Goal:

Understand how to write programs for the Mudduino
```c
#include <stdio.h>

int main(void)
{
    int i = 0;
    i = i + 25;
    while(1)
    {
        printf("%d\n", i);
        i++;
    }
    return 0;
}
```

It would execute this once

Then it would execute this forever
```cpp
// Sketch Zero
#define LED 13

void setup() {
  // setup the serial terminal
  Serial.begin(9600);
  Serial.println("I'm alive!");

  // setup LED pin, blink once
  pinMode(LED, OUTPUT);
  digitalWrite(LED, HIGH);
  delay(4000);  // in ms
  digitalWrite(LED, LOW);
}

void loop() {
}
```

1. Plug in your FTDI cable to the computer and board
2. Copy the code into a new sketch
3. Verify the correct Serial port is selected under tools
//Sketch Zero
#define LED 13
void setup()
{
 //setup the serial terminal
 Serial.begin(9600);
 Serial.println("I'm alive!");

 //setup LED pin, blink once
 pinMode(LED, OUTPUT);
 digitalWrite(LED, HIGH);
 delay(4000); // in ms
 digitalWrite(LED, LOW);
}

void loop()
{
}

1. Plug in your FTDI cable to the computer and board
2. Copy the code into a new sketch
3. Verify the correct Serial port is selected under tools
4. Open the serial monitor
1. Plug in your FTDI cable to the computer and board
2. Copy the code into a new sketch
3. Verify the correct Serial port is selected under tools
4. Open the serial monitor
1. Plug in your FTDI cable to the computer and board
2. Copy the code into a new sketch
3. Verify the correct Serial port is selected under tools
4. Open the serial monitor
5. Click upload
The green LED is on PIN 5

Modify this sketch to blink the Green LED after the Red LED. Have the Green LED on for 2 seconds

When both LEDs are done flashing print: “I’m done” to the serial terminal
Let’s have some fun and make our LED seem to flicker. To do this we need to create random numbers.

Thankfully the Arduino library has a function for that: random(min, max)

random(min, max) creates a pseudo random integer from min to max-1

So our code will create on/off times from 100 ms to 499 ms

Flash the code and see
//Sketch Zero Read
#define LED 13

void setup()
{
 //setup the serial terminal, and outputs
 Serial.begin(9600);
 Serial.println("I'm alive!");
 pinMode(LED, OUTPUT);
}

void loop()
{
 unsigned char keystroke;
 //check if the serial port is available
 if (Serial.available())
 {
 keystroke = Serial.read(); //get a character
 Serial.println(keystroke+1); //print next higher ASCII value
 //blink the Red LED
 digitalWrite(LED, HIGH);
 delay(500); // in ms
 digitalWrite(LED, LOW);
 delay(500); // in ms
 }
}

The serial connection can be used not only for printing information it can be used for getting input

Flash your Mudduino board with this sketch and explore what it does.
//First sketch
#define LED 13
void setup()
{
 //setup the serial terminal
 Serial.begin(9600);
 Serial.println("I'm alive!");

 //setup LED pin
 pinMode(LED, OUTPUT);
}

void loop()
{
 unsigned char command;
 command = Serial.read();

 if(command == 'o')
 {
 Serial.println("LED On!");
 digitalWrite(LED, HIGH);
 }
 else if(command == 'f')
 {
 Serial.println("LED Off!");
 digitalWrite(LED, LOW);
 }
 else if(command == 'b')
 {
 Serial.println("Blink!");
 digitalWrite(LED, HIGH);
 delay(500);
 digitalWrite(LED, LOW);
 delay(500);
 }
}
Write a sketch that once you enter ‘g’ for go it turns the LED on and off for the amount of time in an array. Have the program terminate when it reaches a negative value (as time is always positive).

Example:
short timeArray[] = {500, 400, 500, 400, 100, 200, 100, 200, -1};

This would have the LED on for 500 ms, off for 400 ms, on for 500 ms, off for 400 ms, on for 100 ms, off 200 for ms...
Here is one solution to the problem

First we setup the serial port, print that the program is running, then we setup the LED pin as an output

In the main loop we are more careful with the serial port and make sure there is something to read before trying to read it, then if it is ‘g’ we increment though the array until we reach a negative value flipping the value of the LED by negating highLow.
Write a sketch that allows you to blink both the red and the green LED for different amounts of time simultaneously.

The green LED is on pin 5.

Example:
short timeArrayR[] = {500, 400, 500, 400, 100, 200, 100, 200, -1};
short timeArrayG[] = {100, 200, 100, 300, 50, 50, 50, 50, 50, 50, -1};
```c
#define RedLED 13
#define GreenLED 5
#define True 1
#define False 0

short timeArrayR[] = {500, 400, 500, 400, 100, 200, 100, 200, -1};
short timeArrayG[] = {100, 200, 100, 300, 50, 50, 50, 50, 50, 50, -1};

void setup()
{
    //setup the serial terminal
    Serial.begin(9600);
    Serial.println("Ready...");

    //setup LED pins
    pinMode(RedLED, OUTPUT);
    pinMode(GreenLED, OUTPUT);
}

void loop()
{
    unsigned char command;
    if (Serial.available() > 0)
    {
        command = Serial.read();
        int i = 0;
        int j = 0;
        int notDone = True;
        int notDoneRed = True;
        int notDoneGreen = True;
        long currentTime = 0;

        if(command == 'g')
        {
            while(notDone)
            {
                notDoneRed = setLED(currentTime, timeArrayR, RedLED);
                notDoneGreen = setLED(currentTime, timeArrayG, GreenLED);
                notDone = notDoneGreen || notDoneRed;
                delay(1);
                currentTime++;       
            }
        }
    }
}

int setLED(long currentTime, int edges[], int pin)
{
    int i = 0;
    long totalTime = 0;
    while(edges[i] > 0)
    {
        totalTime += edges[i];
        if(currentTime < totalTime)
        {
            if(i%2 == 0)digitalWrite(pin, HIGH);
            else digitalWrite(pin, LOW);
            return True;
        }
        i++;
    }

    return false;
}
```