **NS**:2 gpnam1 :SINE.100 gpnam2:SINE.100 gpnam3:SINE.100 gpnam4 :SINE.100 gpnam5 :SINE.100 gpnam6 :SINE.100 gpnam7:SINE.100 gpnam8 :SINE.100 IN0 :1/[2*SW1]

RG :receiver gain for correct ADC input

Processing parameters

SI(F2) :1 K WDW(F2) :EM LB(F2) :5 Hz PH-mod(F2) :no MC2 :QF

D6 :1/[2J(C,H)]= 200 msec, calculated from ${}^{2/3}J(C,H)=2.5$ Hz p16-d16=2.7 msec cnst7 :J(XH)max, here 163 Hz ND0:2 TD1 :256 data points in F1 **SW1** :165 ppm **O2** :middle of ¹³C NMR spectrum **DS**:16 **gpz 1** : 15% gpz 2: -10% gpz 3 : -5% gpz 4 : 50%

SI(F1) :512 W WDW(F1) :QSINE SSB(F1):3 PH-mod(F1) :mc XFB : fourier transformation in both directions plot :use XWINPLOT

IN6 :(200 msec-20 msec)/td1=0.7 msec, corresponding 2.5 Hz to 25Hz

phase correction :not necessary

Experiment 12.6

- Phase-Sensitive gs-HSQC with Sensitivity Enhancement

pulse program: invietgpsi

> The HSQC (Heteronuclear Single Quantum Coherence) method performs the H,C correlation via the ¹³C chemical shift evolution of a single quantum coherence. In this case it is a gradient-selected correlation using echo/antiecho selection method.

gpz 5 : 30%

gpz 6 : 40%

gpz 7 : -5%

gpz 8 : 5%

Setting of the needed channels: F1: ^{1}H F2: ¹³C

Acquisition parameters

PL1 :f1 channel - high power level for ¹H transmitter pulse

- PL2 :f2 channel high power level for ¹³C decoupler pulse
- P1 :f1 channel 90° ¹H transmitter pulse **P2** :f1 channel - 180° ¹H transmitter pulse **P3** :f2 channel - 90° ¹³C decoupler pulse **P4** :f2 channel - 180° ¹³C decoupler pulse P16 :1.6 msec - homospoil/gradient pulse

D1 :2 sec - relaxation delay

D20 :1s/(2*(cnst6)+0.146*(cnst7-cnst6))-

PL12 :f2 channel - power level for CPD decoupling CPD2 :GARP - CPD decoupling sequence, defined by cpdprg2 **D0** :3 usec - incremented delay D4 :1/[4J(C,H)]= 1.8 msec, calculated from D11 : 30 msec - delay for disk I/O $^{1}J(C,H)=140$ Hz

D13:3 usec - short delay

D24 :1/(8 J(XH) for all multiplicities

Parmod :2D TD2 :1 K data points in F2 SW2 :10 ppm **O1** : :middle of ¹H NMR spectrum **NS**:1 gpnam1 :SINE.100 gpnam2:SINE.100 IN0 :1/[2*SW1]

Processing parameters

SI(F2) :512 W WDW(F2) :EM LB(F2) :3 Hz PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation MC2 :echo-antiecho

phase correction :use the 2D-phase correction routine, phase correction is usually only necessary in F2 plot :use XWINPLOT

P28 :2 msec - trim pulse PCPD2 :f2 channel - 90° pulse for decoupling sequence

D1 :2 sec - relaxation delay

D16:100 usec - delay for homospoil/gradient recovery L3 :loop for phase sensitive 2D using E/A method : L3=TD1/2=64 ND0:2 TD1 :2 times 64 data points in F1 SW1 :165 ppm O2 :middle of ¹³C NMR spectrum **DS**: =16 **gpz 1** : 80% gpz 2: 20.1% RG :receiver gain for correct ADC input

SI(F1) :512 W WDW(F1):GM

PH-mod(F1) :no PHC1(F2) : should be 0 before first transformation **XFB** : fourier transformation in both directions XF2P :will be executed after correction of

the rows

Experiment 12.7

- gs-TOCSY

pulse program:	mlevgp.mo This experiment is SpectroscopY) me	the gradie thod, whic	ent-s ch ca	elected version o In be done with o	of the TOCSY (Total Correlation ne scan.
Setting of the need	led channels:	F1: F2:	¹ H off		
Acquisition parar PL1 :f1 cha transr PL10 :f1 ch spinlo	neters annel - high power le nitter pulse annel - power level ack	evel for ¹ H for TOCS	I SY-	 P1 :f1 channel - P5 :f1 channel - power pulse P6 :f1 channel - power pulse P7 :f1 channel - 	90° ¹ H transmitter pulse 60° ¹ H transmitter low 90° ¹ H transmitter low 180° ¹ H transmitter low

