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Abstract— This paper presents an autonomous robot system
that is designed to autonomously search for and geo-localize
potential underwater archaeological sites. The system, based on
Autonomous Underwater Vehicles, invokes a multi-step pipeline.
First, the AUV constructs a high altitude scan over a large area
to collect low-resolution side scan sonar data. Second, image
processing software is employed to automatically detect and
identify potential sites of interest. Third, a ranking algorithm
assigns importance scores to each site. Fourth, an AUV path
planner is used to plan a time-limited path that visits sites
with a high importance at a low altitude to acquire high-
resolution sonar data. Last, the AUV is deployed to follow this
path. This system was implemented and evaluated during an
archaeological survey located along the coast of Malta. These
experiments demonstrated that the system is able to identify
valuable archaeological sites accurately and efficiently in a large
previously unsurveyed area. Also, the planned missions led to
the discovery of a historical plane wreck whose location was
previously unknown.

I. INTRODUCTION

Current methods of searching underwater areas for archae-
ological sites involve many steps with expensive equipment
and time consuming analysis. First, a large survey area
is selected taking into account the likelihood it contains
valuable sites and the risk those sites have of being damaged
(e.g., dredging, pipeline construction, and fishery install-
ment). Second, a high altitude survey is performed using
side scan sonar, often deployed with a tow fish or more
recently with an autonomous underwater vehicle (AUV).
Next, experienced humans closely analyze images produced
from the sonar to find and rank potential sites. This ranking
is important because there typically is not enough time or
resources to revisit all potential sites identified. Furthermore,
sites usually need to be revisited, up close, to accurately
assess their value. This typically is accomplished with human
divers or remotely operated vehicles (ROVs). Confirming the
value of a site is especially important for its preservation.

Meanwhile, Autonomous Underwater Vehicles (AUVs) are
having an increasingly significant impact on underwater ar-
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(a) OceanServer Iver 3 AUV

(b) Fairey Swordfish wreck

Fig. 1: The OceanServer Iver3 AUV and a sidescan sonar
image of the Fairey Swordfish dive bomber wreck discovered
in the deployments.

chaeology ([1], [2]). Unlike human divers, who are typically
depth limited to 100 meters, AUVs can operate for long
hours at depths of thousands of meters. The advance in
sonar imaging technology also enables AUVs to acquire
high-resolution images of the seafloor (e.g., [3]), and the
increasing usage of AUVs in archaeological surveys has led
to discoveries of deep water shipwrecks that are inaccessible
by humans (e.g., [4]).

This paper proposes an AUV-based system to automate
the process of searching for underwater archaeological sites.
The system invokes a multi-step pipeline. First, the AUV
conducts a high altitude scan over a large area to collect low-
resolution side scan sonar data. Second, image processing
software is employed to automatically detect and identify
potential sites of interest. Third, these sites are assigned
importance values using a ranking algorithm. Fourth, an
AUV path planner is used to plan a time-limited path that
visits the identified sites (of highest value) at low altitude
to acquire high-resolution sonar data. Last, the AUV is
deployed to follow this path.



This process requires two key steps of automation: The
first is an image processing pipeline which locates and ranks
potential sites in the large survey area. The second is a
planner that uses these ranked sites to create missions for
an AUV to revisit sites. This automation decreases the time
between the large survey and site revisiting—allowing for
more efficient use of limited time with expensive AUV
resources and quicker evaluation of targets at risk of damage.
In addition to efficiency gains, this method can reduce the
risk of overlooking important archaeological sites because
examining large scans from the high level survey is an
exhaustive task even for human experts.

The complete system was implemented and tested using
an OceanServer Iver3 AUV (Fig. 1a), in an unexplored area
on the coast of Malta. The AUV was able to obtain high-
level scans of the entire area and low-level, high-resolution
scans of some important sites it identified. Fig. 1b shows
an example of the high-resolution scans. The experiments
demonstrated that the proposed system has the potential of
surveying large areas of seafloor and identifying valuable
underwater archaeological sites with a very low level of
human supervision.

