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Abstract---Tracking fish has primarily been ac-

complished using acoustic telemetry. Typically, a

fish is tagged, released, and manually tracked using

hydrophones that detect acoustic tag transmissions.

More recently, such hydrophone receiver systems

have been mounted on Autonomous Underwater

Vehicles (AUVs) to increase system mobility. This

paper presents a new method for determining the

distance from a tag to an AUV equipped with such

a hydrophone system. By first estimating the trans-

mission time of a tag signal, the time-of-flight can

be used to calculate the distance to a tag. Further-

more, the calculated distance can be incorporated

into an online state estimator to more accurately

localize a tagged target. Results indicate significant

improvement in an AUV’s ability to localize a target

when the distance to tag calculations are used in

combination with angle-to-tag measurements.

I. Introduction

Motion behavior study of sharks and other fish

is an important tool for monitoring and main-

taining fish populations and their habitat. Typi-

cal methods for tracking fish and sharks include

tagging individuals with acoustic transmitters, and

then using hydrophone receiver systems that detect

and measure the signals transmitted. Often, the

hydrophone receivers are placed at static locations

around an environment of interest [1]. Alterna-

tively, active tracking can be done manually by

mounting a directional hydrophone on a boat and

following the tagged individual for up to 96 hours

[2].

To enable active tracking without the need for

human operators, the authors have demonstrated

that Autonomous Underwater Vehicles (AUVs),

equipped with a stereo-hydrophone system that

provides angle-to-tag measurements, are able to

autonomously track and follow tagged leopard

sharks [3]. Key developments by Forney et al.

included a particle filter shark state estimator

that could accommodate the low-resolution, low-

sampling frequency and the sign ambiguity as-

sociated with angle measurements of the stereo-

hydrophone system [4].

The work presented in this paper builds on pre-

vious work by incorporating a new method for ob-

taining distance-to-tag measurements using time-

of-flight calculations. When fused with angle-to-

tag measurements within the state estimator, tag

localization accuracy is improved.

What follows below is a brief review of related

work in Section II, followed by a description

of the problem being addressed in Section III.

In Section IV, the proposed approach to shark

state estimation that incorporates distance-to-tag

measurements is presented. Section V presents

experiments and results that validate the use of

the new measurements, followed by conclusions

in Section VI.

II. Background

Tracking stationary and moving targets with

robotic systems is a well-studied field of research

( [5]--[10]). Within the context of using underwater

robots to track individuals, both optical based

methods ( [11]--[13]), and acoustic based meth-

ods ( [14], [15]) have been used. In Rife et al.,

autonomous tracking of jelly fish with an ROV



was conducted using basic image processing tech-

niques [11]. Work presented in Zhou et al. demon-

strated the use of SIFT features in tracking indi-

vidual fish between video frames captured from

an ROV [12]. Image processing techniques were

also shown to be useful in tracking divers with

a robot in Georgiades et al. [13]. Unfortunately,

most optical methods employed in the underwater

environment suffer from limited visibility due to

poor lighting conditions and the presence of debris.

While acoustic methods of tracking marine in-

dividuals have been used for decades, hydrophone

receivers have only recently been mounted on

underwater vehicles. For example, work done

by Grothues et al. has demonstrated the ability

to track tagged sturgeon using a REMUS AUV

equipped with a Lotek hydrophone system ( [10],

[14], [16]). Unlike the work presented by the au-

thors, work by Grothues et al. did not use distance

calculations nor in-situ measurements to actively

steer the AUV ( [10], [14], [16]).

The method of incorporating time-of-flight cal-

culations to aid in localization in underwater

robotics is not novel. Systems of static receiver

arrays on the ocean floor have used the different

time of detection of neighboring hydrophones to

triangulate the position of a tagged target [1]. In

Kussat et al., the two way travel times between

an AUV and fixed transponders on ocean floor,

aided by GPS measurements, were used to localize

the AUV with high precision [17]. The method

described in this paper, however, uses only the

predicted one way travel time from transmitter to

receiver to calculate distance.