D0:3 usec - incremented delay D1 :2 sec - relaxation delay D12:20 usec - delay for power switching

Parmod :2D TD2:1 K data points in F2 SW2 :9 ppm **O1** : middle of ¹H NMR spectrum **NS**:1 gpnam1 :SINE.100 gpnam2 :SINE.100 IN0 :1/[SW1]

P17 :f1 channel - 2.5 msec - trim pulse D9: 100 msec- mixing time D16:500 usec - delay for homospoil/gradient recovery ND0:1 TD1 :256 data points in F1 SW1 :9 ppm **DS** :16

P16 :2 msec - homospoil/gradient pulse

power pulse

gpz 1 : 10% **gpz 2** : 10% RG :receiver gain for correct ADC input

Processing parameters

SI(F2) :512 W WDW(F2) :SINE SSB(F2):0 PH-mod(F2) :no MC2 :QF

SI(F1) :512 W WDW(F1) :SINE SSB(F1):0 PH-mod(F1) :mc XFB : fourier transformation in both directions plot :use XWINPLOT

phase correction :not necessary

Experiment 12.8

- gs-HMQC-TOCSY

pulse program: inv4gpml

This is a combination of the HMQC (Heteronuclear Multiple Quantum Coherence) method with the TOCSY (Total Correlation SpectroscopY) sequence. Starting from each HMQC cross-signal one finds in F1 additional signals which are caused by a TOCSY transfer. This variant is a gradient-selected method, which does not need a BIRD filter.

Setting of the needed channels: F1: ^{1}H ^{13}C F2:

Acquisition parameters

- PL1 :f1 channel high power level for ¹H transmitter pulse
 - PL2 :f2 channel high power level for ¹³C decoupler pulse
 - spinlock
 - PL12 :f2 channel power level for CPD decoupling CPD2 :GARP - CPD decoupling sequence,
 - **P1** :f1 channel 90° ¹H transmitter pulse P2 :f1 channel - 180° ¹Htransmitter pulse P3 :f2 channel - 90° ¹³C decoupler pulse PL10 :f1 channel - power level for TOCSY- P5 :f1 channel - 60° ¹H transmitter low power pulse **P6** :f1 channel - 90° ¹H transmitter low power pulse P7 :f1 channel - 180° ¹H transmitter low power pulse P16 :2 msec - homospoil/gradient pulse P17 :f1 channel - 2.5 msec - trim pulse
 - PCPD2 :f2 channel 90° pulse for decoupling sequence

defined by cpdprg2 D0:3 usec - incremented delay **D2** :1/[2J(C,H)]= 3.57 msec, calculated from ${}^{1}J(C,H)=140$ Hz D12 :20 usec - delay for power switching D16:500 usec - delay for homospoil/gradient recovery Parmod :2D TD2:1 K data points in F2 SW2 :10 ppm **O1** : middle of ¹H NMR spectrum **NS**:4 gpnam1 :SINE.100 gpnam2 :SINE.100 gpnam3 :SINE.100 IN0 :1/[2*SW1]

D9:81.8 msec - mixing time D13:3 usec - short delay **D21** :P16+D16+D12 ND0:2 TD1 :256 data points in F1 SW1 :165 ppm O2 :middle of ¹³C NMR spectrum **DS**:16 **gpz 1** : 50% gpz 2 : 30% gpz 3: 40.1% RG :receiver gain for correct ADC input

D1 :2 sec - relaxation delay

SI(F1) :512 W WDW(F1):SINE SSB(F1):0 PH-mod(F1) :mc XFB : fourier transformation in both directions plot :use XWINPLOT

180° ¹H transmitter pulse 90° ¹³C decoupler pulse

180° ¹³C decoupler pulse

phase correction :not necessary

Experiment 12.9 - 2Q-HMBC

Processing parameters

SSB(F2):0

MC2 :QF

SI(F2) :512 W WDW(F2) :SINE

PH-mod(F2) :no

pulse program:

This experiments detects long-range carbon-carbon connectivities. The transfer from protons to ¹³C uses a ³J(C,H) or a ²J(C,H) instead of a ¹J(C,H) coupling and that it is not dependent on the C,C coupling constants. Therefore carbon-carbon relationships can also be detected, where the C,C spin coupling constant is close to zero.