The contributions of this paper is summarized as follows:
• An approach to automatically detect and explore under-

water archaeological sites using a combination of robot
vision and planning.

• A demonstration that the system is able to work in real
world deployments and find new archaeological sites.

• An evaluation of the pipeline that highlights the chal-
lenges in detecting underwater archaeological sites and
provides insight for future improvements.

II. BACKGROUND

a) Underwater Archaeology Using Side Scan Sonar: In
an underwater environment, acoustic imaging devices such
as sonars have a significant advantage over cameras. Light
signals can be attenuated over short distances underwater and
require sufficient lighting conditions. Sonars can operate at
a much longer distance with no light. Among the various
types of sonars, Side Scan Sonar (SSS) is especially popular
for underwater archaeological surveys ([5], [6]) because of
its large coverage and bathymetric capabilities.

Manual analysis of SSS data requires searching large
images for which many square kilometers of area are repre-
sented as millions of pixels. Typically, a marine archaeologist
performs a quick scan looking for the echo-shadow pattern
produced by objects protruding from the seafloor [7]. If
an echo-shadow pattern is found, closer inspection will be
conducted. The surrounding terrain is evaluated to determine
if the pattern a) is in a field of rocks, b) has texture that is flat
with sharp corners, c) has the shape of a recognizable object,
and d) is of reasonable size. If these observations point
towards it not being a rock, the patch will be recognized as
a potential site. Once the first scan is completed, the marked
sites will be ranked on a numerical scale. This ranking allows
them to pick sites to visit using the limited resources they
have [7].

b) Object Detection in Sonar Images: Previous works
on object detection from side scan sonar images make use of
the echo-shadow pattern characteristic of objects protruding
from a surface([8], [9], [10]). Unlike normal camera images,
which are colored and illuminated from a multitude of
sources and reflections, side scan sonar produces images
illuminated by only one source. The lack of color prevents
the use of colors to separate objects from their background,
but the single source of illumination makes objects create a
bright echo followed by a shadow in the direction away from
the sonar. This echo-shadow pattern can be identified using
rectangular features searching for adjacent abnormally bright
and dark regions. [9] uses three rectangular features—the
mean value of pixels in a rectangle—to separately identify
the background, shadow, and echo for each pixel. [10] uses a
multitude of Haar-like features (rectangles with positive and
negative sub regions). As can be seen in Fig. 3, Haar-like
features can be shaped to match the echo-shadow pattern.

The echo-shadow pattern of objects can also be caused by
natural terrain (rocks, ridges, ripples, etc.), which is a main
source of false detections. To avoid these false detections,
[8] incorporates a sand ripple filtering algorithm which fits
ellipses to potential shadow detections. If it finds a cluster of
detections with similar orientation and location it will assume
they are ripples and filter them out.

The work in [9] improves on previous algorithms by
eliminating hyper parameters, allowing the algorithm to
better generalize across sea floor environments. For example,
the size parameter of the rectangular feature used to create a
shadow map is defined by the height of the object being
searched for. Also, instead of using a static threshold to
determine abnormally dark shadow regions, the regions are
compared to a background map. These qualities allow the
unsupervised method to better adapt to differing sea floor
environments.

c) Learning to Rank with CNN: Learning to rank is a
well-studied problem in the information retrieval community.
The problem can be cast as a machine learning task in which
a ranking model is constructed using training data, and this
model can automatically sort new objects according to their
degrees of importance [11]. One particular approach to the
problem is called Ranking SVM. It was proposed by [12]
based on a variant of support vector machines (SVMs). By
transforming examples into their pairwise differences, the
ranking problem can be formulated as a binary classification
problem that can be solved by a linear SVM.

The performance of linear classifiers like SVM depend
heavily on the availability of good features. Recent advances
in deep learning have shown that deep convolutional net-
works are capable of extracting high-level features that work
well for tasks such as image classification and object recogni-
tion ([13], [14]). Training a deep CNN from scratch requires
large sets of labeled data. However, [15] has shown that the
features learned by these deep networks are generalizable to
other tasks even without further training. In particular, [16]
has shown that features generated by CNN can be used in
combination with SVM to achieve good classification results.