Another method to obtain distance-to-tag mea-

surements is by determining the relationship be-

tween received signal strength and distance a pri-

ori, before using this relationship in-situ. While

there exists a negative correlation between distance

and signal strength, the relationship is non-linear

and highly dependent on environmental variables

[3]. Hence, extracting distance measurements us-

ing this relationship often leads to high localization

errors.

One problem that is encountered during state

estimation is the low and unpredictable frequency

of good measurements from the hydrophones. To

address similar issues, Monte Carlo Localization

(MCL) methods have been used in the past ( [4],

[18]--[22]). Unfortunately, lack of good measure-

ments can lead to particle deprivation. Works that

include improved variants of MCL to handle par-

ticle deprivation include Hwang et al. and Thrun

et al. ( [23], [24]). In Hwang et al., a genetic filter

that uses residual mutation to ”push” lost particles

towards the target is presented [23]. Thrun et

al. presents augmented Monte Carlo Localization

(aMCL), which adds random particles based on

the long- and short-term likelihoods of sensor

measurements to prevent clustering of particles in

wrong locations [24].

The work presented below improves on exist-

ing AUV based acoustic tag tracking by incor-

porating time-of-flight distance calculations into a

state estimator to improve target tracking accuracy.

III. Problem Overview

The goal of this work is to estimate the 2D

position of a tagged shark using an AUV equipped

with a stereo-hydrophone system. Details of both

the hardware system and state estimation problem

are described below.

A. Hardware System

The system consists of two OceanServer Iver2

AUVs. The Iver2 AUV is a torpedo-shaped robot

(see Fig. 1), that has a rear propeller to provide

locomotion, and four fins to control the vehicle’s

pitch and yaw. The sensor payload includes a

3-DOF compass, wireless antenna, GPS receiver,

and Doppler Velocity Logger. The AUVs com-

municate with each other, as well as with a top-

side modem, via a Woods Hole Oceanographic

Institution Micro-Modem and externally mounted

transducers. Each AUV is outfitted with a Lotek

MAP600RT receiver and an associated stereo-

hydrophone set, designed to listen for acoustic

signals at a frequency of 76 kHz. These allow

the vehicles to receive transmissions from Lotek

MM-M-16-50-PM acoustic tags (see Fig. 2), which

transmit at 76.8 kHz. The Lotek MapHost software

associated with the receiver records the tag ID,

time of detection, signal strength, pressure, and

presence of motion.



Fig. 1: Hydrophones mounted on a proto-

type PVC frame attached to an OceanServer

Iver2, suspended 0.4 meters down with 2.4

meters of separation.

The two hydrophones of the stereo-hydrophone

system are mounted 2.4 meters apart and sus-

pended 0.4 meters beneath each AUV. The sepa-

ration of the hydrophones, shown in Fig. 1, allows

the angle between the AUV and the acoustic tag

to be calculated.

Fig. 2: Lotek MM-M-16-50-PM acoustic

tag.

Every two seconds, the tag sends a burst of

three transmissions, called codes. Each code is

identified by a numerical ID. Depending on the

tag, the three codes are chosen from either five or

six possible different codes, each with different

IDs. The Lotek receiver software is capable of

recording the time of reception of each code with

a resolution of 10−5 seconds.

B. State Estimation Problem

The state of the AUV and sensor measure-

ments at time t are denoted by Xauv,t and Zt,

respectively. The hydrophones are mounted on the

nose and tail ends of the AUV; the difference in

time of arrival of a tag transmission is used by

the Lotek receiver software to calculate the angle

to the shark, denoted by zα. Using the time of

arrival measurement ztoa, the distance-to-tag can

be obtained. The state estimator uses

Xauv,t = [xauv yauv θauv]t (1)

and

Zt = [ztoa zα]t (2)

to calculate the estimated shark state

Xshark,t = [xshark yshark θshark vshark]t. (3)

Fig. 3: An overview of the shark state esti-

mation problem.