Setting of the needed channels:	F1: F2:	¹ H ¹³ C	
Acquisition parameters			
PL1 :f1 channel - high power transmitter pulse	level for ¹	Η	P1 :f1 channel - 90° ¹ H transmitter pulse
			P2 :f1 channel - 180° ¹ H transmitter pul
PL2 :f2 channel – high power decoupler pulse	level for ¹	°С	P3 :f2 channel - 90° ¹³ C decoupler pulse
			P4 :f2 channel - 180° ¹³ C decoupler puls
			P16 :1 msec - homospoil/gradient pulse
			P28 :f1 channel - 2 msec - trim pulse
D0 :3 usec - incremented del	ay		D1 :4 sec - relaxation delay
D11 :30 msec – delay for disk	κĺ/O		D16 :100 usec - delay for homospoil/gradient recovery
cnst0 :ds=ns*2*cnst0			cnst6 :159 Hz
cnst7 :179 Hz			cnst8 :8.5 Hz
Parmod :2D			ND0 :2
TD2 :1 K data points in F2			TD1 :128 data points in F1

SW2 :5.2 ppm

O1 :center of ¹H NMR spectrum NS :32 gpnam1 :SINE.100 gpnam2 :SINE.100 gpnam3 :SINE.100 gpnam4 :SINE.100 gpnam5 :SINE.100 IN0 :1/[2*SW1] SW1 :206 ppm (C,C double quantum frequency)
O2 :center of ¹³C NMR spectrum
L3 :TD1/2
gpz 1 : 30%
gpz 2 : -20%
gpz 3 : -10%
gpz 4 : 30%
gpz 5 : -10%

RG :receiver gain for correct ADC input

Processing parameters SI(F2) :1024 W

WDW(F2) :SINE SSB(F2) :4 PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation XFB :fourier transformation in both directions SI(F1) :256 W WDW(F1) :QSINE SSB(F1) :2 PH-mod(F1) :no MC2 :echo-antiecho

phase correction :use the 2D-phase correction routine, phase correction is usually only necessary in F2

XF2P :will be executed after correction of the rows

Experiment 12.10

- Gradient-Selected ¹H-Detected 2D INEPT-INADEQUATE

pulse program:	ineptinadgp.mo (in This experiment de magnetization and ¹² C is achieved by quaternary carbon	eptingp_mo) etects carbon I detects ¹ H m the use of pu atoms canno	n-carbon connectivities, but starts from ¹ H nagnetization. The suppressing of protonsbond to Ilsed field gradients. Connectivities between two of be detected.
Setting of the need	ded channels:	F1: ¹ H F2: ¹³ C	;
Acquisition para PL1 :f1 cha	meters annel - high power l	evel for ¹ H	P1 :f1 channel - 90° ¹ H transmitter pulse
transi	mitter pulse		
			P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 cha decou	annel – high power l upler pulse	level for ¹³ C	P3 :f2 channel - 90° ¹³ C decoupler pulse
			P4 :f2 channel - 180° ¹³ C decoupler pulse
PL12 :f2 ch dec	nannel - power level coupling	I for CPD	PCPD2 :f2 channel - 90° pulse for decoupling sequence
	1 0		P16 :1 msec - homospoil/gradient pulse
			P28 :f1 channel - 2 msec - trim pulse
CPD2 :GAI defi	RP - CPD decouplir ned by cpdpra2	ng sequence,	
D0 :3 usec	- incremented dela	ау	D1 :1.5 sec - relaxation delay
D4 :1/[4J(C ¹ J(C,H)),H)]= 1.8 msec, cal)=140 Hz	culated from	D11 :30 msec – delay for disk I/O
D16 :200 u	isec - delay for		D20 :D4-P16-D16-4u

homospoil/gradient recovery **D21** :D16+P2+D0*2

cnst0 :ds=ns*2*cnst0 Parmod :2D TD2 :1 K data points in F2 SW2 :3.7 ppm

Processing parameters SI(F2) :1024 W

WDW(F2) :EM

PH-mod(F2) :pk

directions

LB(F2) :6.5

O1 :center of ¹H NMR spectrum NS :12 gpnam1 :SINE.100 gpnam2 :SINE.100 gpnam3 :SINE.100 IN0 :1/[2*SW1]

PHC0(F2) : should be 0 before first

transformation **XFB** :fourier transformation in both

D23 :1/[4J(C,C)]= 5 msec, calculated from ¹J(C,C)=50 Hz L3 :TD1/2 ND0 :2 TD1 :2 times 512 data points in F1 SW1 :80 ppm (C,C double quantum frequency) O2 :center of ¹³C NMR spectrum DS :16 gpz 1 : 39.7% gpz 2 : 39.7% gpz 3 : 40%

RG :receiver gain for correct ADC input

SI(F1) :1024 W WDW(F1) :QSINE SSB(F1) :2 PH-mod(F1) :no MC2 :echo-antiecho

phase correction :use the 2D-phase correction routine, phase correction is usually only necessary in F2

