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Abstract— This paper presents a method for constructing
3D maps of marine archaeological sites using deployments of
Autonomous Underwater Vehicles (AUV) equipped with sonar
and cameras. The method requires multiple AUV missions in
which the first mission directs the AUV to conduct a high
altitude lawnmower scan over the area to create a course
bathymetry map using sonar. Subsequent AUV missions then
direct the AUV to make low altitude fly-overs just above
the wreck with the goal of obtaining camera images from
multiple viewpoints of the wreck to enable offboard 3D mapping
via photogrammetric reconstruction. This approach uses a
coarse map generated after the first mission to construct AUV
paths that attempt to maximize information gain, i.e. maximize
the number of viewpoints of the wreck within a time limit.
Presented is a motion planner derived from Rapidly-Exploring
Random Trees (RRT) that have sampling strategies modified
for this problem. Specifically, the random node selection and
new node generation are designed to consider the kinematics
of an AUV and the information gain associated with each
flyover. Simulation results demonstrate improvements of up to
152% when these sampling strategies are used. Experiment
results, involving deployments for mapping two known wrecks
located along the coast of Malta, validate the system’s ability
to construct 3D maps and associated visualizations.

I. INTRODUCTION
A major challenge marine archaeologists face is the search

for and study of marine archaeological sites. They utilize
tools such as towed side scan sonar and, more recently,
Autonomous Underwater Vehicles (AUVs) equipped with
sonars to locate these sites. Once a site is found, it is
typically investigated via divers for shallow water (< 100m)
excavations or working class Remotely Operated Vehicles
(ROVs) for deeper waters.

Recently, both divers and ROVs have been equipped with
HD cameras to obtain image data suitable for construct-
ing high-resolution (0.01m) 3D maps of wrecks. Fig. 1(a)
presents one example: a visualization of a 3D map of a
Bristol Beaufighter plane wreck found off the coast of Malta.
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Fig. 1: (a) A 3D reconstruction of a Bristol Beaufighter made
with data collected by divers. (b) The OceanServer Iver2
AUV with BlueView Multibeam Sonar and GoPro Hero 2.

To eliminate the need for divers excavating wrecks in deep,
dangerous environments or expensive ROVs, we propose to
use AUVs deployed from small boats or the shore, thereby
also eliminating the need for expensive ship time. The AUVs
are to be equipped with sonar and video camera (Fig. 1b),
each used for different mission deployments of a mapping
expedition.

This paper presents a method for AUV mapping of wrecks,
including a sampling based planner for generating the AUV
paths. Specifically, our contributions include:
• An AUV based method for mapping underwater archae-

ological sites that requires reduced infrastructure (e.g.
no underwater positioning system or ship time).

• A sampling based planner with modified node selection
and edge expansion steps that demonstrate two orders
of magnitude of performance gain when constructing
AUV paths to maximize information gain.

• Successful AUV deployments in the coastal region of
Malta dedicated to mapping two particular wrecks. 3D
visualizations of wreck maps were constructed.



Fig. 2: Block diagram of high-level steps of data collection

This paper is organized as follows. Section II describes
related research in the area of motion planning, underwater
robots, and their application to archaeological work. Section
III outlines the proposed shipwreck mapping methodology,
including a description of the sampling based motion planner.
Section IV presents the simulations conducted and results
that demonstrate improved performance with our proposed
algorithm modifications. Section V presents the hardware,
field experiments, and results that validate the system can be
used for real shipwreck mapping.

II. BACKGROUND

In recent years, photogrammetry has been used to docu-
ment and study underwater archaeological sites [1], [2]. The
resulting 3D reconstructions are used by archaeologists to
study the site and inform the excavation of artifacts. The pho-
togrammetric data needed to create the visualization come
from triangulation using still images from the video data [3].
When considering the data needed for photogrammetry, it is
important to note that larger variations in camera angle yield
more accurate range calculations from triangulation [4].

More recently, AUVs have been used to collect sensor data
for photogrammetric reconstruction of marine archaeological
sites [5], [6], [7], [8]. Generally, these surveying missions
are planned in an ad-hoc manner. In [5], an AUV was used
to survey a shipwreck with multiple manually-programmed
lawnmower patterns over 30 x 45 m of seafloor. The AUV
missions took over 6 hours and much of the mission time
was spent surveying parts of the ocean floor that did not
contain the shipwreck.

