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This paper presents a multi-autonomous underwater vehicle system capable of cooperatively and autonomously
tracking and following marine targets (i.e., fish) tagged with an acoustic transmitter. The AUVs have been
equipped with stereo-hydrophones that receive signals broadcasted by the acoustic transmitter tags to enable
real-time calculation of bearing-to-tag and distance-to-tag measurements. These measurements are shared be-
tween AUVs via acoustic modem and fused within each AUV’s particle filter for estimating the target’s position.
The AUVs use a leader/follower multi-AUV control system to enable the AUVs to drive toward the estimated
target state by following collision-free paths. Once within the local area of the target, the AUVs circumnavigate
the target state until it moves to another area. The system builds on previous work by incorporating a new
SmartTag package that can be attached to an individual’s dorsal fin. The SmartTag houses a full inertial mea-
surement unit (INU), video logger, acoustic transmitter, and timed release mechanism. After real-time AUV
tracking experiments, the SmartTag is recovered. Logged IMU data are fused with logged AUV-obtained acous-
tic tag measurements within a particle filter to improve state estimation accuracy. This improvement is validated
through a series of multi-AUV shark and boat tracking experiments conducted at Santa Catalina Island, Cal-
ifornia. When compared with previous work that did not use the SmartTag package, results demonstrated a
decrease in mean position estimation error of 25–75%, tag orientation estimation errors dropped from 80◦ to
30◦ , the sensitivity of mean position error with respect to distance to the tag was less by a factor of 50, and the
sensitivity of mean position error with respect to acoustic signal reception frequency to the tag was 25 times
less. These statistics demonstrate a large improvement in the system’s robustness when the SmartTag package
is used. C© 2016 Wiley Periodicals, Inc.

1. INTRODUCTION

Studying the spatial movement of sharks and other fishes is
an important tool for monitoring habitat and maintaining

Direct correspondence to: Yukun Lin, e-mail: ylin@hmc.edu

fish populations. Typical methods for tracking fish include
tagging individuals with acoustic transmitters, and then
using hydrophone-receiver systems to detect and measure
the signals transmitted. Often, the hydrophone-receivers are
placed at fixed locations around an environment of interest
to passively track tagged individuals that move through the
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static array (Espinoza, Farrugia, Webber, Smith, & Lowe,
2011). For an increased area of coverage, satellite tags are
used but they can only provide positional data when the
fish is at the surface.

Alternatively, active tracking can be done manually by
mounting a directional hydrophone on a boat and continu-
ously following the tagged individual from the surface for
periods up to 96 h (Lowe & Bray, 2006). However, such a
method is often labor intensive and can be cost prohibitive.
Thus, the development of an autonomous tracking system
that can produce high-resolution positional data would
provide an essential tool in understanding how changes
in environmental conditions influence the behavior of
fish.

The authors have demonstrated in Clark et al. (2013)
that a single AUV system using low-resolution angle mea-
surements, distance measurements, and depth measure-
ments is able to autonomously track and follow a tagged
leopard shark. Key components of the system include a cir-
cle tracking controller and state estimator presented in Tang,
Shinzaki, Lowe, & Clark (2012) and Lin et al. (2014).

This paper builds on previous works and presents a
multi-AUV system capable of tracking and following a
tagged leopard shark. Multi-robot systems have demon-
strated advantages over single robot systems in that they
have greater resolution in spatio-temporal sampling and
robustness to noisy sensor measurements. That is, many
robots can be located at different locations in the environ-
ment to simultaneously obtain sensor measurements of the
environment or targets being tracked. This is highly rele-
vant to fish tracking, where acoustic sensors are unreliable
(e.g., because of the occlusion with kelp beds, subject to
variation in transmission medium characteristics like tem-
perature, multi-path effects on surface/seafloor, etc.), and
multiple measurements taken from different sensor van-
tage points can lead to increased measurement frequency.
However, using multiple robots requires robot coordination
to ensure the robots (1) don’t collide and (2) take advan-
tage of their simultaneous presence. This paper presents a
method to coordinate a system of AUVs to leverage their
ability to simultaneously detect and sense the sharks being
tracked.

The system consists of two OceanServer IVER2 AUVs
(Figure 1(a)), each equipped with a Lotek MAP RT stereo-
hydrophone system that detects acoustic signals from of-
the-shelf Lotek fish tags. The Lotek tags are part of a Smart-
Tag package (Figure 1(b) and Figure 3) that includes a 9-DOF
(degrees of freedom) Loggerhead IMU with a timer based
release mechanism. A distributed particle filter is used to
estimate the three-dimensional (3D) position of the tagged
fish in real time. An autonomous control system is employed
that drives the AUVs toward the estimated position of the
tagged fish and circles it (Figure 1(c)). This enables the AUVs
to maintain a stand-off distance from the tagged fish in or-
der to minimize the influence on its behavior. In developing

this system, several contributions have been made to the
field of underwater robotics:

� A decentralized multi-AUV control system that incorpo-
rates A* path planning for obstacle avoidance with two
modes of target tracking: (1) path-to-target following and
(2) target circumnavigation.

� A distributed multi-AUV online state estimator that
enables real-time AUV estimation of tagged fish states.

� The design, development, and deployment of a SmartTag
package that includes a Lotek fish tag, and a Loggerhead
IMU with tri-axis gyroscope, accelerometer, and magne-
tometer. A timer based burn wire is used to release the
tag package.

� An offline state estimator that integrates the IMU data
with measurements from the AUV to increase accu-
racy in position and orientation estimation of the tagged
fish.

The paper is organized as follows: Section 2 describes
the past work and related research on the topic. Section 3
gives an overview of the multi-AUV system, and Sections
4 and 6 discuss the state estimator and controller, respec-
tively. Sections 6 and 7 present the experiments and results
performed with the system. Conclusions and future work
are presented in Section 8.