There are several challenges associated with

state estimation given the sensor measurements.

As illustrated in Fig. 3, a shark located at Xshark

will generate the same angle measurement as a

shark located at X ′
shark. In addition, the stereo-

hydrophone system generates an angle-to-tag mea-

surement with a low resolution of approximately

10 degrees. Furthermore, the rate at which an

angle measurement is obtained is highly dependent

on the acoustic environment; time intervals of up

to 30 seconds were observed in which no angle

measurements were obtained. Even with distance

measurements, the shark state Xshark, t cannot

be determined solely using geometry. To address

this issue, MCL methods are used by the state

estimator.

IV. State Estimation Methodology

A. Overview

The steps required for online state estimation

using time-of-flight distance measurements are de-

scribed in the following section. First, before the



tag and AUV are deployed, an offline calibration

is required that enables determination of two con-

stants associated with any tag code: the period of

transmission Tc and the known initial transmission

time t0.

After offline calibration, the AUV and tag can

be deployed for active tracking and online state

estimation. Using the two constants Tc and t0,
along with the real-time signal time of arrival

measurement ztoa, the time-of-flight for each tag

transmission can be predicted and used to calculate

the distance d to the tag. This distance, as well

as the angle-to-tag measurement zα, is used to

estimate the shark state Xshark in real time.

B. Offline Calibration

1) Transmission Period Calibration: Before

the AUV and tag can be deployed, the period of the

tag transmission, Tc, is determined by calculating

the mean difference in the consecutive time-of-

arrival measurements ztoa when the tag is located

adjacent to the hydrophone. The acoustic tags

transmit each code with a precise period, allowing

an accurate prediction of the time of transmission

for each code. Codes for different tags will trans-

mit with either two second or four second periods.

Table I provides example transmission period data

that was obtained by taping an acoustic tag to

the hydrophones in air, and recording the times of

detection of the tag codes for roughly 100 minutes.

Time Difference [s] Frequency

0.04875 3

0.04896 1

3.95104 3

3.99958 55

3.99959 30

3.99979 1172

3.99980 235

3.99999 1

4.00000 43

7.95063 1

7.99937 1

7.99958 1

TABLE I: The frequencies of time differ-

ences between consecutive transmissions of

the tag code 117 from Tag 55436 during a

time set of 105 minutes.

2) Outlier Removal: As shown in Table I,

there are several outlier time differences, due to

problems such as missed signal detections. Hence,

before the average transmission period Tc is cal-

culated, the time differences between consecutive

transmissions of a code are considered to be out-

liers when |ztoa,t − ztoa,t−1 − 4.00| > τ . In this

work, τ = 0.01. For codes that transmit at roughly

0.5 Hz, transmissions are classified as outliers

when |ztoa,t − ztoa,t−1 − 2.00| > τ .

After removing the defined outliers, the Tc

is calculated by averaging the time differences.

Time period values of the tags used are shown

in Table II.

Tag ID Tc [s] σ Error [s]

55436 3.99979 0.00006
55488 1.99988 0.00010

TABLE II: Overview of transmission peri-

ods of code 117 for the two tags used. Code

117 was chosen because of its transmission

frequency of 0.5 Hz for Tag 55488.

3) Initial Transmission Time Calibration: To

determine a transmission time t0 corresponding to
the first tag signal broadcasted, the tag is placed

adjacent to the hydrophones, and it is assumed that

the first measured time of arrival is equal to the

first transmission time, i.e. t0 is set to be ztoa,t=0.

While the code transmission period Tc remains

consistent even after the tag is power cycled, t0
must be recalibrated each time the tag is turned

back on. Power cycling the AUV also causes a

time shift in the Lotek receiver’s internal clock

thereby requiring t0 to be recalibrated.