Fig. 2: System pipeline

III. INTELLIGENT SHIPWRECK SEARCH

The proposed system for intelligent search invokes the
multi-stage pipeline illustrated in Fig. 2. In the first stage,
an AUV Deployment is conducted to perform a high altitude
survey of the sea floor. The path for this initial survey, P0, is
a lawnmower pattern that covers the entire area of interest,
(e.g., 4 km2). The AUV collects a set of side scan sonar
images Iss which are then passed to the Image Processing
software. The output of the Image Processing software is a
ranked list O∗ of site proposals, which are raster locations of
bounding boxes of potential archaeological sites in the sonar
images (see Fig. 5). The raster locations are then converted
to projected coordinates (of earth) and passed to the Path
Planner, which will construct a path P that visits a subset
of proposals in O∗ for low-altitude, up-close inspection of the
sites. This can in turn generate additional side scan sonar data
that can be fed back into the system for continual replanning
and site revisits.

Described below are key functions of the Image Process-
ing and Path Planner software blocks.

A. Shadow Feature Convolution

A shadow map Ish is created by convolving the inputted
side scan sonar image Iss with the Haar-like feature kernel
[17] shown in Fig. 3. This kernel is defined by the parameter
vector W = [we ws], where we is the width of echo
region and ws is the width of shadow region. This feature is
designed to look for the echo-shadow pattern characteristic of
objects protruding from the sea floor. This feature essentially
subtracts the sum of the shadow region from the sum of the
echo region. Note, to prevent the relative area of the regions
from affecting the feature value, the regions are weighted by
their area so a constant image would produce a feature value
of zero.

Fig. 3: Haar-like feature kernel (left) and a horizontal cross-
section of the kernel (right)

B. Contour Extraction

The shadow map Ish is thresholded at α · σ, where σ is
the standard deviation of pixel values in the shadow map and
α is a tunable parameter where smaller values allow lighter
shadows to be detected. This thresholded shadow map Ic is a
binary image in which shadow contour pixel locations have
values of 1, and otherwise 0.

C. Clustering Algorithm

This algorithm clusters the shadow contour locations from
Ic into a set Oc of detection boxes using an agglomerative
algorithm. The clustering algorithm is essentially one itera-
tion of bottom-up hierarchical clustering [18]. The algorithm
appends contour pixels to clusters and joins clusters that
are within a distance threshold, ρ. Bounding boxes are then
fit around the clusters of contours to produce detection
boxes. The bounding boxes are the smallest upright rectangle
containing all pixels in the cluster.

D. Area Thresholding

The set of detection boxes Oc is then filtered based on
area to become a set of proposals OA ⊆ Oc. Unlike desired
detections that typically have one to three large contours,
rock fields usually produce many small shadow contours
that are close enough to get clustered. For such rock fields,
the area covered by shadow contours Acontour is much less
than the total area of the bounding box Abox. In this case, a
tuneable threshold Aprop is compared with the ratio of these
two areas, (see Eq. 1).

Seafloor ridges, another source of false positives, are
usually long (hundreds of meters) when compared to actual
sites of interest. This makes their area Acontour abnormally
large, promoting the idea of a filter that removes potential
sites with areas greater than Amax. Similarly, potential sites
that are too small can be filtered using a minimum area Amin.

Hence, only sites in the input set O that meet the following
criteria are added to the function’s output set OA:

Acontour

Abox
> Aprop

Abox < Amax

Abox > Amin

(1)
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Fig. 4: Site Proposal Processing Examples on Detected Site

Notably, these thresholds may be set based on the size of
desired objects.