2. BACKGROUND

Tracking stationary and moving targets with robotic sys-
tems is a well-studied field of research (Grothues, Dobarro,
& Eiler, 2010; Kobilarov, Sukhatme, Hyams, & Batavia, 2006;
Montemerlo, Thrun, & Whittaker, 2002; Rife & Rock, 2003;
Schulz, Burgard, Fox, & Cramers, 2001, 2003). Within the
context of using underwater robots to track individuals,
both optical-based methods (Georgiades et al., 2004; Rife &
Rock, 2003; Zhou & Clark, 2006), and acoustic-based meth-
ods (Grothues et al., 2008; Oliver et al., 2013) have been
used. In Rife & Rock (2003), autonomous tracking of jelly-
fish with a remotely operated vehicle (ROV) was conducted
using basic image processing techniques. Work presented
in Zhou & Clark (2006) demonstrated the use of SIFT fea-
tures in tracking individual fish between video frames cap-
tured from an ROV. Image processing techniques were also
shown to be useful in tracking divers with a robot in Geor-
giades et al. (2004). Unfortunately, most optical methods
employed in underwater environments suffer from limited
visibility due to poor lighting conditions and the presence of
debris.

While acoustic methods of tracking marine individ-
uals have been used for decades, hydrophone receivers
have only recently been mounted on underwater vehicles.
For example, work done by Grothues, Dobarro, & Eiler
(2010); Grothues et al. (2008) has demonstrated the abil-
ity to track tagged sturgeon using a REMUS AUV equipped
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Figure 1. Hydrophones mounted on a prototype PVC frame attached to an OceanServer Iver2, suspended 0.4 m down with 2.4 m
of separation (a). A leopard shark tagged with the SmartTag package (b). The two AUVs circle in phase around the estimated
target position (c). This photo was taken using a long exposure during a night deployment in which the leopard shark remained
in shallow water and the AUVs remained at the surface. Different-colored lights mounted on different sides of the AUV masts
indicate the AUV yaw angle

with a Lotek hydrophone system. Work in Haulsee et al.
(2015) demonstrated how AUVs can be used for determin-
ing habitat selection of tagged sand tiger sharks. Unlike the
work presented by the authors, work by (Grothues, Do-
barro, & Eiler, 2010; Grothues et al., 2008; Haulsee et al.,
2015) did not use in situ measurements to actively steer the
AUV.

The use of IMU tags on marine animals by itself is also
not novel. Traditionally, these tags only have accelerom-
eters and are attached to the fins or tails. The frequency
and amplitude of the tail/fin beats as measured by the ac-
celerometers are then used to infer the behavioral state of
the animals (Shepard et al., 2008). The use of IMU tags that
include magnetometers and gyroscopes is a more recent
development (Noda, Kawabata, Arai, Mitamura, & Watan-
abe, 2014). As well, they have not be been combined with
acoustic transmission measurements for tracking marine
life.

The authors are also aware of the tracking of a white
shark using a REMUS-100 AUV conducted by researchers
at the Woods Hole Oceanographic Institute (WHOI). Their
work was featured by Discovery Channel in 2013. In their
approach, a cylindrical transponder approximately 30 cm
long is used as a tag. An ultra-short baseline receiver
mounted on the REMUS-100 AUV queries the transponder
to determine range and bearing (Packard et al., 2013). Un-
fortunately, the large size of the transponder greatly limits
the use to particularly large marine animals.

Our approach uses smaller off-the-shelf Lotek acoustic
tags that are 80 mm long and 16 mm wide. The Lotek tags are
capable of only pulse transmissions and are similar to the
10,000 tags already being used, hence making this system
easily applicable to existing fish studies. While bearing and
range measurements obtained from these tags tend to be less
accurate than that of a transponder, the small size of these
tags makes them applicable to a large variety of smaller
fish. Also unlike Packard et al. (2013), our system attempts
to minimize any changes in behavior of the shark being

tracked by using a controller that circles and maintains a
predetermined buffer distance from the shark instead of
getting as close as possible.

3. SYSTEM OVERVIEW

3.1. OceanServer IVER2 AUV

The current system consists of two OceanServer Iver2
AUVs, although additional AUVs could be added. The Iver2
is a torpedo-shaped vehicle (see Figure 1(a)) with a rear pro-
peller to provide locomotion, and four fins to control the ve-
hicle’s pitch, roll and yaw angles. The sensor payload used
to determine the AUV state includes a pressure sensor for
depth, a 3-DOF compass, a wireless antenna, a GPS receiver,
and a six-beam Doppler velocity logger. It is equipped with
two processors, a primary and secondary, each running an
embedded Windows operating system. The primary pro-
cessor communicates with the AUV’s sensors and actuators.
The secondary processor interfaces with the primary via an
RS-232 serial port and hosts the user programmed control,
estimation and communication systems. The AUVs broad-
cast their current position and sensor measurements to each
other via a WHOI Micro-Modem (Freitag et al., 2005) and
externally mounted transducers, allowing for cooperative
tracking and following of the tagged marine animal.

In addition, each AUV is outfitted with a Lotek MAP RT
receiver and an associated stereo-hydrophone set, designed
to listen for acoustic signals at a frequency of 76 kHz. The
hydrophones are fixed to the AUV using a PVC frame that
positions the omnidirectional hydrophones approximately
0.40 m below the AUV and at opposite ends of the AUV,
that is, just ahead of the nose and just behind the tail. As
suggested by Lotek, the separation distance between the
hydrophones is 2.4 m (see Figure 1(a)). These hydrophones
receive transmissions from Lotek acoustic tags, which trans-
mit at 76.8 kHz.

The system uses a hierachical Leader/Follower con-
trol system to handle multi-vehicle coordination. The flow
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Figure 2. Flow control within an AUV.

control within the Lead AUV is shown on the left side of
Figure 2. The Lotek System hydrophones receive acoustic
signals from fish tags, and the receiver board will send
the time-of-arrival measurements from both hydrophones
to the Lotek MapHost software running on the secondary
processor. The MapHost software writes all measurements
Zlotek to a text file, making it accessible to the state estimator.
These time measurements are first converted to bearing-to-
tag and distance-to-tag measurements before being used by
a particle filter to calculate fish state estimates.

In parallel, Lotek measurements and AUV states sent
from the Follower AUVs are received through the acous-
tic modem Communication system. These measurements
Zmodem are also used by the particle filter for state es-
timation. Details of the state estimation are provided in
Section 4.

The estimated state of the tagged fish is passed to the
AUV’s controller, which uses a combination of a path plan-
ning algorithm for obstacle avoidance and a path follow-
ing control law to drive the AUV toward the tagged fish.
Once the AUV is within the local vicinity of the tagged fish,
the controller invokes a decentralized target circumnaviga-
tional controller described in detail in Tang et al. (2012). The
AUVs will circumnavigate on the current estimate of the tag
position (see Figure 1(c)) and transition to circumnavigate a
newer estimate of the tag position when it has moved past
a threshold distance.