Robotics motion planning is a well-studied field. One
standard solution in discrete grid workspaces are exact
cell decomposition algorithms such as A*, because they
can achieve optimality [9], [10]. However, such a motion
planning approach would be computationally intensive when
applied to robots with high dimensional configuration spaces,
such as AUVs that require minimum 6 DOF states.

To minimize computational complexity in high dimen-
sional spaces, algorithms such as the Rapidly-Exploring
Random Tree (RRT) have been developed [11], [12]. RRTs
can be used when path planning for robots with dynamic
constraints [13], [14]. Both of these features make RRTs

ideal for AUV path planning. However, due to their random
approach, pure RRT algorithms may not reach optimality.

Modified RRT algorithms, such as RRT*, have been
developed to improve planning performance. RRT* achieves
asymptotic optimality through a modification in its expansion
step[15]. Instead of searching the roadmap for the nearest
neighbor, it checks for connections with all neighbors within
a certain radius.

Another such modification is RRT-Smart which employs
two modifications to the RRT that enable it to converge
faster than RRT* [16]. One modification is path optimization,
which does a check to shorten the path on each expansion
step. Another modification is intelligent sampling, which
refers to selectively sampling nodes with a higher likelihood
of success.

In [17], an offline motion-planning algorithm specific to
photogrammetric reconstruction from an AUV was proposed.
The algorithm uses previous data to inform a new path for
the AUV that favors areas that have a higher likelihood of
containing Objects of Interest. The simulation results of this
method show that it favors total coverage of the workspace.

Inspired by these algorithms, the work presented here
improves on existing probabilistic motion planning methods
for the application of surveying archaeological sites. Details
of the motion planning pipeline and field experiment results
are described below.

III. AUV ARCHAEOLOGICAL SITE MAPPING
METHODOLOGY

In this paper, we propose a multi-mission approach to
collecting the image data necessary for photogrammetry of
underwater archaeological artifacts. Figure 2 shows a block
diagram describing the multiple mission pipeline.

During the first mission, the AUV is equipped with a
sonar (either side scan or multibeam sonar) and deployed
on a search mission to follow some trajectory Tsearch, e.g. a
lawnmower pattern. The sonar data Zsearch collected during
the search mission is then used to create a 3D occupancy grid
C of the volume surveyed. From C, an information map is
computed that can inform the trajectory planner algorithm’s
objective function. Both C and I are used by the RRT
algorithm to generate a dynamically feasible AUV trajectory
Tmapping for mapping the site.



The AUV will then be deployed on a second mission to
follow Tmapping equipped with a camera to collect images
Zmapping that can be used to create a 3D photogrammetric
reconstruction M of the archaeological site. The map M
can be used to create a new information map, new trajectory
Tmapping , and new mission for additional data collection
and improved mapping. Each step in this block diagram is
described below.

A. Search Trajectory

For the initial AUV mission deployment, a search trajec-
tory aimed to maximize coverage is employed. The search
trajectory is manually planned and is typically a lawnmower
pattern, e.g. Fig. 3b. During this mission, the AUV collects
position and sonar data which is used to generate a coarse
occupancy grid that is used for both obstacle avoidance and
area of interest (AOI) identification.

B. Occupancy Grid Map Construction

The sonar data from the search trajectory is used to
generate an occupancy map C used for obstacle avoidance in
motion planning as well as generating the information map
I . In this study, a multibeam sonar is used (see the sonar scan
plane is shown in Fig. 3a), but the work can be extended to
also use a side-scan sonar.

The 3D occupancy grid is represented as C = {cijk|i =
1, ...,m; j = 1, ..., n; k = 1, ...o}. The three dimensions of C
refer to discretized values of the x, y, and z coordinates of the
workspace. Each cell of the occupancy grid has a likelihood
of being occupied such that cijk ∈ [0, 1]. The occupancy grid
is initialized such that the known empty cells near the surface
have an occupancy of 0.1 and the cells below a certain depth
have an occupancy of 0.5. An occupancy of 0.5 implies that
the occupancy of that cell is completely unknown.

The cells of the occupancy grid are updated using data
collected from the multibeam sonar. The multibeam sonar
outputs Zsearch, a vector of signal strengths for a given bear-
ing ψ, where each signal strength in the vector is associated
with a range. Specifically Zsearch = {zi|i = 1..m} for m
different bearing angles and zi = [ψi ss(ψi, r0) ss(ψi, r1)
... ss(ψi, rn)] for n range values ri as illustrated in Figure
3a.