Fig. 5: Site proposals generated from a scan in data set B, and
evaluated against human labels. Green: Labeled Site Found;
Red: Labeled Site Missed; Blue: True Positive; Yellow: False
Positive;

E. Hyperparameter Tuning

Most parameters involved in the image processing steps
can be set based on the characteristics of the desired target.
Those that cannot are α, ρ, Aprop. To tune these hyperparam-
eters a mix of intuition based tuning and random searching
were utilized. [19]

F. Proposal Ranking

Next, each site proposal in OA is assigned an importance
score to produce the ranked list of site proposals O∗. The
ranking algorithm consists of three steps. First, each site
proposal p ∈ OA is grown to a subimage of size 224× 224.
Next, a 50 layer residual network trained on ImageNet is
used to extract a 1×2048 feature vector x from the subimage,
using average pooling over the output of the last convolution

block (see [14]). Finally, x is fed to a trained ranking SVM
which outputs the importance score s = w·x, where w is the
SVM’s learned weights. The output of the ranking algorithm
is a list of tuples (p, s) ordered decreasingly by the score s.

To train the ranking SVM, data sets were created by having
experienced users label site proposals with a ranking number
y ∈ {0, 1, 2}, (see example rankings in Fig. 6). This yields
a set of data tuples S = (x,y), consisting of feature vectors
and their associated labels. Following the practice in [12], S
is then transformed into a new set of data tuples S′. Each
pair of data tuples (x1,y1), (x2,y2) ∈ S where y1 6= y2

is transformed into a new tuple (x1 − x2, sgn(y1 − y2)) ∈
S′, where sgn is the signum function. The ranking SVM is
trained on S′ as a linear SVM [20].

Note that the typical dimension of site proposals is 60 to
150 pixels. Expanding the to 224 × 224 subimages allows
the ranking algorithm to incorporate surrounding seafloor
information. Further, 224 × 224 is the standard input size
for many pre-trained deep CNNs (e.g., ResNet [14], VGG
[13]), making it convenient for feature extraction.

G. Path Planner

Given a ranked list of site proposals O∗, the objective of
the Path Planner is to return an optimal path P that visits a
subset of the sites in O∗.

The search space consists of N site proposals in O∗ and
the AUV, which form a complete undirected graph with
vertices V = {v0, . . . , vN} and edges E = {eij | 0 ≤ i <
j ≤ N}. The coordinates of v1, . . . , vN are given by the
location of the center of the corresponding site proposal in
Universal Transvers Mercator (UTM) coordinates, and the
coordinate of v0 is given by the start location of the AUV.
Each vertex vi is associated with a non-negative reward ri
proportional to the probability of site i containing a target
(0 ≤ ri ≤ 1), as well as a non-negative cost ci, given by the
distance that the AUV needs to travel to explore the site using
a lawnmower pattern. Each edge eij also has an associated
cost defined as cij = dij + 0.5(ci + cj), where dij is the
Euclidean distance from vi to vj .

The planning algorithm is a two-step approach that first
selects a subset S of O∗, then returns an optimal tour of S
using the Lin-Kernighan-Helsgaun (LKH) heuristic for the
Traveling Salesman Problem (TSP) [21]. The subset S is
selected as described in [22], and sites are chosen based on
the ”Reward-to-Connection-Cost Ratio” (RCCR), defined as
ri
ci

for each vertex of the graph.
After a subset of the vertices S is selected, the LKH

algorithm is executed to obtain an optimal tour for the TSP
problem.

IV. EXPERIMENTS AND RESULTS

In this section, the different components of the pipeline
are evaluated, as well as the complete pipeline, using ex-
periments and real world deployments. Three sets of sonar
scans were collected for the evaluation, denoted by A, B and
C. Each of these data sets were examined by experienced



(a) Not target
(label 0)

(b) Maybe target
(label 1)

(c) Definite target
(label 2)

Fig. 6: Proposals of different importance levels

users who applied labels for all the sites they thought had
the potential to be archaeological sites.

Data set A is from a survey completed using a BF12-1006
Bluefin AUV equipped with Edgetech 2205 side scan sonars.
The AUV flew at 15m altitude and the sonars were set to
use 410kHz frequency and 100m range. The survey covered
an area of 4 square km.