The controller sends the commands U of desired pro-
peller rotation speed and fin angle to the Primary Processor
via serial RS-232 communication. The OceanServer software
package relays U to the AUV actuators, that is, the pro-
peller motor and fin motors. To calculate U , the controller
uses closed-loop control laws that require feedback in the
form of planar position, depth, roll, pitch, and yaw states
XAUV as estimated by the OceanServer software. When the
vehicle is on the surface, its planar position is estimated
by fusing DVL, compass, and GPS. To understand errors

associated with the GPS receiver, stationary vehicle tests
were performed in which GPS measurements were logged
for several minutes to yield a standard deviation on the
order of 4.5 m. When underwater, the AUV state is esti-
mated by fusing only the depth sensor, DVL, and com-
pass measurements. Details of the controller are found in
Section 5.

Flow control within the Follower AUV is almost identi-
cal. However, it does not rely on its own state estimates for
controlling the AUV. Instead, it uses the Lead AUV’s most
recently calculated state estimate of the tag position Xtag as
the target point to drive toward and circumnavigate. This
tag position is sent from the Lead AUV using the acoustic
modem. Each transmission takes 5 s to complete, and only
one AUV can transmit at a time, leading to a communication
period of 10 s. In this way, both AUVs will circumnavigate
the same target point and avoid collision with one another.

3.2. SmartTag Package

The AUVs described above have been modified to track
acoustic tags. In previous work by the authors, researchers
attached an off-the-shelf acoustic tag to the dorsal fin of
a shark with a dart. Recovering such tags is unnecessary
because all information is telemetered. However, trans-
mitting all data from from IMUs with high-sampling fre-
quency is not feasible due to bandwidth limitations, sig-
nal attenuation, and power consumption. Hence, logging
such measurements is required, and the tag logger must
be retrieved after the experiment. To address this require-
ment, a tag package was developed that clamps onto the
dorsal fin of the shark and utilizes a timed release mech-
anism (see Figures 1(b) and 3). We call this tag package a
SmartTag.

The shell of the SmartTag is 3D printed and filled with
micro-balloon epoxy foam for structural rigidity and buoy-
ancy. It not only holds a Lotek acoustic tag but also carries
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Figure 3. The SmartTag package: Two views (a) and (b). The green rectangle indicates the position of the IMU. The bottom dark
cylinder is the video logger system. The top dark cylinder is the acoustic tag. The white cylinder is the VHF transmitter. The Lotek
acoustic tag (c). The Loggerhead OpenTag IMU (d).

a Loggerhead OpenTag 9-DOF (gyroscope, accelerometer,
magnetometer) IMU, a Little Leonardo video logger, and a
VHF transmitter. The front of the tag is held together by zip
ties and the rear by burn wires. The tag package is positively
buoyant; it is designed so that the portion holding the Lotek
tag floats in the water, and the antenna of the VHF transmit-
ter floats above the water. This allows the tag to be located
both acoustically and with a VHF receiver, providing two
levels of redundancies for recovery. Described below are the
two main components of the SmartTag.

3.2.1. Lotek Acoustic Tag System

Embedded in this SmartTag is the Lotek MM-M-16-50-PM
acoustic tag preset to transmit a signal every 2 s (Figure 3(c)).
The tag has a 30-day battery life and has an embedded
pressure sensor whose measurements are encoded into the
tag signal transmission. Depth is calculated by linearly ex-
trapolating the pressure readings. The two hydrophones
of the stereo-hydrophone system are mounted 2.4 m apart
and suspended 0.4 m beneath each AUV. The separation of
the hydrophones allows the angle between the AUV and

the acoustic tag to be calculated. This is done by assum-
ing that the tag is sufficiently far enough (more than 5 m)
from the two hydrophones such that the two line segments
connecting the tag to the front and rear hydrophones are
close to parallel, allowing for a trigonometric relation to be
derived between distance from time of arrival and bearing
to tag. The bearing measurement obtained with this method
has a standard deviation of approximately 10◦. See Forney
et al. (2012) for more details.

Because of the periodic nature of the tag transmissions,
it is possible to extrapolate and predict the time of transmis-
sion from some initial transmission time t0 and the trans-
mission period T . Suppose that the tag transmits with a
period T . Let ztoa be the time of detection, where t0 < ztoa.
The integer number of tag transmissions since t0 is given
by:

k = Round
[

ztoa − t0

T

]
. (1)

Thus, the estimated time of the transmission can be cal-
culated by ttransmit = t0 + kT . This allows the time of flight
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Figure 4. An overview of the state estimation problem.

distance-to-tag to be calculated as zβ = (ztoa − ttransmit)c,
where c is the speed of sound in water. More details are
presented in Lin et al. (2013) in which experiments show
that, with proper calibration, the calculated distance has an
error with a mean and a standard deviation on the order of
2 m over a time span of 4 h, with a drift of 1.5 m over a time
span of 22 h.

3.2.2. Loggerhead OpenTag IMU

The Loggerhead OpenTag IMU (see Figure 3(d)) has a triax-
ial accelerometer, gyroscope, and magnetometer. It is capa-
ble of sampling at up to 100 Hz for a duration of 72 h. Data
collected are stored on a micro-SD memory card. It also has
an onboard pressure sensor capable of sampling at 10 Hz.
The OpenTag IMU has a 3.7-V output pin that is connected
to the burn wires holding the rear of the tag together. This
output can be programmed to turn on only after a certain
amount of time has passed and is the main timed release
mechanism. As a fail-safe backup, a galvanic release is also
used.

4. STATE ESTIMATION

4.1. State Estimation Problem

A two-dimensional (2D) overview of the state estimation
problem is shown in Figure 4. The state of the ith AUV and
sensor measurements at time t are denoted by Xi

auv,t and Zi
t ,

respectively. The hydrophones h1 and h2 are mounted on
the nose and tail ends of the AUV and the difference in time
of arrival of a tag transmission is used to calculate the angle
to the tag (with a sign ambiguity), denoted by zi

α . Using
the time of arrival measurement, the distance-to-tag zi

β is
calculated as described in Section 3.2.1. The depth of the tag
zi

γ is determined using the measurement transmitted from
the tag. If the SmartTag is used, the 3-DOF magnetometer
measurements �m, 3-DOF gyroscope measurements �g, and
3-DOF accelerometer measurements �a from the IMU can
also be used for state estimation.