If recalibration of t0 is required, and the tag

can be located at a known measured distance dm,
the initial transmission time can be corrected using

Eq. 4.

t0,corrected = t0,uncorrected +
d− dm

v
(4)

The term d in Eq. 4 is the uncorrected distance of

the tag calculated at the same time step that dm
was measured.

If the tag is accessible and can be held directly

next to the AUV, then the term dm = 0. If



the tag cannot be measured directly, dm can be

approximated by the Euclidean distance between

the estimated coordinates of the tagged target and

the GPS coordinates of the AUV.

C. Online State Estimation

Once calibration is completed, real-time esti-

mation is possible. At each time step of the AUV

controller, the distance d to the tag is calculated

first. The distance d and the angle-to-tag calculated
by the Lotek receiver software are then used by the

state estimator to localize the tag.

1) Calculating Distance: Given t0, ztoa, and
Tc, the distance of the tag to the hydrophone can

be calculated as follows. The time ttransmit is

estimated by first determining the integer number

of signal transmissions k for a code c that have

occurred since t0. The integer k is then calculated

by Eq. 5.

k = Round

[
ztoa − t0

Tc

]
(5)

Thus, the estimated transmit time of the signal can

be determined using Eq. 6.

ttransmit = t0 + kTc (6)

The time-of-flight of the signal is (ztoa−ttransmit).
Therefore, the distance d of the tag to the hy-

drophone is given by Eq. 7.

d = (ztoa − ttransmit)v (7)

It is important to note that the above calcu-

lations assume that there is no aliasing and that

ztoa− ttransmit < Tc/2. For Eqs. 5- 7 to be valid,
the maximum distance a tag can be located from

the AUV is vTc/2.

In the context of active tracking, the maximum

threshold distance of vTc/2 ≈ 1500m assuming

Tc ≈ 2 s is a feasible limitation. The AUV will ide-

ally be following the tagged individual at a close

distance. Depending on the acoustic environment,

the maximum threshold distance likely will exceed

the hydrophone’s detection range.

Algorithm 1 Rejection of potential outliers in

time-of-flight distance.

1: global dprevious

2: dcurrent ← time-of-flight distance

3: ∆d← |dprevious − dcurrent|
4: dprevious ← dcurrent

5: if ∆d > ∆dmax then

6: return failed measurement

7: else

8: return dcurrent
9: end if

2) Outlier Rejection: Similar to the offline cal-

ibration step, time difference outliers may occur

during online distance calculations. To accommo-

date such outliers, Alg. 1 presents a simple online

method for discarding potential outliers.

In the implementation that follows, a conser-

vative value of ∆dmax = 50m is chosen. Given

most tagged individuals will not be traveling at ve-

locities greater than 4ms−1, their greatest distance

travelled during a single transmission period of 4m
would at worst result in 16m distance travelled.

It is highly unlikely that a change in distance

between the tag and the AUV greater than 50m
would occur during the time spanned between two

measurements.

3) Augmented MCL: The online state estimator

uses aMCL to estimate the position of the tagged

target. The belief of the tagged target’s location

at time t is represented by a set of particles Pt,

where the ith particle pi ∈ Pt is defined by its

shark state Xshark,t as in Eq. 1 as well as by a

weight wi that indicates the likelihood that pi is
the true state. Initially, particle states are assigned

a random state within a bounded rectangular area

centered on the AUV state.

The aMCL algorithm is called at each time

step of the AUV controller, and carries out two

main steps. The first step, often called prediction,

randomly propagates all particle states according

to stochastic motion model that simulates shark

motion [25].