To determine the cell to update for a given zi, the range
and bearings, which are referenced within the sonar’s local
coordinate frame, must be raycasted to the global coordinate
frame. The sonar is mounted to the AUV with some offset
yaw, pitch, and roll that can be represented as [α β γ]auvson

with corresponding rotation matrix Rauvson . The AUV has a
yaw, pitch, and roll with respect to the global frame: [α β
γ]Gauv with corresponding rotation matrix RGauv . Therefore,
the global position of a cell corresponding to a range r and
bearing ψ can be found using rigid body transformations:

xcyc
zc


G
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xauvyauv
zauv


G
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auv
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r · cos(ψ)r · sin(ψ)
0
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Fig. 3: The AUV sonar scan plane with a sample (r, ψ) is
shown in (a). An example lawnmower trajectory conducted
over the Beaufighter plane wreck in St. Julian’s Bay, Malta
is shown in (b).

For each cell cijk determined to intersect with a particular
ray ψ, r cast by the sonar head, its occupancy is updated
using Baye’s rule:

P (cijk,t) = P (cijk,t|ss(ψ, r)t)

=
P (ss(ψ, r)t|cijk,t−1)P (cijk,t−1)

P (ss(ψ, r)t)

(2)

In Eq. 2, P (cijk,t) is the probability the cell is occupied,
P (ss(ψ, r)t) is the probability of obtaining signal strength
measurement ss(ψ, r)t, and P (ss(ψ, r)|cijk,t) is the prob-
ability of obtaining measurement ss(ψ, r)t given a sonar
model and that cell cijk,t is occuped.

Updating cells in the occupancy grid is accomplished for
each sonar measurement obtained during the search mission
to produce the final occupancy grid C.

C. Information Map Construction

Once the occupancy grid C has been updated from the
search trajectory, it can be used to construct an information
map I that can be queried by the motion planner to calculate
the information gain associated with potential AUV actions.
The goal of this planner is to create a trajectory that leads the
AUV over areas of interest, i.e. shipwrecks, from multiple
sensor vantage points.

First, a thresholding function is applied to C to create a
grid Cτ = {cτ,ijk|i = 1, ...,m; j = 1, ..., n; k = 1, ...o}. Any
cell cijk in C with a likelihood of occupancy above τocc is
considered occupied in the corresponding cell cτ,ijk of Cτ .
For this paper, the threshold is set as τ = 0.4.

The occupancy grid Cτ is then converted to a 2D elevation
map matrix, E = {eij ], i = 1, ...,m; j = 1, ..., n}. In this
case eij is the maximum height (in meters) of all occupied
cells in Cτ with horizontal planar coordinate indices i, j.
The elevation map of the Bristol Beaufighter plane wreck is
shown in Fig. 4a.

In order to find the areas of high elevation variation, the
gradient G of the elevation map E is calculated using the
Sobel operator.

G =
√
G2
x +G2

y (3)
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Fig. 4: (a) An elevation map for the Beaufighter wreck (b)
The gradient resulting weighting function after applying the
areas of interest detection algorithm.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ E (4)

Gy =

−1 −2 −1
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 ∗ E (5)

Since the state estimation of the AUV has an associated
error, the position of the elevation map will also be subject
to errors. To account for such error, a Gaussian low-pass
filter is applied to the gradient map by convolving G with
a Gaussian Blur Kernel B. The standard deviation of the
Gaussian filter is equal to the uncertainty in state estimation.
The equation for the 2D Gaussian Blur is:

B(x, y) =
1

2πσ2
Xauv

e
− x2+y2

2σ2
Xauv (6)

Finally, the information map, I can be determined by con-
volving the blur matrix with the gradient matrix.

I = B ∗G (7)

The information map will be used to weight the im-
portance of each cell in the objective function used when
motion planning. Archaeological sites, such as shipwrecks,
have a higher variation in elevation than their surrounding
environment, so we propose that areas with a high degree of
elevation change should have a higher objective score. The
information map for the Bristol Beaufighter site is shown in
Fig. 4b.

D. Motion Planning

1) MP Problem Definition: In our problem, we are given a
workspace W with physical boundaries and an initial robot
configuration X0 that is located within the boundaries of
W . The goal is to determine the time limited sequence of
control actions U = {u0, u1, u2, ..., up} that maximize the
information gain. To summarize, our problem is to:

Find
max
U O(U,X0) (8)

Subject to

O(U,X0) =
∑
XD∈E

Info(I,XD) (9)

E(U,X0) =

p⋃
l=0

Xl,D (10)

Xl,D = D(Xl) (11)

Xl+1 = f(ul, Xl) (12)

In the above optimization problem, the function f(ul, Xl)
returns AUV state Xl+1 after it applied control effort ul from
the previous state Xl.