The state estimation problem is defined as follows.
Given a system of n AUVs at time t , where the ith AUV
has the state

Xi
auv,t = [xi

auv yi
auv zi

auv θ i
auv]t (2)

and sensor measurements

Zi
t = [zi

α zi
β zi

γ ]t and Zimu
t = [ �m �g �a]t (3)

determine the tag state

Xtag,t = [xtag ytag ztag θtag]t . (4)

The state estimator must also handle incomplete sen-
sor measurements, such as the case of Zi

t only containing a
valid distance measurement zi

β but invalid angle and depth
measurements. In general, the acoustic measurements
are not reliable due to occlusions and interference from
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ambient noise in the underwater environment (e.g., kelp,
reef structures).

4.2. Particle Filter Overview

The state estimator is based on a particle filter (Thrun, 2002;
Thrun, Burgard, & Fox, 2005). To represent the belief state
at time t , the particle filter uses a set of particles denoted by
Pt . Each particle p ∈ Pt is represented by the set {Xp

tag, w
p}

containing a tag state X
p
tag and weight wp . The estimated tag

state Xtag,t at any time step t is the average of X
p
tag∀ p ∈ Pt .

At initialization, Pt is filled with particles whose xyz coor-
dinates are sampled randomly from uniform distributions.
The algorithm for one time step of the state estimator is
shown in Algorithm 1.

Algorithm 1 Multi-AUV State Estimator

1: //Prediction
2: for p ∈ Pt do
3: X

p
tag ∈ p ← Motion Model(Xp

tag, Z
imu)

4: for i from 1 : n do
5: α

p
exp ← Expected Angle(Xi

auv,t , X
p
tag)

6: β
p
exp ← Euclidean Dist(Xi

auv,t , X
p
tag)

7: γ
p
exp ← ztag ∈ X

p
tag

8: wp ← W (zi
γ , γ

p
exp, σγ ) ∗ W (zi

β , β
p
exp, σβ ) ∗ W (zi

α, α
p
exp, σα)

9: end for
10: end for
11: //Correction
12: if there are valid measurements then
13: for 1 : |Pt | do
14: choose p ∈ Pt with probability ∝ wp

15: add p to Pt+1

16: end for
17: else
18: Pt+1 ← Pt

19: end if

At each time step, the set of particles is propagated
based on a motion model (Algorithm 1, Line 3). The particle
weights wp are calculated using the n AUV states and cor-
responding sensor measurements (Algorithm 1, Lines 5–8).
The expected angle measurement (Algorithm 1, Line 5) can
be calculated as:

αp
exp = arccos

( �θ · �p
‖�θ‖‖�p‖

)
− π

2
, (5)

where

�θ = [cos(θ i
auv) sin(θ i

auv) 0], (6)

and

�p = [xi
auv yi

auv zi
auv] − [xp

tag y
p
tag z

p
tag]. (7)

The weighting function W implements a Gaussian
probability density function (Forney et al., 2012). If there
are valid measurements, the particles are re-sampled based
on their weights to create a new set of particles (Algorithm 1,
Lines 13-16).

In Algorithm 1, the particle set is resampled (Lines 12–
16) based on the value of particle weights as calculated in
Line 8. For some measurement zs , with expected measure-
ment sp

exp and standard deviation σs corresponding to parti-
cle p (where s ∈ {α, β, γ }), the weight function W (zs, s

p
exp, σs)

implements a Gaussian distribution function given
by

W (zs, s
p
exp, σs) = 1√

2πσs

e

−(spexp−zs )2

2σ2
s . (8)

For zα , zβ , and zγ , the standard deviations used are
determined experimentally and shown in Table I.

4.3. Motion Model

Two different Motion Model() functions can be used to
propagate the particles in the prediction step of (Algorithm
1, Line 3). One motion model is used when the AUV is esti-
mating the location of the shark in real time. This is referred
to as the stochastic motion model. During postprocessing
offline, a second motion model that incorporates measure-
ments from the OpenTag IMU can be used to refine the
shark state estimates. The two different motion models are
described in Sections 4.3.1 and 4.3.2.

4.3.1. Online Motion Model

For online state estimation, when the AUV is actively fol-
lowing a tagged fish, a stochastic motion model is used in
the prediction step of the particle filter to propagate parti-
cles. The hybrid Brownian and Levy Flight motion model

Table I. Motion model and weight function parameters used in Algorithm 1 and Algorithm 2.

Parameter
σv

(ms−1)
σvz

(ms−1)
k

(ms−1)
λ

(ms−1) ρ φ

σα

(red)
σγ

(m)
σβ

(m)

Value 1 0.8 0.5 1 0.66 0.05 π/18 0.75 2

Journal of Field Robotics DOI 10.1002/rob
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used is described in detail in Lin et al. (2014) and presented
here in Algorithm 2.

Algorithm 2 Hybrid Random Walk Motion Model

1: θ
p
tag ← UniformDistribution(0, 2π )

2: vz
tag ← NormalDistribution(0, σvz)

3: // ρ is a number between 0 and 1
4: if ρ ≥ UniformDistribution(0, 1) then
5: v

xy
tag ← ParetoDistribution(k, λ)

6: else
7: v

xy
tag ← Abs(NormalDistribution(0, σv))

8: end if
9: x

p
tag ← x

p
tag + |vxy

tag | cos(θp
tag)�t

10: y
p
tag ← y

p
tag + |vxy

tag | sin(θp
tag)�t

11: z
p
tag ← z

p
tag + vz

tag�t

The hybrid motion model is designed to represent the
“loitering” and “darting” motion behaviors of the tagged
fish. At each time step, the motion model chooses with prob-
ability ρ and 1 − ρ of being in the loitering and darting state
(Algorithm 2, Lines 4–8). To represent the loitering behavior
of the tagged fish, a Brownian random walk motion model,
which draws its speed at a single time step from a normal
distribution centered at 0, is used. To represent the darting
state of the tagged fish, a Levy Flight motion model, which
draws its speed from a tail-heavy distribution (Pareto dis-
tribution with scale and shape parameter of k and λ, respec-
tively) is used. Table I provides the parameter values used
for this model.