The second step, often called correction, is

only called when a valid tag transmission is re-



ceived by the AUV. In this case the weight wi

for each particle pi ∈ Pt is calculated according

to the sensor model in Eq. 8. Each particle has

a minimum weight wmin = 10−7. This model

assigns higher weights when both the actual angle

zα measurements and calculated distance d match

well with the particle’s expected angle αexp and

distance dexp. These expected values are calculated
based on the geometry of the AUV state and

particle’s shark state.

wi = wmin +
1√
2πσα

e
−(αexp−zα)2

2σ2
α

∗ 1√
2πσd

e
−(dexp−d)2

2σ2
d

(8)

After each particle is assigned a weight, the

long- and short-term likelihoods of the sensor

measurements, denoted by wslow and wfast, are

calculated. From wslow and wfast, the probability

p of adding random particles is calculated. The

reader should consult Thrun et al. for the full

details on how the probability p is calculated [24].
The correction steps shown in Alg. 2 then create

a new set of particles Pt+1.

Algorithm 2 aMCL Correction Step

1: for j = 1 to |Pt| do
2: if p > Random(0,1) then

3: add a random particle to Pt+1

4: else

5: choose pi ∈ Pt with probability ∝ wi

6: add pi to Pt+1

7: end if

8: end for

9: if p < 0.5 then

10: P ← Pt+1

11: Pt+1 ← {}
12: re-calculate wi for all pi ∈ P

13: for j = 1 to |P | do
14: choose pi ∈ P with probability ∝ wi

15: add pi to Pt+1

16: end for

17: end if

The addition of random particles in line 3

of Alg. 2 is the key step in preventing particle

deprivation. The lines 9 to 16 in Alg. 2 are a

modification to augmented MCL added by the

authors. The particle weights are recalculated and

a second re-sampling based on particle weights is

done if p < 0.5. In simulation, the absence of

lines 9 to 16 resulted in repeated cases of failure

to recover from particle deprivation.

After both the prediction and correction steps

are complete, the estimated shark state at time t+1
is calculated as the state averaged over all particles

in Pt+1.

V. Experimental Results

A. Overview

Field testing was conducted at Big Fisherman

Cove, at the Philip K. Wrigley Marine Science

Center on Catalina Island. First, results compar-

ing calculated time-of-flight distance and actual

distance are presented. Next, the accumulation of

random errors in calculated distance is examined.

Third, results from active tracking of a tagged boat

are presented. Finally, the effect of incorporating

both distance and angle measurements in state

estimation is examined.

B. Time of Flight Distance

Two sets of experiments benchmarking the ac-

curacy of time-of-flight distance were conducted

using Tag 55488. Since the tag was power cycled

after the initial calibration of Tc and t0, the initial
time of transmission t0 was recalibrated using

Eq. 4. The first experiment was conducted on July

13, 2013 from 10:25 to 14:18. The tag was hung

from the dock side and the absolute position of the

tag was obtained by holding the AUV adjacent to

the tag and recording its GPS measurements. The

AUV was then tied to an anchored buoy approx-

imately 85m away from the tag. Approximately

every 80min, the AUV was untied and manually

driven in a single loop between the dock and buoy

before being retied to the buoy. Using the logged

time-of-arrival of transmitted tag codes, the time-

of-flight distances were calculated offline.

The second experiment was conducted on July

14, 2013 from 22:44 to 23:23, and included active

tracking of tagged boat. Time-of-flight distance



Actual

Calculated

0 4000 8000 12 000
0

40

80

120

Time @sD

D
is

ta
n
c
e

@m
D

Fig. 4: Comparison of calculated distance

against actual distance of the AUV from the

tag.
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Fig. 5: Comparison of calculated distance

against actual distance of the AUV from the

tag during active tracking of a tagged boat.

was calculated online. Comparisons of the time-

of-flight distance to actual distance are shown in

Fig. 4 and Fig. 5, and their errors are summarized

in Table III. Over these short time intervals, only

several hours after calibration of t0, the distance-
to-tag errors remain on the order of only a few

meters.

Experiment Mean Error [m] σ Error [m]

Tied to buoy 1.93 2.34
Active tracking 0.62 2.63

TABLE III: Errors in calculated time-of-

flight distance of AUV from tag. Error is

defined as the actual distance subtracted by

calculated distance.