The function D(Xl) returns Xl,D, a discretized version
the AUV state vector Xl. In this case, the first 3 elements
of Xl,D are the integer index values associated with the
closest 3D cell of C, and the last element corresponds with
an integer index value associated with a discretization of
the AUV’s yaw angle. E.g., if the state Xl is contained
within cell c3,4,6 of C, and the yaw angle is 85 degrees,
then the discretized state is Xl,D = [3 4 6 1] for and angle
discretization resolution of 90 degrees.

The set E(U,X0) of Eq.10 refers to the union of all
discritized states visited over the course of a trajectory that
follows the p control actions of the set U . Finally, the
function Info(I,XD) returns the information gain when the
AUV resides at the discritized state XD of the information
map I .

2) MP Algorithm: The purpose of this algorithm is to
generate trajectories for the AUV to optimize data collection
for photogrammetry. The trajectories are generated using a
RRT that maximizes the above described scoring function.
Our modified RRT is described in Algorithm 1. Several key
modifications to the RRT structure are described below.

3) Node Selection for Expansion: Line 3 of Alg. 1 calls
the selectNodeToExpand function. In the general RRT
implementation, a random configuration from the space is
sampled and the closest node in the tree is selected for
expansion. In the implementation presented in this paper,
nodes are selected using two different sampling methods. A
parameter γ is used to select the frequency at which these
two methods are used.

The first method aims to generate a distribution paths
in the RRT with path duration uniformity. To accomplish

Algorithm 1 Modified RRT

1: Add start configuration cstart to R(N,E)
2: for i← 1 to numcycles do
3: c ← selectNodeToExpand(R(N,E))
4: c′ ← expandNewNode(c)
5: if edge e from c to c′ is collision-free then
6: prune(c, c′)
7: compute score of c
8: Add (c, e) to R
9: if c′ in endgame region then

10: path
11: end if
12: end if
13: end for
14: return path with best score



Algorithm 2 Expansion Step
1: p← parent
2: depth ← rand()(maxDepth − minDepth) +
minDepth

3: diveDist← dynamicDive(depth)
4: surfDist ← rand()(maxSurfDist −
minSurfDist) +minSurfDist

5: if rand() > γ then
6: h = HICs(rand() · numHICs)
7: θ ← atan2(h.Pose(y) − p.Pose(y), h.Pose(x) −

p.Pose(x))
8: else
9: θ = rand() · 2π

10: end if
11: circlePose.x = R ∗ (cos(p.yaw) + cos(p.yaw + θ))
12: circlePose.y = R ∗ (sin(p.yaw) + sin(p.yaw + θ))

this, the node selection first randomly selects a time no
greater than the maximum mission time. The node with
the timestamp closest to the random time is selected for
expansion. This ensures the RRT will generate paths of
varying duration.

The second method to node selection for expansion is
to only select from the nodes considered to be a High
Information Configuration (HIC). This method encourages
the RRT to expand in areas where there is high information
gain.

4) Expansion to New Nodes: Line 4 of Alg. 1 calls the
expandNewNode function, which is provided in Alg. 2. To
account for AUV dynamics and constraints in localization,
the RRT expansions must have two characteristics. First, the
edge should incorporate a straight segment, in which the
flyover occurs just above the site of interest. This provides
a stable path for accurate Doppler Velocity Log (DVL)
based dead-reckoning localization. Second, the edge should
include a surfacing before and after the flyover to obtain
GPS measurements, again to increase accuracy in vehicle
localization.

To accomplish the two goals, the random node expansions
in this algorithm use a series of steps, (see Fig. 5a and 5b).
The first step is an arc of random length, where the radius of
the arc is the minimum turn radius of the vehicle. Hence the
first step of the expansion is used to incorporate a random
change in the yaw direction. This change in yaw occurs at
the surface.

Next, the AUV drives straight for a distance to increase
velocity, then dives to its desired depth, holds the depth for
a random distance, and returns to the surface. The expansion
step of the RRT algorithm is illustrated in Fig. 5a, Fig. 5b
and described in Alg. 2.