Data set B was collected from a multi-day survey com-
pleted using an OceanServer Iver3 AUV equipped with an
Edgetech 2205 side scan sonar. The AUV flew at 14m
altitude and the sonars were set to a frequency of 600kHz
and range of 80m. The survey was conducted between the
dates of June 12, 2017 to June 19, 2017 (the top 6 rows in
TABLE III) which covered a 2.7km×0.8km area in total.

Data set C was also collected using the same equipment
and settings as in data set B, but from a different area (see
the 7-th row in TABLE III).

A. Evaluation of the Site Proposal Generator

In this section the performance of the site proposal gener-
ator of the pipeline is analyzed. The goal is to evaluate how
well the site proposal algorithm can propose sites of archae-
ological interest. To accomplish this, experienced humans
labeled sites they thought had potential to be archaeological
sites. These labels are compared against the site proposal
generator’s output to calculate recall, precision, and adjusted
precision. Additionally, an adjusted precision is calculated
from having humans relabel the site proposal generator’s
proposals after they are generated. This yielded an extra 58
targets in data set A and 24 targets in data set B.

Data Set Recall Prec. Adj. Prec. Sites Proposed
A 93.75% 20.71% 62.8% 140
B 18.18% 10.43% 31.3% 115

TABLE I: Site proposals results

The motivation for calculating the adjusted precision is the
difficulty human labelers have in finding all the targets in a

survey. The resolution of the scans makes the labels of small
targets ambiguous to humans and hard to find. This difficulty
is exhibited by the site proposal algorithm proposing true
sites that were missed by human labelers.

The performance of the algorithm on data set B is worse
than on data set A because data set A contains fewer definite
targets. There are 8 label 2 sites in data set B, but 43 label
2 sites in data set A. Despite having a low overall recall
on data set B, all of the label 2 sites were proposed by the
algorithm.

The two difficulties mentioned above, finding all the sites
and accurately determining site values, are key parts of this
site proposal problem. These difficulties not only make it
hard to label accurate test data sets, but show the task is
difficult for even experienced humans.

Despite the poor metrics, the site proposal generator is
able to capture all the sites that labelers are certain to have
value, while also filtering more than 95% of the area in the
high level scans.

B. Evaluation of Proposal Ranking

The proposal ranking algorithm is evaluated by three sets
of experiments. The first experiment compares the features
that are extracted from site proposals and passed to the
ranking SVM. The second experiment investigates how the
composition of training data affects the ranking result. The
third experiment evaluates the effectiveness of the ranking in
the context of planned missions. For all the experiments, the
training and testing data was drawn from the 101 proposals
outputted from the generator when processing data set A,
and the 124 proposals from processing data set B.

1) Choice of features: This set of experiments looks into
the choice of feature vectors extracted from site proposals
and passed to the ranking SVM. Specifically, it compares
the features generated by the convolutional neural networks
with a hand-crafted feature set. Below is a description of the
hand-crafted features and a bar plot showing the distribution
of some of these features. It can be seen that some features



(e.g., 10 percentile of the pixel value) are quite informative
for distinguishing the positive and negative examples.

1) log(w/h), w and h are detection box width and height
2) Total area of the shadow contours
3) Area of the largest shadow contour
4) Ratio of total contour area to detection box area
5) Ratio of largest contour area to total contour area
6) 10 percentile of the pixel values in the detection box
7) 90 percentile of the pixel values in the detection box
8) Mean of the pixel values in the detection box
9) Standard deviation of the pixel values in detection box

10) 10 percent of shadow map values in the detection box
11) 90 percent of shadow map values in the detection box
12) Mean of the shadow map values in the detection box
13) Standard deviation of the shadow map values in the

detection box

Fig. 7: Bar plots of some hand-picked features on data set B

In the experiments, each set of proposals is randomly
split 50 by 50 into training and test sets. Then, a ranking
SVM is trained on the training set using the features in
test, and two metrics—Normalized Discounted Cumulative
Gain (NDCG) [23] and recall of the definite targets at rank
10—are calculated on the test set. This train and test cycle
was repeated 500 times to compute an average and standard
deviation of metrics (TABLE II).