XF2P :will be executed after correction of the rows

pst -NOESY met t during the e ant are neede nels: F F	thod re entire n ed. 71: 72:	eplace nixing ¹ H off	s the phase cycling procedure by one pulsed field time. In practice, only two transients for each t
pst -NOESY met t during the e ant are neede inels: F F	thod re entire n ed. 71: 72:	eplace nixing ¹ H off	s the phase cycling procedure by one pulsed field time. In practice, only two transients for each t
pst -NOESY met t during the e ant are neede nels: F F	thod re entire n ed. 71: 72:	eplace nixing ¹ H off	s the phase cycling procedure by one pulsed field time. In practice, only two transients for each $t_{\rm 1}$
inels: F F	-1: -2:	¹ H off	
iah nower lev			
lse	vel for 1	Ή	P1 :f1 channel - 90° ¹ H transmitter pulse
nented delay ing time lay for adient recover s in F2 MR spectrum	ry		P2 :f1 channel - 180° ¹ Htransmitter pulse P16 :1 msec - homospoil/gradient pulse D1 :2 sec - relaxation delay D11 :30 msec - delay for disk I/O D20 :D8*0.5 - p16 - d16 ND0 :1 TD1 :256 data points in F1 SW1 :10 ppm L3 :I3=td1/2 - loop for States-TPPI
	nented delay ing time ay for dient recove s in F2 VR spectrum	iented delay ing time ay for dient recovery s in F2 MR spectrum	inented delay ing time ay for dient recovery s in F2 MR spectrum

gpnam1 :SINE.100 gpnam2 :SINE.100 IN0 :1/[1*SW1]

Processing parameters

SI(F2) :512 W WDW(F2) :EM LB(F2) :2 PH-mod(F2) :pk PHC1(F2) :should be 0 before first transformation MC2 :States-TPPI

gpz 1 : 40%
gpz 2 : -40%
RG :receiver gain for correct ADC input

SI(F1) :512 W WDW(F1) :QSINE SSB(F1) :2 PH-mod(F1) :pk PHC1(F1) :should be 0 before first transformation XFB :fourier transformation in both directions

XF1P :will be executed after correction of the columns

Experiment 12.12 - gs-HSQC-NOESY

pulse program:

invietgpno.mo

It is very difficult to observe and evaluate NOESY cross peaks if the corresponding diagonal signals are very close together or overlap. A remedy to these problems can be achieved by editing the NOESY spectra by the carbon chemical shift. The acquisition of the data is performed without ¹³C decoupling, which allows one to observe an NOE effect between a proton bound to ¹³C and a proton in the same molecule with the identical chemical shift but bound to ¹²C.

Setting of the needed channels:	F1:	^{1}H
-	F2:	¹³ C

Acquisition parameters

PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
	P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 channel – high power level for ¹³ C decoupler pulse	P3 :f2 channel - 90° ¹³ C decoupler pulse
	P4 :f2 channel - 180° ¹³ C decoupler pulse
PL12 :f2 channel - power level for CPD decoupling	PCPD2 :f2 channel - 90° pulse for decoupling sequence
	P16 :1 msec - homospoil/gradient pulse
	P28 :f1 channel - 1 msec - trim pulse
CPD2 :GARP - CPD decoupling sequence, defined by cpdprg2	
D0:3 usec - incremented delay	D1 :1 sec - relaxation delay
D4 :1/[4J(C,H)]= 1.56 msec, calculated from ¹ J(C,H)=160 Hz	D8 :2 sec – mixing time
D11 :30 msec – delay for disk I/O	D12 :20 usec – delay for power switching
D16 :200 usec - delay for	
homospoil/gradient recovery	
Parmod :2D	ND0 :2
TD2 :1 K data points in F2	TD1 :64 data points in F1

SW2 :2.0 ppm O1 :center of ¹H NMR spectrum NS :12

gpnam1 :SINE.100 gpnam2 :SINE.100 gpnam3 :SINE.100 gpnam4 :SINE.100 IN0 :1/[2*SW1] SW1 :12 ppm O2 :center of ¹³C NMR spectrum DS :>=16 L3 :TD1/2 gpz 1 : 50% gpz 2 : 80% gpz 3 : 30% gpz 4 : 20.1% RG :receiver gain for correct ADC input

Processing parameters SI(F2) :512 W WDW(F2) :EM LB(F2) :10 PH-mod(F2) :pk PHC0(F2) :should be 0 before first transformation XFB :fourier transformation in both directions

SI(F1) :128 W WDW(F1) :EM SSB(F1) :3 PH-mod(F1) :no MC2 :echo-antiecho

phase correction :use the 2D-phase correction routine, phase correction is usually only necessary in F2. The NOE signals have the opposite phase.

XF2P :will be executed after correction of the rows

Experiment 12.13

- gs-HOESY

pulse program:

This gs-HOEY experiment yields information on the spatial relationship between spins in the heteronuclear case. It will be of main value in cases where information from spin-spin couplings is unhelpful or unavailable.

Setting of the needed channels: F1: ¹H F2: ⁷Li

Acquisition parameters

Processing parameters

Experiment 12.14 - ¹H, ¹⁵N Correlation with gs-HMQC

pulse program: inv4gpnd.mo

Due to the low receptivity of ¹⁵N it is very tedious to obtain ¹⁵N NMR spectra of organic compounds if they are available only in miligrams. Inverse detection is therefore the method of choice, particularily if the unwanted signals can be efectively suppressed with pulsed field gradients.