C. Accumulation of Random Error

Since the distance calculations rely on linear

extrapolation from an initial transmission time t0
and period Tc, the rate at which random errors in

the distance accumulate was also examined. Tag

55436 was attached to a hydrophone for roughly

22 hours, during which the time-of-flight distances

were calculated. The experiment results are shown

in Fig. 6. Many factors could contribute in the
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Fig. 6: Error of the calculated distance from

the expected distance of 0m, using the ap-

proximation of 1500ms−1 for the speed of

sound in seawater.

accumulation of the random errors. The battery

level of the tag, power cycling the tag, and the

length of the time interval used to calibrate Tc

are all potential factors. In Fig. 6, an error of

−1.5m was observed after 22 hrs. However, in
an identical experiment conducted on a different

day, an error of 8m was accumulated by the

end of the experiment. To better understand the

accumulation of random errors, this experiment

should be repeated multiple times for multiple tags

spanning their battery lives.

D. Online State Estimation

Active tracking of a tagged boat was conducted

on July 14, 2013 from 22:44 to 23:23. The boat

idled in an area for several minutes before relo-

cating. This process was repeated multiple times.

The position of the boat was logged using the GPS

receiver on a Vemco VR100. The AUV’s state

estimator incorporated both distance and angle

measurements to estimate tag position. Results
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Fig. 7: Online localization and tracking of a

tagged boat using distance and angle mea-

surements. The AUV’s path is shown by the

blue line, and positions of the tagged boat

are shown by the green dots. The red dots

represent the estimated boat location.

are shown in Fig. 7. The associated localization

error is plotted as a function of time in Fig. 8.

Here localization error is defined as the distance

between the actual boat position and the position

estimated by the online state estimator.
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Fig. 8: Localization errors of a tagged boat

as a function of time. The mean error is

8.46m with a standard deviation of 7.82m.

The ability of the state estimator to recover

from bad localization of the tagged boat is illus-

trated in Fig. 9. At time 1388 s depicted in Fig. 9

(a), the boat was being driven back to the dock

and the state estimator had an error of 47.6m.
At time 1745 s depicted in Fig. 9 (b) the boat

was stationary at the dock and the state estimator

had successfully re-localized the boat with an

estimation error of 2.95m.
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(a) The boat is being driven towards dock.
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(b) The boat is now stationary at the dock.

Fig. 9: Two snap shots at two different

showing the state estimator recovering from

a bad state estimation. In (a), the estimation

error is 47.6m while the boat is being

driven. In (b), the boat is successfully re-

localized after it stopped at the dock.

E. Offline Comparison

To compare the effect of using distance mea-

surements, state estimations were repeated offline

using the recorded AUV states and the sensor

measurements from the active tracking of the

tagged boat. Offline state estimation using the

following combinations of sensor measurements in

the aMCL correction step were tested:

i. Only angle measurements

ii. Only distance measurements

iii. Both angle and distance measurements



For each combination of sensor measurements, the

state estimator was run twenty times offline. The

results are summarized in Table IV. Compared

to using only angle, or only distance, using both

angle and distance decreased the error in state

estimation by a factor of two.

Measurements Mean Error [m] σ Error [m]

Angle 16.38 15.07
Distance 19.43 29.83
Angle and Distance 8.76 12.82

TABLE IV: Comparison of errors in offline

state estimation using different measurement

combinations.

The state estimation errors as a function of

actual AUV distance-to-tag are summarized in

Fig. 10. To evaluate the effect distance-to-tag had
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Fig. 10: Comparison of offline state estima-

tion errors using different measurements as

a function of actual distance of the AUV to

the tagged boat.

on estimation error, the offline state estimation

errors were grouped into three distance intervals:

[0m, 30m), [30m, 60m), and [60m, 90m). The
results are summarized in Fig. 11. In the short

range interval [0m, 30m), errors were roughly

the same regardless of the measurements used. In

mid range interval [30m, 60m), estimation using

both angle and distance performed best. In the

long range interval [60m, 90m), estimation errors
when using angle and distance measurements were

generally lower. Even though the maximum error

was higher, the 75th percentile error from using

both angle and distance measurements was the

lowest within the longest range interval. Ideally,
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Fig. 11: Box and whisker plots showing

offline state estimation errors at different

AUV-to-tagged boat distance intervals.

the AUV will actively stay close to the target

so as to minimize estimation errors associated

with distance. In the unfortunate scenario where a

large estimation error does occur, a compounding

effect could occur where the AUV drives further

from the target, thereby increasing the potential for

even larger state estimation errors. Therefore, it is

highly desirable that the estimation errors do not

increase significantly as the distance to the tagged

target increases.

VI. Conclusion

This paper presented a method of calculating

distance from an AUV to an acoustic tag through

the use of time-of-flight calculations. Experimental

results showed that time-of-flight distance can be

calculated with sufficient accuracy and precision

to decrease errors in online state estimations of a

tagged target by an AUV.

Despite the accumulating random errors in

time-of-flight distance calculations, reliable dis-

tance measurements can still be obtained four

hours after the calibration of the initial transmis-

sion time t0.

Future work will include more extensive char-

acterization of random errors in the distance calcu-

lations, such as examining the errors over longer

periods of time and across a greater number of

tags. Ideally this characterization will produce



methods for identifying and correcting such er-

rors during online state estimation. The effect

of incorporating distance measurements into state

estimation will also be examined in a multi-AUV

shark tracking system.

VII. Acknowledgment

This material is based upon work supported by

the National Science Foundation under Grant No.

1245813. This work was performed in part at the

Claremont Colleges’ Robert J. Bernard Biological

Field Station.

References

[1] M. Espinoza, T. J. Farrugia, D. M. Webber, F. Smith,

and C. G. Lowe, “Testing a new acoustic telemetry

technique to quantify long-term fine-scale movments

of aquatic animals,” Fisheries Research, vol. 108, pp.

364--371, 2011.

[2] C. G. Lowe and R. N. Bray, “Fish movement and

activity patterns,” The Ecology of California Marine

Fishes, pp. 524--553, 2006.

[3] C. M. Clark, C. Forney, E. Manii, D. Shinzaki, C. Gage,

M. Farris, C. Lowe, and M. Moline, “Tracking and

following a tagged leopard shark with an autonomous

underwater vehicle,” Journal of Field Robotics, vol. 30,

2013.

[4] C. Forney, E. Manii, M. Farris, M. Moline, C. Lowe,

and C. Clark, “Tracking of a tagged leopard shark

with an auv: Sensor calibration and state estimation,”

in Proceedings of the 4th International Conference on

Robotics and Automation, St. Paul, Minnesota, 2012.

[5] D. Schulz, W. Burgard, D. Fox, and A. Cramers,

“Tracking multiple moving objects with a mobile

robot,” in Computer Vision and Pattern Recognition,

IEEE Computer Society Conference, 2001.

[6] D. Schulz, W. Burgard, D. Fox, and A. Cremers,

“People tracking with mobile robots using sample-

based joint probabilistic data association filters,” The

international Journal of Robotics Research, vol. 22,

2003.

[7] M. Kobilarov, G. Sukhatme, J. Hyams, and P. Batavia,

“People tracking and following with mobile robot using

an omnidirectional camera and a laser,” in Proceedings

of the 2006 IEEE International Conference on Robotics

and Automation, 2006.

[8] M. Montemerlo, S. Thrun, and W. Whittaker, “Con-

ditional particle filters for simultaneous mobile robot

localization and people-tracking,” in Proceedings of the

2002 IEEE International Conference on Robotics and

Automation, vol. 1, 2002, pp. 695--701.

[9] J. Rife and S. M. Rock, “Segmentation methods for

visual tracking of deep-ocean jellyfish using a conven-

tional camera,” IEEE Journal of Ocean Engineering,

vol. 28, pp. 595--608, 2003.