Feature set Data set NDCG at rank 10 Recall at rank 10
Hand-pick A 0.73± 0.09 0.62± 0.12

ResNet A 0.85± 0.07 0.72± 0.13
Hand-pick B 0.32± 0.14 0.52± 0.36

ResNet B 0.71± 0.14 0.89± 0.20

TABLE II: Ranking performance using hand-picked and
ResNet-generated features

To interpret the results, note that the NDCG at rank 10 is
given by the total gain of the top 10 proposals divided by
that of an ideal ranking, where the gain of a proposal ranked
i with label li is given by

2li − 1

log2(i+ 1)
. (2)

In other words, the gain measures the importance of the
proposal (indicated by its label), discounted by its position
in the ranking (lower ranked proposals are discounted more).

The recall at rank 10 is the percentage of proposals labeled
2 that are ranked in the top 10. While NDCG focuses on the
10 top ranked proposals, recall gives us a sense of what is
missing from the top 10.

The results show that features generated by ResNet gave
consistently good performance on both data sets, whereas the
hand-crafted features performed acceptably on data set A, but
very poorly on data set B. This suggests features learned by
convolutional neural nets generalize better than hand-crafted
features. The reason could be that the hand-crafted features
are designed by manually inspecting the statistics of data
set A, but the ResNet-generated features are produced by a
neural network trained on large amount of general data. In
addition, the large number of features that ResNet generates
can also make it more robust to variations in the data. It is
virtually impossible to come up with a hand-crafted feature
set with 2048 features.

2) Mixed training: A particularly challenging aspect of
the proposal ranking problem is the scarcity of labeled data.
In the previous experiments, the training and test sets are
of the same size and from the same set of proposals, but in
practice, given a set of unlabeled proposals, often there is not
an equal amount of labeled proposals collected from the same
area using the same equipment for training. Thus, this set of
experiments investigates the effect of incorporating training
data from another source on the ranking performance.

Specifically, the ranking results of ranking SVMs trained
on a portion of proposals from B together with all 101
proposals from A are compared against the results of ranking
SVMs trained on the portion of proposals from B only, as
shown in Fig. 8. The NDCG score is calculated on a fixed set
of 62 proposals from data set B, which is not included in any
of the training sets. Note that for the bottom left yellow point,
since no training data is available, the NDCG is calculated
using a uniform ranking (i.e., everything is given the same
score) as a baseline.

Fig. 8: Comparison of models trained on a mixture of
proposals from A and B and those trained from B only.



Fig. 9: Left: percentage of all targets (proposals labeled 1 or 2) visited in limited time. Right: percentage of definite targets
(proposals labeled 2) visited in limited time. The percentage is averaged over 20 runs with random start locations.

Two observations can be made from the results. First, if
there is a lack of labeled proposals from the same source
as the proposals to be ranked, bringing training data from
another source, even if the distribution of the additional data
is different, can improve the ranking results. In these exper-
iments, the additional data source is labeled proposals from
an older deployment (data set A), but other less expensive
data sources like synthetic data could also be useful.

Second, given an unlabeled set of proposals from a new
deployment, labeling a small portion of it for training can
improve the ranking results. The ranking algorithm shows
some ability to generalize across data sets (the SVM trained
solely on proposals from A scored an NDCG of 0.4 on
proposals from B). However, the additional labeling still
offers an improvement because factors like the equipment,
sonar settings and the environment of the survey area have
a heavy influence on the distribution of the data.

3) Evaluation with planning: This set of experiments
evaluates the effectiveness of the ranking algorithm in the
context of the entire pipeline. Since the purpose of the
ranking is to tell the planner how important each site proposal
is, these experiments investigate whether the ranking results
help the planner generate plans that visit more important site
proposals in a limited amount of time.