The direction of expansion of the RRT, θ is selected in
one of two ways. A portion of the time, the angle is selected
randomly. The rest of the time, the RRT expands towards
a randomly selected HIC or a node with a relatively high
score. The variable γ denotes the probability of a random

(a) (b)

(c) (d)

Fig. 5: Node Expansions: In (a), a 3D visual of a single multi-
step node expansion is shown. In (b), a top down view of the
same expansion can be seen. Multiple expansions in a RRT
are shown in (c).The pruning step (d) of the RRT creates a
shorter path from the grandparent to end of the new node.
The dotted line represents a potential pruning step.

expansion versus an expansion towards a HIC.
Once a node is generated, the objective function is calcu-

lated for the node. If the score of the node is higher than a
threshold, that node is added to a list of ”HICs”, H ⊆ N .
These HICs can help the RRT expand in regions with more
AOI.

5) Edge Pruning: Another proposed modification to the
algorithm is the addition of a pruning step (illustrated in
Figure 5d). With each expansion from a parent, the score of
the edge connecting the parent to the new node is compared
to the score of an edge from the grandparent to the new node.
If the pruned objective score is higher, the parent node and
its edges will be removed. More specifically, an edge will be

pruned if
O(Eik)

tik
>
O(Eij + Ejk)

tij + tik
.

The edge from the grandparent to the new node has the
same steps as the expansion stage. The depth is chosen to
be the same as the edge from the parent to new node and
the rest of the components are calculated to satisfy the path
length and dynamic constraints of the AUV.

6) Objective Function: RRTs are traditionally used to
efficiently find a collision-free trajectory in a complex envi-
ronment. For this study, the goal of the RRT is to maximize
information gain given time constraints. The information
gain is quantified by the score function defined by Equation
9.

7) Endgame Region: Commonly, the endgame region of
an RRT is defined as within a threshold of a goal pose for the
robot. In this case, the robot is not navigating to an end goal,
but creating a path to maximize information gain within a
maximum duration of time. Therefore, the endgame region
is defined as any path longer than the minimum path length
is in the endgame region.



(a) (b)

Fig. 6: (a) Shows a roadmap for an expansion without HICs.
(b) for an expansion step using HICs. Note the efficiency
and multiple flythroughs over the wreck in (b).

E. 3D Mapping

After the AUV is deployed to track the trajectory Tmapping
constructed by the RRT, the recorded video data can be
processed to produce a 3D map. Stills are grabbed from
the video footage and processed using off-the-shelf software,
specifically Agisoft Photoscan. The output of Agisoft pho-
toscan is a 3D rendering that is the end product of this
archaeological site mapping pipeline. Outputs of Agisoft
Photoscan are shown in Figures 8b and 8d.

IV. SIMULATIONS

A. Simulation Setup

The archaeological site motion planner was implemented
in MATLAB. A series of simulations were conducted to
evaluate the effectiveness of the RRT algorithm and mod-
ifications. These simulations were conducted using data
collected from archaeological sites. The data used to create
the occupancy grid and information map for the Beaufighter
wreck comes from data collected prior to this study. The
simulations were used to observe differences in roadmap
generation as well as the score of the best path.

The metric used to evaluate the algorithms is the above
mentioned score function. Due to their random nature, RRTs
tend to perform better with more expansion steps. To charac-
terize the performance of the algorithm, the best path score
is calculated for a range of numcycles.

B. Simulation Results

The HIC node selection shows noticeable qualitative re-
sults. Figures 6a and 6b show the results of a roadmap
generated without the use of HICs and with the use of
HICs, respectively. The information map used shows the
Beaufighter wreck located in the bottom-right corner of
the map. While Figure 6a indicates a high coverage of
the workspace, Figure 6b shows a preference of the RRT
algorithm to expand towards an area of interest. The final
RRT (in red), shows multiple passes over the AOI.

The RRT modifications are further evaluated with respect
to the scoring function. The RRT performance as a function
of number of trials was computed for: the original RRT
algorithm, RRT with pruning, RRT with HICs, and RRT

with both pruning and HICs. The results are shown in
Figure 7a. All four methods lead to an asymptotic score of
approximately 1200 which is likely due to the maximum
score given time limitations on the motion plan. The results
indicate that pruning generally causes the RRT to reach the
asymptote slightly faster. The use of HICs for expansion
causes the RRT to reach the asymptote at approximately
700 cycles. Both HICs and pruning do not improve the
performance of the algorithm.