[10] T. Grothues, J. Dobarro, and J. Eiler, “Collecting,

interpreting, and merging fish telemetry data from an

auv: Remote sensing from an already remote platform,”

in Authonomous Underwater Vehicles (AUV), 2010

IEEE/OES, Monterey, CA, 2010, pp. 1--9.

[11] J. Rife and S. M. Rock, “Segmentation Methods for Vi-

sual Tracking of Deep-Ocean Jellyfish using a Conven-

tional Camera,” IEEE Journal of Oceanic Engineering,

vol. 28, no. 4, pp. 595--608, 2003.

[12] J. Zhou and C. M. Clark, “Autonomous fish tracking by

ROV using monocular camera,” Computer and Robot

Vision, Canadian Conference, vol. 0, p. 68, 2006.

[13] C. Georgiades, A. German, A. Hogue, H. Liu, C. Pra-

hacs, A. Ripsman, R. Sim, L. Torres, P. Zhang,

M. Buehler et al., “Aqua: an aquatic walking robot,”

in Intelligent Robots and Systems, 2004.(IROS 2004).

Proceedings. 2004 IEEE/RSJ International Conference

on, vol. 4. IEEE, 2004, pp. 3525--3531.

[14] T. M. Grothues, J. Dobarro, J. Ladd, A. Higgs, G. Niez-

goda, and D. Miller, “Use of a multi-sensored auv to

telemeter tagged atlantic sturgeon and map their spawn-

ing habitat in the hudson river, usa,” in Autonomous

Underwater Vehicles, Woods Hole, MA, 2008, pp. 1--7.

[15] M. J. Oliver, M. W. Breece, D. A. Fox, D. E. Haulsee,

J. T. Kohut, J. Manderson, and T. Savoy, “Shrinking

the haystack: using and auv in an integrated ocean

observatory to map atlantic sturgeon in the coastal

ocean,” Fisheries, vol. 38, 2013.

[16] T. Grothues and J. Dobarro, “Fish telemetry and

positioning from an autonomous underwater vehicle

(AUV),” Instrumentation ViewPoint, no. 8, p. 78, 2009.

[17] N. Kussat, C. Chadwell, and R. Zimmerman, “Absolute

positioning of an autonomous underwater vehicle using

gps and acoustic measurements,” IEEE Journal of

Oceanic Engineering, vol. 30, pp. 153--164, 2005.

[18] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust

Monte Carlo localization for mobile robots,” Artificial

Intelligence, vol. 128, no. 1-2, pp. 99--141, 2001.

[19] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle

filters for mobile robot localization,” 2001.

[20] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,

J. Jansson, R. Karlsson, and P. Nordlund, “Particle

filters for positioning, navigation, and tracking,” IEEE

Transactions on Signal Processing, vol. 50, no. 2, pp.

425--437, 2002.

[21] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte

Carlo localization: Efficient position estimation for mo-

bile robots,” in Proceedings of the National Conference

on Artificial Intelligence. JOHN WILEY & SONS

LTD, 1999, pp. 343--349.

[22] S. Thrun, “Particle filters in robotics,” in Proceedings

of the 17th Annual Conference on Uncertainty in AI

(UAI), vol. 1. Citeseer, 2002.

[23] S. Park, J. Hwang, K. Rou, and E. Kim, “A new

particle filter inspired by biological evolution: Gentic

filter,” World Academy of Science, Engineering and

Technology, vol. 33, 2007.

[24] S. Thrun, W. Burgard, and D. Fox, “Probabilis-



tic robotics,” in Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). USA: The MIT

Press, sept. 2005.

[25] D. Shinzaki, C. Gage, S. Tang, M. Moline, B. Wolfe,

C. Lowe, and C. Clark, “A multi-auv system for

cooperative tracking and following of leopard sharks,”

in Proceedings of the IEEE International Conference

on Robotics and Automation, 2013.