In the experiments, a ranking SVM is trained on 101
proposals from A and 24 proposals from B, and is used to
produce importance scores for the remaining 100 proposals
in B. The scores are then fed to the planner to plan a mission
with a certain time limit. The planner takes into account
importance scores as well as proximity in determining which
site proposals to visit.

Fig. 9 shows the percentage of targets visited in a sim-
ulated mission with time limit. The yellow curve is the
result of missions generated using ground truth ranking
labeled by human experts; the green curve is the result of
missions generated using automatic ranking learned from
data; the blue curve is the result of missions generated
with uniform/no ranking. The gap between the green and
blue curves shows the ranking algorithm helps the planner
generate missions that prioritize more valuable targets. For

definite targets (Fig. 9), the performance of automatic rank-
ing quickly converges to that of the ground truth ranking.
However, the gap between the green and blue curve in the
left figure indicates that the learned ranking model is able to
distinguish definite targets from non-targets but struggles to
recognize maybe targets. As discussed above, these targets
are quite hard to distinguish from false detections even for
human experts. How to recognize and handle maybe targets
is a challenging task for future work.

C. Field Deployments

Field deployments were conducted that validated the site
proposal generator. At the time of deployment the proposal
ranking algorithm was not trained and hence human oper-
ators were used to rank proposals. Despite not validating
the entire pipeline, these deployments still demonstrated an
improvement in the overall search process by proposing
objects not considered by humans and by planning efficient
return missions.

During these deployments, the planner generated low
altitude paths to revisit site proposals that included three
notable archaeological sites. In following the paths, the AUV
gathered high frequency sonar data (for increased resolution),
and video data. From this data, human experts hypothesized
the three sites were remnants of a plane wreck, a ship
wreck, and a plane debris field. Of greatest interest is the
plane wreck, identified as a WWII era Fairey Swordfish dive
bomber (show in Fig. 1b), later confirmed from a scuba dive.

Although the system was not fully implemented during
the deployments, i.e., it was without the proposal ranking
algorithm, the success of these deployments demonstrate 1)
the benefit of using the system in tandem with experienced
humans, and 2) potential of the entire system for use with
real underwater archaeological site search expeditions.

V. CONCLUSIONS

Proposed in this paper is a system for automatically
searching and exploring underwater archaeological sites us-
ing AUVs. Within this system, the image processing pipeline
is able to efficiently detect and rank potential archaeological



Date Data Set Area Purpose Results
06/12/17 B Sliema High Level Survey 4 scans
06/13/17 B Sliema High Level Survey Connection Problems
06/14/17 B Sliema High Level Survey 3 scans
06/15/17 B Sliema High Level Survey 5 scans
06/16/17 B Sliema High Level Survey 5 scans
06/19/17 B Sliema High Level Survey 1 scan
06/21/17 C Xemxija High Level Survey 6 scans
06/22/17 NA Sliema Planner test high-res scans of the Swordfish wreck
06/23/17 NA Sliema Planner test
06/26/17 NA St Elmo Planner test high-res scans of the HMS Maori wreck
06/27/17 NA Sliema Planner test
06/28/17 NA Sliema Planner test
06/29/17 NA Sliema Planner test

TABLE III: Field Deployments in Malta

sites in side scan sonar images and its performance is
comparable to that of a human expert. Furthermore, field de-
ployments provide evidence that the pipeline can be applied
to the real world and contribute to the discovery of novel
sites of archaeological interest. Ideally, this demonstrates a
transformational approach to conducting underwater archae-
ological surveys.

This work is a first attempt in automating underwater
exploration, and there are several improvements that can be
made. First, the pipeline is not fully automated in that image
processing and path construction is not done on the AUV.
Second, a larger data set is needed for better evaluation
of the proposed algorithms. The scarcity of data leads to
classification algorithm training that is overly sensitive to
mislabeled data. New data sources, or perhaps synthetic data,
may be a potential solution to this problem in the future.
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