The score improvement of the RRT modifications is shown
in Figure 7b. The HIC modification has a maximum score
improvement of 152% over the original RRT algorithm
at 500 cycles. The pruning modification has a maximum
score improvement of 102% over the original algorithm
at 700 cycles. Both of these modifications indicate that
the modifications improve the performance of this RRT
implementation.
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Fig. 7: (a) shows the score of the best path given a number
of cycles for the different RRT modifications. (b) shows the
score improvement of the RRT modifications.

V. EXPERIMENTS
A. Hardware

The AUV used in this study is an Iver2 purchased from
OceanServer. It is driven by a propeller, and four actuated
fins control roll, pitch, and yaw of the robot. Its sensors
include a 3DOF compass, altimeter, DVL, and GPS receiver.
A BlueView M900-2250 Dual Frequency Series sonar was
also mounted to the AUV for data collection in this study.
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Fig. 8: (a) An image of the Beaufighter wreck taken by a GoPro on the AUV. (b) A reconstruction of the Beaufighter
wreck from a lawnmower pattern mission. (c) An image of the X-Lighter taken from the AUV. (d) A reconstruction of the
X-Lighter wreck from two RRT missions

Date Location Trajectory Type Mission Time Reconstruction Use
06/01 Big Fisherman’s Cove Manual Search 20m Catalina Information Map
06/15 Manoel Island Manual Search 6m Manoel Information Map
06/23 St. Julian’s Bay Lawnmower 56m Beaufighter
06/27 Manoel Island RRT Mapping 8m Bow of X-Lighter
06/28 Manoel Island RRT Mapping 9m Midsection of X-Lighter

TABLE I: List of deployments of the AUV to collect data for use with the archaeological site pipeline.

For collection of video data, a variety of GoPros were used
from versions HERO1, HERO2, and HERO3. The AUV can
be driven manually and wirelessly on the surface or be
programmed for waypoint navigation.

B. Field Experiments Setup

A series of field experiments were conducted to verify the
feasibility of the archaeological mapping pipeline. A com-
prehensive list of the missions used for the data collection
for this paper are presented in Table I.

The first set of experiments were to test the search
trajectory and the information map generation. These trials
were conducted at Big Fisherman’s Cove, Catalina Island,
CA and at Manoel Island, Malta. The trials conducted in
Catalina were used to validate the manual search trajectory
and information map generation portion of the pipeline. The
focus of these missions were a small boat wreck in the cove.
The trials conducted at the southern end of Manoel Island
near the X-Lighter Coralita shipwreck were used to create
an information map for a real archaeological site.

The second set of experiments were used to collect data
for archaeological site reconstruction. These experiments
were conducted at Manoel Island, Malta and at St. Julian’s
Bay. The mapping missions included a combination of
lawnmower missions and RRT missions.

C. Field Experiment Results

The data collected from the search trajectory missions
in Catalina and Malta were successfully used to create
Information Maps of the respective areas. The Information
Map for the Beaufighter wreck was generated using data
collected prior to this study. The RRT missions planned
using the previously described algorithm were successfully
executed by the AUV. The field deployments validate the
feasibility of the generated paths. The data collected from
the mapping missions were successfully used to create
photogrammetric reconstructions of the archaeological sites.
Examples of image data collected from the Beaufighter
and X-Lighter sites are shown in Figure 8a and Figure



8c respectively. Figure 8b shows a reconstruction of the
Beaufighter site from data collected with lawnmower
missions. Figure 8d shows a reconstruction of the X-Lighter
Coralita site using data collected with RRT missions. All
reconstructions were generated using Agisoft Photoscan.

VI. CONCLUSIONS & FUTURE WORK

The results of this study present a novel method of using
AUVs to survey archaeological sites. The data collection
begins with a search trajectory which is used a create a
coarse sonar map of this area. This sonar map is used
to generate an information map which highlights areas of
interest. The information map and sonar occupancy grid are
used to inform a modified RRT motion planning algorithm.
The expansion step of the RRT algorithm was modified
to prune low information edges and grow towards High
Information Configurations. The modifications to the RRT
algorithm have been shown to increase objective scores by up
to 152% when compared with the original RRT algorithm in
simulation. Furthermore, the full marine archaeological site
mapping pipeline has been validated in field trials that have
resulted in 3D reconstructions of two archaeological sites off
the coast of Malta.

Future work could expand on this work to use different
sensors for the search and mapping trajectories. Specifically,
the area of interest map could be generated using a side-scan
sonar. Furthermore, the archaeological site photogrammetric
reconstruction could fuse sonar data with the photo data
to create more accurate representations. Finally, we could
extend the pipeline to a multi-robot system.
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