4.3.2. Offline Motion Model

After the AUV tracking experiments are complete, the
SmartTag package can be recovered. The IMU measure-
ments from the SmartTag can be used within a more accurate
motion model for offline state estimation. Specifically, the
measurements from the OpenTag IMU are used to calculate
an estimated heading and speed that can be used for parti-
cle propagation in the Motion Model of the prediction step.
To note, the IMU logger must be time synchronized with

the AUVs measurement logging and is done by recording
the UTC time that the IMU logger is turned on.

Magnetometer data from the IMU can be used to es-
timate the heading of the tagged individual. Because the
tag is attached rigidly to the dorsal fin, the heading of the
tag is used as an estimate of the heading of the shark. As
the OpenTag is attached perpendicular to the xy horizontal
plane, only the y and z axis of the magnetometer are used
(see Figure 5(b)).

Before the magnetometer readings can be used, the
magnetometer reading must be first corrected for hard
and soft iron distortion. To accomplish this correction, let
�mmax = [my

max mz
max] and �mmin = [my

max mz
max] be two vectors

containing the maximum and minimum yz magnetometer
readings, respectively. An offset �moffset = [my

offset mz
offset ] is

calculated using Eq. (9).

�moffset = �mmax + �mmin

2
(9)

The uncorrected yz magnetometer readings �mu =
[my

u mz
u] are corrected for hard iron distortion by subtracting

by �moffset .

�mhc = �mu − �moffset (10)

To correct for soft iron calibration, an ellipse centered
at (0, 0) with semi-diameters a and b, with the a axis rotated
by φ relative to the y axis, is fitted using least squares to the
readings corrected for hard iron distortion. In polar form,
the equation describing such an ellipse is given by

r(θ ) = ab
√

2√
(b2 − a2) cos(2θ − 2φ) + a2 + b2

. (11)

After fitting for a, b, and φ in Eq. (11), a corrected
yz magnetometer reading �mc = [my

c mz
c] is calculated from

the hard iron–corrected reading �mhc by Eq. (12). Here, R(φ)
represents a rotational matrix and � denotes element-wise
multiplication operation.

�mc = R(φ)((R(−φ) �mhc) � [1, a/b]) (12)

As the x axis of the OpenTag IMU is assumed paral-
lel to the yaw axis of the shark body, gyroscope readings

Figure 5. An image of the tag on a leopard shark fin (a). The coordinate axis used for the magnetometer readings (b).
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from the x axis are used as a measure of tail beat. A contin-
uous wavelet transform of x axis gyroscope data provides
tail beat frequency as a function of time, which can then be
used to determine swim speed. For the leopard shark, ex-
periments done in (Scharold, Lai, Lowell, & Graham, 1989)
demonstrated a linear relationship between tail beat fre-
quency and swim speed given by:

f = 9.42 + 82.65v, (13)

where f is the tail beat frequency in hertz and v is the
swim speed in body lengths per second. Eq. (13) can
be manipulated to determine a shark’s swim speed from
the calculated tail beat frequency and measured body
length.

Given an estimate of heading and speed of the shark
at each time step, the motion model used for propagation
by the offline state estimator is described by Algorithm 3.
Instead of drawing the speed and heading from a random
distribution, the speed and heading of each particle is set by
adding random noise to the estimated speed and heading
of the shark (Algorithm 3, Lines 1–2).

Algorithm 3 Propagation with Heading and Speed

1: θ
p
tag ← θest + NormalDistribution(0, σθ )

2: v
xy
tag ← v

xy
est + NormalDistribution(0, σv)

3: vz
tag ← NormalDistribution(0, σvz)

4: x
p
tag ← x

p
tag + |vxy

tag | cos(θp
tag)�t

5: y
p
tag ← y

p
tag + |vxy

tag | sin(θp
tag)�t

6: z
p
tag ← z

p
tag + vz

tag�t

5. MULTI-AUV CONTROL SYSTEM

Given an estimated fish tag position, as calculated by the
particle filter described above, the multi-AUV control sys-
tem will drive the AUVs to follow the tagged fish. At the
high level, the control system consists of three subsystems.
The first subsystem, the motion planner, invokes an A* path
planner to construct a collision-free path T to the goal lo-
cation Xdes . This goal location is calculated as the position
closest to the estimated tag position Xtag that lies within a
preset boundary map.

The second subsystem, the position tracking controller,
is used by the AUVs to fly toward Xdes by following the
path T constructed by the motion planner. Once an AUV
is within a distance d of Xdes , the third subsystem, called
the circle tracking controller, is used to by the AUV to cir-
cumnavigate Xdes . This enables the AUVs to obtain multiple
sensor vantage points without being so close as to alter fish
behavior. Algorithm 4 provides details of how switching be-
tween the two control subsystems occurs. In this algorithm,

the control signal vector is U , which contains the desired
propeller speed and fin angles sent to the actuators.

Algorithm 4 Control Subsystem Selection

1: (T ,Xdes ) ← MotionPlanner(XAUV ,Xtag)
2: dist ←

√
(xauv − xdes )2 + (yauv − ydes )2

3:
4: if dist > D then
5: U ← PositionTrackingControl(XAUV , T )
6: else
7: U ← CircleTrackingControl(XAUV ,Xdes )
8:
9: end if
10: return U

5.1. Motion Planner

The motion planner is used to both determine a desired po-
sition to track, as well as construct a collision-free path to the
desired position. The path should be minimal in length and
include desired depths that enable in situ collection of envi-
ronment measurements (e.g., temperature). This allows the
AUV to not just track the tagged fish but also characterize
the fish’s habitat.

The desired goal position of the AUV Xdes = [xdes ydes]
is selected based on the current estimated position of the fish
and the free navigable space of the environment, as dictated
by a previously constructed 2D occupancy grid map M . In
general, the desired goal position is calculated as the point in
the free space of M closest to the AUV that is lying on a circle
of radius d centered on the current fish position estimate (see
Figure 6(a)). If no such point lying within the free space of
M exists, then the desired goal position is calculated to be
the point closest to the fish position estimate within the free
space of M that lies on the line segment connecting Xtag to
XAUV (see Figure 6(b)).