Setting of the needed channels:	F1:	^{1}H
-	F2:	¹⁵ N

Acquisition parameters

- **PL1** :f1 channel high power level for ¹H transmitter pulse
- PL2 :f2 channel high power level for ¹⁵N decoupler pulse

D0 :3 usec - incremented delay D2 :1/[2J(N,H)]= 50 msec, calculated from ^{2,3}J(C,H)=10 Hz D16 :100 usec - delay for

homospoil/gradient recovery D21 :D16+P2+D0*2

Parmod :2D TD2 :1 K data points in F2 SW2 :10 ppm O1 :middle of ¹H NMR spectrum NS :4 gpnam1 :SINE.100 gpnam2 :SINE.100 gpnam3 : SINE.100 IN0 :1/[2*SW1]

Processing parameters

SI(F2) :512 W WDW(F2) :SINE LB(F2) :2 PH-mod(F2) :no MC2 :QF

phase correction :phase correction is not plot :use XWINPLOT necessary

P1 :f1 channel - 90° ¹H transmitter pulse **P2** :f1 channel - 180° ¹H transmitter pulse P3 :f2 channel - 90° ¹⁵N decoupler pulse P16 :2 msec - homospoil/gradient pulse D1 :2 sec - relaxation delay D11: 30 msec - delay for disk I/O D20 :D4-P16-D16-4usec **D23** : 1/[4J(C,C)] = 5 msec, calculated from $^{1}J(C,C)=50$ Hz ND0:2 TD1 :128 data points in F1 SW1 :400 ppm O2 :middle of ¹⁵N NMR spectrum **DS**: 16 **gpz 1** : 55% gpz 2:45% gpz 3: 20.14% RG :receiver gain for correct ADC input

SI(F1) :512 W WDW(F1) :SINE SSB(F1) :2 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT

Chapter 13

- The Third Dimension

Summary

Experiment	Pulse program	Description
13.1	invbcosytp3d.mo	3D HMQC-COSY
13.2	invigpml3d.mo	3D gs-HSQC-TOCSY
13.3	h_c_p3d.mo	3D H,C,P-Correlation
13.4		3D HMBC

Experiment 13.1 - 3D HMQC-COSY

pulse program:	invbcotp3d.mo This is a 3D experi correlation.	ment, in wh	ich the COSY spectra are "edited" via C,H
Setting of the neede	ed channels:	F1: ¹ H F2: ¹³	1 C
Acquisition param	neters	1	
PL1 :f1 char transm	nnel - high power le nitter pulse	evel for 'H	P1 :f1 channel - 90° 'H transmitter pulse
			P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 char decour	nnel - high power le pler pulse	evel for ¹³ C	P3 :f2 channel - 90° ¹³ C decoupler pulse
			P4 ·f2 channel - 180° ¹³ C decoupler pulse
PI 12 ·f2 ch	annel - nower level	for CPD	PCPD2 :f2 channel - 90° pulse for
deco	unlina		decoupling sequence
CPD2 :GAR defin	P - CPD decouplin ed by codora2	g sequence	,
D0 :3 usec -	incremented dela	y (F1 in 3D)	D7 :ca. 0.4 sec - BIRD delay to be optimized for minimum FID
D1 :2 sec - r	relaxation delay		D10 :3 usec - incremented delay (F2 in 3D)
D2 :1/[2J(C, ¹ J(C,H)=	H)]= 3.5 msec, cal = 145 Hz	culated fron	D11 : 30 msec - delay for disk I/O
Parmod :3D)		ND0 :4
TD3 :256 da	ata points in F3 (¹ H))	TD2 :64 data points in F2 (¹ H)
TD1 :128 da	ta points in F1 (^{13}C)	;)	ND10 :2
SW3 :3.3 pp	om'	,	SW2 :3.3 ppm
SW1 :42 pp	m		
O1 : middle	of selected ¹ H NMI	R region	O2 :middle of selected ¹ H NMR region
		Cicgion	DS ·32
INO .4 INO .1/[/*9\/	V11		IN10 :1/[2*SW/2]
RG :receive	r gain for correct A	DC input	

Processing parameters SI(F3) :256 W

SI(F2) :128 W

SI(F1):128 W WDW(F3) :EM WDW(F2) :QSINE WDW(F1) :QSINE LB(F3) :5 Hz SSB(F2):2 SSB(F1):2 MC2(F2) :TPPI MC2(F1) :TPPI PH-mod(F3) :pk PH-mod(F2) :pk PH-mod(F1) :pk PHC0(F3) :should be 0 before first PHC1(F3) :should be 0 before first transformation transformation PHC0(F2) : should be 0 before first PHC1(F2) : should be 0 before first transformation transformation PHC0(F1) : should be 0 before first PHC1(F1) :should be 0 before first transformation transformation AQORDER :3 - 1 - 2 TF3, TF2, TF1 : fourier transformation in all dimensions phase correction :should be performed plot :use XWINPLOT after the FT of each dimension

Experiment 13.2 - 3D gs-HSQC-TOCSY

- J- - - - -

pulse program:

This 3D experiment is a combination of a HSQC (Heteronuclear Single Quantum Coherence) and a TOCSY (Total Correlation SpectroscopY) sequence. It is a gradient-selected experiment.