Once a desired goal point Xdes has been determined,
a collision-free path to Xdes must be constructed. The field
of motion planning has generated a large number of algo-
rithms capable of constructing collision-free robot paths in
low-dimensional and high-dimensional spaces (Latombe,
1991; LaValle, 2006). In this case, M is a 2D discretized
grid map of relatively low dimensionality (e.g., 50 × 50).
Hence, an exhaustive search like the standard A* algo-
rithm Hart, Nilsson, & Raphael (1968) can be employed
on M to find the optimal 2D planar collision-free path to
Xdes . The x, y coordinates of this path are augmented with
desired depths (e.g., 1 m below surface) to create a 2D
collision-free path T for underwater environment data col-
lection. To prevent repeated unnecessary replanning due
to noise in the estimated position of the fish, Xdes , is up-
dated and a new A* search is done only when the estimated
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Figure 6. Finding new destinations: Clear from obstacle (a), Blocked by obstacles (b).

position of the fish has moved by a distance of d from the
previous Xdes .

5.2. Position Tracking Controller

The position tracking controller is used when the estimated
position of the shark is greater than some threshold distance
d from the AUV’s position. It directs the AUV to follow the
path T using the low-level closed-loop controller described
below in Figure 7.

The position tracking controller combines a yaw (ψ)
controller and hybrid pitch (θ ) and roll (φ) controller as
shown in Figure 7. The yaw controller utilizes a standard
proportional control law to adjust the rudder fin angle based
on the heading error. In Eq. (14), ψd and ψ are the desired
and measured yaw angles, respectively. The angle ψd is
set to be in the direction of the next point to track on the
trajectory T . Kψ is the proportional control gain. The desired
rudder fin angle, δrudder , is the control signal sent to the
AUV’s rudder fins servo motors.

δrudder = Kψ (ψd − ψ). (14)

The hybrid depth and roll controller is a cascaded
proportional-integral-derivative (PID) controller system.

The first PID controller accepts a desired depth value, zd ,
and converts it to a desired pitch angle, θd .

θd = KP,z(zd − z) + KI,z

∫
(zd − z)dt + KD,z

d

dt
(zd − z). (15)

The second PID controller accepts the desired pitch
angle, θd , and outputs a desired fin angle, δpitch. In addition
to the depth controller, a roll controller is added to further
adjust the fin angle to control the roll of the robot during a
dive using a proportional controller. The output of the roll
controller is denoted as δroll . The assignments of port and
starboard fin angles can be described in Eqs. (16), (17), and
(18).

δpitch = KP,θ (θd − θ ) + KI,θ

∫
(θd − θ )dt + KD,θ

d

dt
(θd − θ )

(16)

δroll = Kφ(φd − φ) (17)

δport = δstarboard = δpitch + δroll . (18)

The port and starboard fin angles are then set as the
sum of the pitch and roll control pitch fin control angles.
The gains for the depth, pitch, and roll controller, KP,z, KI,z,
KD,z, KP,θ , KI,θ , KD,θ , Kφ , were experimentally determined
after the AUV was properly ballasted in seawater.
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Lin et al.: A Multi-AUV System for Autonomous Tracking of Marine Life • 11

Figure 7. Position tracking controller diagram.

5.3. Circle Tracking Controller

Once the AUV is within the threshold distance d of the
estimated shark position, the autonomous control system
invokes a circle tracking controller. In this state, the AUV
uses a modified version of the target circumnavigational
controller previously developed by the authors (Tang et al.,
2012). The goal of this controller is to drive the AUVs in
a circle of radius Rdes and space the AUVs apart on this
circle with phase difference �γdes (see Figure 8). This can be
achieved by minimizing the following control errors for the
ith AUV:

ρi,t = Rdes −
√

(xi
auv − xi

des)2 + (yi
auv − yi

des)2 (19)

βi,t =
[
atan2(yi

auv − yi
des , x

i
auv − xi

des) − π

2

]
− ψi,t (20)

ei,t = �γdes − [γi+1,t − γi,t ]. (21)

In the first of the above error equations, ρi,t is the dif-
ference between the circle radius Rdes and the distance to
the goal target located at [xdesydes] at time step t . The second
error equation defines βi,t as the difference between the de-
sired yaw angle, that is, the angle of the line tangent to the
circle for the AUV’s current phase γ , and the current yaw
angle ψi,t . The last error equation defines ei,t as the differ-
ence between the desired phase difference between AUVs
and the current estimated phase difference of two AUVs
in the multi-AUV system, specifically AUVi and AUVi+1,
which follows directly behind AUVi on the circle.

To minimize these errors, the following control vari-
ables ωi,t and vi,t for the ith AUV can be set with the fol-
lowing proposed control laws. In this case, the desired AUV
angular velocity ωi,t and linear velocity vi,t are assumed to
be trackable (as verified in Tang et al., 2012).

ωi,t = −vi,t cos (βi,t )
Rdes − ρi,t

+ Kβ

�t
βi,t + Kρ

�t
ρi,t (22)

Figure 8. The desired radius from the target is Rdes . The an-
gle error between desired heading to the current heading is β.
The distance error between Rdes and the current radius from
the target is ρ, and the error between the desired phase, �γ , to
the current phase is e.

vi,t = − Rdes − ρi,t

Rdes cos (βi,t )
(Vnom + RdesKγ

�t
(ei+1,t − ei,t )) (23)

In the above control laws, Kβ , Kρ , and Kγ are the pro-
portional control gains. According to Tang et al. (2012), Kβ

and Kρ must satisfy the following conditions for proven
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Figure 9. Two AUV circling controller errors. Figure 9(a) shows the distance error, and Figure 9(b) shows the phase difference.

stability, which are dependent on the control loop time step
�t :

Kρ > 0 (24)

0 ≤ Kβ ≤ 4 (25)

2(Kβ − 2)
Kρ�t

≤ vi,t ≤ K2
β

4Kρ�t
. (26)

The range of Kγ is dependent on the number of AUVs
in the system. For example, for 3 AUVs, 0 < Kγ < 2/3. More
details about Kγ can be found in Tang et al. (2012).

6. VALIDATION EXPERIMENTS

A series of verification experiments were performed at Big
Fisherman’s Cove, Catalina Island, California. The cove is
adjacent to the USC Wrigley Institute of Environmental
Studies. Results validating the multi-AUV (Autonomous
Underwater Vehicle) circle tracking controller are first pre-
sented below. To validate the performance of the multi-
AUV state estimation, boat-tracking experiments and shark-
tracking experiments were conducted.

For boat-tracking experiments, an acoustic tag was
hung from a moving boat with a 2-m line. The boat was
driven around the cove at various speeds up to 2.0ms−1,
and the true state of the boat was recorded every 2 s by a
GPS receiver fixed to the boat. The GPS receiver used the
Wide Area Augmentation System (WAAS) to provide an ac-

curacy of 1 to 3 m. Examples of the trajectories taken by the
boat can be seen in Figure 10. Although the boat followed
such trajectories, AUV(s) were deployed to simultaneously
estimate the boat state (i.e., 3D position and yaw orientation)
and autonomously follow the boat. During shark-tracking
experiments, a leopard shark was tagged and the AUVs
were deployed to simultaneously estimate the shark state
and autonomously follow the shark.

6.1. Control System Experiments

To demonstrate the effectiveness of the multi-AUV circum-
navigation system, results of the two AUVs circling a fixed
point are shown in Figure 9. The difference between the
desired distance and actual distance (distance error) to the
fixed points for both AUVs is shown in Figure 9(a). It can
be seen that the distance error decreases quickly to an or-
der of 1.0 to 2.0 m. The phase between the two AUVs is
shown in Figure 9(b). The desired phase difference between
the two AUVs is set to π/2. A significant amount of noise is
expected given that waves and wind were present during
all experiments.

6.2. Boat-Tracking Trials

Two sets of boat-tracking trials were conducted, one set
using just the standard Lotek Tag and one set using the
SmartTag that included both the Lotek Tag and an IMU.
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Table II. State estimation position errors of January 2014 and July 2014 boat trials.

January 2014 Boat Trials July 2014 Boat Trials

Trial 1 Trial 2 Trial 3 Trial 4 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Mean Err. (m) 8.0 6.8 13.7 8.8 5.4 8.6 10.4 9.6 7.6
Median Err. (m) 5.0 5.3 8.4 6.5 5.1 7.9 9.7 9.2 6.9
SD Err. (m) 10.5 4.8 13.2 8.4 2.5 5.2 5.4 5.9 4.6

6.2.1. January 2014 Trials

The first set of experiments were conducted during the
month of January 2014. Two AUVs were deployed and
commanded to circle a fixed point in the cove. The acoustic
measurements obtained during this set of experiments were
postprocessed offline using Algorithms 1 and 2 to estimate
the boat’s position as a function of time.

This set of boat-tracking experiments consisted of four
separate trials, whose length varied from 20 to 45 min. The
results of Trials 1, 2, and 3 are presented in Figure 10(a),
10(b), and 10(c), respectively. Note that these are the same
results previously presented in Lin et al. (2014) and are pre-
sented here for the sake of completeness. The error in posi-
tion is shown in Table II, where the position error at time t

is defined by:

ε
pos
t = ‖�xest

t − �xgps
t ‖. (27)

In Eq. (27), �xest
t is the estimated xy position of the tag

and �xgps
t is the true xy position of the tag as determined

from linear interpolating over time the recorded boat GPS
positions.

6.2.2. July 2014 Trials

The second set of boat-tracking experiments, that is, those
that incorporated IMU data for state estimation, was con-
ducted in July 2014. A single AUV used Algorithms 1 and
2 to estimate the position of the boat in real time. This al-
lowed the AUV to actively follow the target using the po-
sition tracking controller described in Section 5.2. The mea-
surements obtained from the AUV were then postprocessed
offline with measurements from a Loggerhead IMU fixed to
the boat, using the same state estimator but with a modi-
fied version of the motion model described in Algorithm 3.

Figure 10. Results of Boat-Tracking Trials without IMU (a), (b), and (c); the estimated tag locations are shown by the dots ranging
from yellow to red, which corresponds to estimated tag depth (m) shown in the bar legend. Results of Boat-Tracking Trials with IMU
(d), (e), and (f).
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Table III. Average time between replanning for the July 2014
boat trials.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Mean Time between
Replans (s)

16.2 19.6 14.4 14.6 14.2

Specifically, because no tail beat frequency was available to
estimate speed, the tag speed v

xy
tag (Algorithm 3, Line 2) was

drawn from a normal distribution instead.
This second set of boat tracking experiments consisted

of five trials. The length of the trials varied from 10 to
36 min. The results of Trials 1, 4, and 5 are shown in
Figure 10(d), 10(e), and 10(f), respectively. The errors in po-
sition as calculated by Eq. (27) are shown in Table II. The
average time between replanning (which happens when
the tracking origin of the AUV has changed) is shown in
Table III.

6.3. July 2013 Shark-Tracking Trials

On July 15, 2013, a single leopard shark was tagged and
tracked during the mornings and afternoons of July 15 to
18. Algorithm 1 was used in combination with a Brownian
motion model to estimate the position of the individual in
real time and actively follow it. The measurements obtained
were then postprocessed offline with the same state estima-
tor but with the motion model described in Algorithm 3.
The results of these shark trials are shown in Figure 11(c),
which aggregates the data from six individual tracks. In to-
tal, 12.5 h of tracking data were collected. These trials used
only the Lotek acoustic tag system that did not include an
IMU. Within these tracks, the amount of time in which the
AUVs were circling the estimated shark position versus the
amount of time in which the AUVs were circling a point on
the boundary is roughly equal.

It was observed that shark locations were not dis-
tributed uniformly across the cove; instead, locations were
aggregated. With the addition of the 3D location data, it
is observed that the shark’s depth is associated with the
sea floor, as evidenced by deeper depths in deeper areas of
the cove. Both of these observations agree with the known
behavior of leopard sharks (Hight & Lowe, 2007).

6.4. July 2014 Shark-Tracking Trials

Three different leopard sharks were tagged on different
days in July 2014 using the tag package that included
the Loggerhead IMU. Unlike previous shark-tracking tri-
als, all three individuals stayed within a small area of the
cove shown in Figure 11(a) and 11(b). Hence, only a single
AUV was deployed to circle a fixed point in this area. The
measurements obtained from the AUV were then post-
processed offline with measurements from the Loggerhead
IMU fixed to the shark using Algorithms 1 and 3.

The results of a 50-min shark track conducted in July
24, 2014, are shown in Figure 11(a) and 11(b). In addition,
two other tracks of two different individuals were con-
ducted with the IMU, on July 18, 2014, and July 7, 2014,
respectively, for a combined duration of 4.3 h. Compared to
the previous summer, the tagged individual stayed within
a small cove during duration of the track. Because of the
limited maneuvering space for the AUV within the small
cove, the AUV was set to circle a fixed point as opposed to
actively following the tagged individual.