Setting of the needed channels: F1: ¹H F2: ¹³C

Acquisition parameters

Processing parameters

Experiment 13.3

- 3D H,C,P-Correlation

pulse program:

3D experiment to measure the correlation between three different nuclei.

Setting of the needed channels: F1: ${}^{1}H$ F2: ${}^{13}C$

³¹P

F3:

Acquisition parameters

Processing parameters

Experiment 13.4 - 3D HMBC

pulse program:

Instead of measuring several HMBC spectra with different delays, a 3D version was recently proposed in which the corresponding delay is incremented; thus the whole range of C,H long-range coupling constants are actually used for double quantum excitation.

Setting of the needed channels: F1: ¹H F2: ¹³C

Acquisition parameters

Processing parameters

Chapter 14

- Solid-State NMR Spectroscopy

Summary

Experiment	Pulse program	Description
14.1		Shimming Solid-State Probe-
		Heads
14.2		Adjusting the Magic Angle
14.3		Hartmann-Hahn Matching
14.4		The Basic CP/MAS Experiment
14.5		TOSS
14.6		SELTICS
14.7		Multiplicity Determination in the
		Solid-State

Experiment 14.1

- Shimming Solid-State Probe-Heads

a)pulse program:

In solid-state NMR there is usually no lock channel and because of that a resonable basic shim is necessary.

Setting of the needed channels:	F1:	^{1}H
-	F2:	off

Acquisition parameters

/ioquioition paramotoro	
PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
·	P2 :f1 channel - 180° ¹ H transmitter pulse
D0 :3 usec - incremented delay	D1 :2 sec - relaxation delay
D2 :1/[2J(N,H)]= 50 msec, calculated from ^{2,3} J(C,H)=10 Hz	D11 : 30 msec - delay for disk I/O
D16 :100 usec - delay for homospoil/gradient recovery	D20 :D4-P16-D16-4usec
D21 :D16+P2+D0*2	D23 : 1/[4J(C,C)]= 5 msec, calculated from ¹ J(C,C)=50 Hz
TD2 :1 K data points in F2	TD1 :128 data points in F1
SW2 :10 ppm	SW1 :400 ppm
O1 :middle of ¹ H NMR spectrum	O2 :middle of ¹⁵ N NMR spectrum
NS :4	DS : 16
	RG :receiver gain for correct ADC input
Processing parameters	
SI(F2) :512 W	SI(F1) :512 W
WDW(F2) :SINE	WDW(F1) :SINE
LB(F2):2	SSB(F1) :2
PH-mod(F2) :no	PH-mod(F1) :mc
MC2 :QF	XFB :fourier transformation in both directions
phase correction :phase correction is not	plot :use XWINPLOT

necessary

b)pulse program:

In solid-state NMR there is usually no lock channel and because of that a resonable basic shim is necessary.

¹³C Setting of the needed channels: F1: ^{1}H F2:

Acquisition parameters

•	PL1 :f1 channel – high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
		P2 :f1 channel - 180° ¹ H transmitter pulse
	PL2 :f2 channel – high power level for ¹⁵ N decoupler pulse	P3 :f2 channel - 90° ¹⁵ N decoupler pulse
	D0:3 usec - incremented delay	D1 :2 sec - relaxation delay
	D2 :1/[2J(N,H)]= 50 msec, calculated from 2,3 J(C,H)=10 Hz	D11 : 30 msec - delay for disk I/O
	D16 :100 usec - delay for homospoil/gradient recovery	D20 :D4-P16-D16-4usec
	D21 :D16+P2+D0*2	D23 : 1/[4J(C,C)]= 5 msec, calculated from ¹ J(C,C)=50 Hz
	TD2 :1 K data points in F2	TD1 :128 data points in F1
	SW2 :10 ppm	SW1 :400 ppm
	O1 :middle of ¹ H NMR spectrum NS :4	O2 :middle of ¹⁵ N NMR spectrum DS : 16
	IN0 :1/[2*SW1]	RG :receiver gain for correct ADC input

Processing parameters

SI(F2) :512 W WDW(F2) :SINE LB(F2) :2 PH-mod(F2) :no MC2 :QF

phase correction :phase correction is not plot :use XWINPLOT

SI(F1) :512 W WDW(F1) :SINE SSB(F1):2 PH-mod(F1) :mc XFB : fourier transformation in both directions

necessary

Experiment 14.2

- Adjusting the Magic Angle

pulse program:

Setting of the needed channels:

F2: off

F1:

⁷⁹Br

Acquisition parameters

PL1 :f1 channel - high power level for ¹H transmitter pulse

D0 :3 usec - incremented delay

D2 :1/[2J(N,H)]= 50 msec, calculated from D11 : 30 msec - delay for disk I/O ^{2,3}J(C,H)=10 Hz

P1 :f1 channel - 90° ¹H transmitter pulse

P2 :f1 channel - 180° ¹H transmitter pulse

D1 :2 sec - relaxation delay

D16 :100 usec - delay for	D20 :D4-P16-D16-4usec
D21 :D16+P2+D0*2	D23 : $1/[4J(C,C)] = 5$ msec, calculated from ${}^{1}J(C,C) = 50$ Hz
TD2 :1 K data points in F2 SW2 :10 ppm O1 :middle of ¹ H NMR spectrum NS :4	 TD1 :128 data points in F1 SW1 :400 ppm O2 :middle of ¹⁵N NMR spectrum DS : 16 RG :receiver gain for correct ADC input
Processing parameters SI(F2) :512 W WDW(F2) :SINE LB(F2) :2 PH-mod(F2) :no MC2 :QF phase correction :phase correction is not necessary	SI(F1) :512 W WDW(F1) :SINE SSB(F1) :2 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT

Experiment 14.3

- Hartmann-Hahn Matching

pulse program:

Standard CP/MAS spectra are acquired with Cross Polarization from protons to carbon.

Setting of the needed channels:	F1:	¹³ C
-	F2:	^{1}H

Acquisition parameters

PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
·	P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 channel - high power level for ¹⁵ N decoupler pulse	P3 :f2 channel - 90° ¹⁵ N decoupler pulse
D0 :3 usec - incremented delay	D1 :2 sec - relaxation delay
D2 :1/[2J(N,H)]= 50 msec, calculated from ^{2,3} J(C,H)=10 Hz	D11 : 30 msec - delay for disk I/O
D16 :100 usec - delay for homospoil/gradient recovery	D20 :D4-P16-D16-4usec
D21 :D16+P2+D0*2	D23 : 1/[4J(C,C)]= 5 msec, calculated from ¹ J(C,C)=50 Hz
TD2 :1 K data points in F2	TD1 :128 data points in F1
SW2 :10 ppm	SW1 :400 ppm
O1 :middle of ¹ H NMR spectrum	O2 :middle of ¹⁵ N NMR spectrum
NS :4	DS : 16
	RG : receiver gain for correct ADC input

Processing parameters SI(F2) :512 W WDW(F2) :SINE LB(F2) :2

SI(F1) :512 W WDW(F1) :SINE SSB(F1) :2 PH-mod(F2) :no MC2 :QF

PH-mod(F1) :mc XFB : fourier transformation in both directions

phase correction :phase correction is not plot :use XWINPLOT necessary

Experiment 14.4 – The Basic CP/MAS Experiment			
pulse program: The CP/MAS method provides high resolution NMR spectra in the solid state and is mostly performed on ¹³ C with cross polarization from ¹ H.			
Setting of the needed channels: F1: ¹³ C F2: ¹ H			
Acquisition parameters PL1 :f1 channel - high power level for ¹ H transmitter pulse PL2 :f2 channel - high power level for ¹⁵ N	 P1 :f1 channel - 90° ¹H transmitter pulse P2 :f1 channel - 180° ¹H transmitter pulse P3 :f2 channel - 90° ¹⁵N decoupler pulse 		
decoupler pulse D0 :3 usec - incremented delay D2 :1/[2J(N,H)]= 50 msec, calculated from ^{2.3} J(C,H)=10 Hz D16 :100 usec - delay for homospoil/gradient recovery	D1 :2 sec - relaxation delay D11 : 30 msec - delay for disk I/O D20 :D4-P16-D16-4usec		
D21 :D16+P2+D0*2 TD2 :1 K data points in F2 SW2 :10 ppm O1 :middle of ¹ H NMR spectrum NS :4	 D23 : 1/[4J(C,C)]= 5 msec, calculated from ¹J(C,C)=50 Hz TD1 :128 data points in F1 SW1 :400 ppm O2 :middle of ¹⁵N NMR spectrum DS : 16 RG :receiver gain for correct ADC input 		
Processing parameters SI(F2) :512 W WDW(F2) :SINE LB(F2) :2 PH-mod(F2) :no MC2 :QF phase correction :phase correction is not necessary	SI(F1) :512 W WDW(F1) :SINE SSB(F1) :2 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT		
Experiment 14.5 - TOSS			

pulse program:

TOSS is a technique to suppress the spinning side-bands.