The results of the July 2014 tracks demonstrate one
of the main advantages of the AUV tracking system over
traditional methods such as active tracking with a boat.
The cove in which the sharks stayed in were too small for
boats to maneuver in. Therefore, active tracking with a boat
would not be able to measure any movement of the shark
other than detecting that it is in the cove. With the addition
of IMU data, the measurements from the AUV tracking

Figure 11. Results of shark-tracking trials. Partial result of the July 24, 2014, tracks done with the SmartTag that incorporates IMU
data (a) and (b). The shark location of the July 2013 tracks (c); the colors correspond to estimated depth of the tagged individual in
meters.
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Figure 12. Comparison of errors due with and without incorporation of IMU data, using data from trials in section 6.2.2. Position
and heading errors are shown in Figure 12(a) and Figure 12(b) respectively.

system enabled observations of fine scale motion that were
previously unattainable.

7. DISCUSSION OF RESULTS

7.1. Effect of IMU Measurement on State
Estimation Accuracy

The incorporation of IMU data results in tracks with higher
accuracy and precision, and can be quantified by analyz-
ing the effect of IMU data on position error and head-
ing error. This was accomplished by postprocessing the
measurements from Section 6.2.2 with two different state
estimators, one that incorporates the IMU data and one that
does not. The difference in state estimation errors are then
compared.

7.1.1. Comparison of Position Error

The effect of IMU data on position error is presented in
Figure 12(a). The incorporation of IMU data leads to sig-
nificantly lower position errors, for example, mean position
errors decreased by 25% to 75%. Of particular significance is
the decrease in the third quartile, maximum, and interquar-
tile range of position errors, implying that the incorporation
of IMU data produces tracks with less variation in error. It
can also be seen from Table II that even though the Boat-
Tracking Trials with IMU used only measurements from one

AUV, it was able to achieve a position error similar to that of
Boat-Tracking Trials without IMU, which used measurements
from two AUVs.

7.1.2. Comparison of Heading Error

The effect of IMU data on heading error is presented in
Figure 12(b). Here, heading error at time t is given by

εθ
t = arccos

( �θest
t · �θgps

t

‖�θest
t ‖‖�θgps

t ‖

)
, (28)

where �θest
t is the estimated xy heading vector of the tag and

�θgps
t = �xgps

t − �xgps

t−1 is the true heading of the tag. Without IMU
data, the mean and median heading errors were on the order
of 80◦ with an interquartile range on the order of 90◦. This is
marginally better than estimating the heading by drawing
from a random uniform distribution from 0◦ to 360◦, which
would have resulted in a mean heading error of 90◦ if the
true heading was uniformly distributed in the same range.
By incorporating IMU data, the mean and median heading
errors were on the order of 30◦ with an interquartile range
on the order of 25◦. The decrease in heading error allows for
the shape of the estimated track to resemble that of the true
path even when position estimates are not accurate. This is
illustrated visually in Figure 10.
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Figure 13. Comparison of position error as a function of distance and frequency of sensor measurements due with and without
incorporation of IMU data are presented in Figure 13(a) and Figure 13(b) respectively.

7.1.3. Position Error as a Function of Distance

An important metric of state estimation is the effect of dis-
tance to tag on the position error. Ideally, the AUVs will
stay relatively close to the tagged target, but the physical
constraint of the environment (i.e., shallow areas and kelp
forests) could prevent the AUVs from being at the desired
distance to target. Therefore, it is important the position er-
ror does not increase significantly as a function of distance
to tag. The effect of distance to tag on position error is shown
in Figure 13(a). It can be seen that without IMU measure-
ments distance has a significant impact on position error.
A linear fit of error as a function of distance gives a slope
coefficient of 0.01 and 0.52 for data points with and with-
out IMU measurements, respectively. Hence, using the IMU
data reduces the sensitivity of position error to distance by
an order of 50.

7.1.4. Position Error as a Function of Measurement
Frequency

Another metric for the state estimation is the effect of the
frequency of measurements detected by the hydrophones
on position error. Ideally, the AUVs will be able to receive
measurements at the tag transmission rate of 0.5 Hz. How-
ever, variation in the acoustic environment often cause de-
creases in the frequency of the measurements received.

Therefore, it is important that position error does not in-
crease significantly as the frequency of measurements de-
crease. The effect of measurement frequency on position er-
ror is shown in Figure 13(b), in which the measurement fre-
quency was estimated by using a moving average window
of 20 data points. It can be seen that, without IMU measure-
ments, a decrease in received measurement frequency has a
more significant impact on position error compared to that
with IMU measurements. A linear fit of error as a function
of measurement frequency gives a slope coefficient of −3.64
and −73.75 for data points with and without IMU measure-
ments, respectively. Hence, using the IMU data reduces the
sensitivity of position error to acoustic signal reception rate
by an order of 25.

7.2. Comparison of Tracking Accuracy of One
versus Two AUVs

In a tracking situation with multiple AUVs, the additional
vantage points to the tagged target can improve tracking
accuracy. This was quantified by postprocessing the mea-
surements from Section 6.2.1 with only measurements from
one AUV and comparing the result with the same tracks
that used measurements from both AUVs. The results are
presented in Figure 14. The use of measurements from both
AUVs leads to a reduction in mean and median errors by
a factor of 2. Furthermore, Figure 14 shows that there is a
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Figure 14. Comparison of position error distribution of boat trials using one versus two AUV(s). The two box whisker plots for
single AUV tracks in each trial corresponds to the distribution of errors using measurements from each AUV.

similar reduction in the interquartile range when both AUVs
are used.

8. CONCLUSION

The multi-AUV system presented in this paper has demon-
strated the ability for a mobile underwater robot sensor
system to autonomously track and follow tagged fish with
meter-level positioning accuracy. When using the newly de-
veloped SmartTag attached to the dorsal fin of a shark, the
shark’s position and heading accuracy are greatly improved
as compared to tracking with traditional acoustic tags. The
addition of path planning into a provably stable distributed
AUV circumnavigation control system allows for collision
avoidance with stationary obstacles and a reduction in the
interference with fish behavior. Many hours of deployments
in California coastal areas validate these claims in system
performance.

Future work for this project includes increasing the
tracking of multiple tagged individuals, or even popula-
tions of fish. New algorithms for multi-AUV/multi-target
tracking and cooperative target state estimation. As well,
the system will be tested with a variety of different fish
species, including sharks, stingrays, bass, and wrasses that
exhibit different motion behavior patterns.
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