Setting of the needed channels:	F1:	¹³ C
-	F2:	¹Η

Acquisition parameters

/ equience parametere	
PL1 :f1 channel - high power level for ¹ H transmitter pulse	P1 :f1 channel - 90° ¹ H transmitter pulse
	P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 channel - high power level for ¹⁵ N decoupler pulse	P3 :f2 channel - 90° ¹⁵ N decoupler pulse
D0 :3 usec - incremented delay	D1 :2 sec - relaxation delay
D2 :1/[2J(N,H)]= 50 msec, calculated from ^{2,3} J(C,H)=10 Hz	D11: 30 msec - delay for disk I/O
D16 :100 usec - delay for homospoil/gradient recovery	D20 :D4-P16-D16-4usec
D21 :D16+P2+D0*2	D23 : 1/[4J(C,C)]= 5 msec, calculated from ¹ J(C,C)=50 Hz
TD2 :1 K data points in F2	TD1 :128 data points in F1
SW2 :10 ppm	SW1 :400 ppm
O1 :middle of ¹ H NMR spectrum	O2 :middle of ¹⁵ N NMR spectrum
NS :4	DS : 16
	RG :receiver gain for correct ADC input
Processing parameters	

SI(F2) :512 W WDW(F2) :SINE LB(F2) :2 PH-mod(F2) :no MC2 :QF

phase correction :phase correction is not plot :use XWINPLOT necessary

Experiment	14.6
- SELTICS	

pulse program:

SELTICS (Sideband ELimination by Temporary Interruption of the Chemical Shift) is another method to suppress the spinning side-bands.

SI(F1) :512 W

WDW(F1) :SINE SSB(F1) :2

PH-mod(F1) :mc

directions

XFB : fourier transformation in both

Setting of the needed channels:	F1: F2:	¹³ C ¹ H	
Acquisition parameters	1	_	
PL1 :f1 channel - high power le transmitter pulse	evel for 'H		P1 :f1 channel - 90° 'H transmitter pulse
			P2 :f1 channel - 180° ¹ H transmitter pulse
PL2 :f2 channel - high power le decoupler pulse	evel for ¹⁵ N	N	P3 :f2 channel - 90° ¹⁵ N decoupler pulse
D0:3 usec - incremented dela	ay		D1 :2 sec - relaxation delay
D2 :1/[2J(N,H)]= 50 msec, calc ^{2.3} J(C,H)=10 Hz	culated fro	m	D11 : 30 msec - delay for disk I/O
D16 :100 usec - delay for homospoil/gradient recov	/ery		D20 :D4-P16-D16-4usec
D21 :D16+P2+D0*2	-		D23 : $1/[4J(C,C)] = 5$ msec, calculated from ${}^{1}J(C,C)=50$ Hz
TD2 :1 K data points in F2			TD1 :128 data points in F1
SW2 :10 ppm			SW1 :400 ppm
O1 :middle of ¹ H NMR spectru	m		O2 :middle of ¹⁵ N NMR spectrum

NS :4	DS : 16 RG :receiver gain for correct ADC input
Processing parameters SI(F2) :512 W WDW(F2) :SINE LB(F2) :2 PH-mod(F2) :no MC2 :QF phase correction :phase correction is not necessary	SI(F1) :512 W WDW(F1) :SINE SSB(F1) :2 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT
Experiment 14.7 - Multiplicity Determination in the Solid-State	
pulse program: The first editing method was ba	ptized NQS (Non Quaternary Suppression).
Setting of the needed channels: F1: ¹³ C F2: ¹ H	
 Acquisition parameters PL1 :f1 channel - high power level for ¹H transmitter pulse PL2 :f2 channel - high power level for ¹⁵N decoupler pulse D0 :3 usec - incremented delay D2 :1/[2J(N,H)]= 50 msec, calculated from ^{2.3}J(C,H)=10 Hz D16 :100 usec - delay for homospoil/gradient recovery D21 :D16+P2+D0*2 TD2 :1 K data points in F2 SW2 :10 ppm O1 :middle of ¹H NMR spectrum NS :4 	 P1 :f1 channel - 90° ¹H transmitter pulse P2 :f1 channel - 180° ¹H transmitter pulse P3 :f2 channel - 90° ¹⁵N decoupler pulse D1 :2 sec - relaxation delay D11 : 30 msec - delay for disk I/O D20 :D4-P16-D16-4usec D23 : 1/[4J(C,C)]= 5 msec, calculated from ¹J(C,C)=50 Hz TD1 :128 data points in F1 SW1 :400 ppm O2 :middle of ¹⁵N NMR spectrum DS : 16 RG :receiver gain for correct ADC input
Processing parameters SI(F2) :512 W WDW(F2) :SINE LB(F2) :2 PH-mod(F2) :no MC2 :QF phase correction :phase correction is not necessary	SI(F1) :512 W WDW(F1) :SINE SSB(F1) :2 PH-mod(F1) :mc XFB :fourier transformation in both directions plot :use XWINPLOT