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This paper presents a prototype system that enables an autonomous underwater vehicle (AUV) to autonomously
track and follow a shark that has been tagged with an acoustic transmitter. The AUV’s onboard processor handles
both real-time estimation of the shark’s two-dimensional planar position, velocity, and orientation states, as well
as a straightforward control scheme to drive the AUV toward the shark. The AUV is equipped with a stereo-
hydrophone and receiver system that detects acoustic signals transmitted by the acoustic tag. The particular
hydrophone system used here provides a measurement of relative bearing angle to the tag, but it does not
provide the sign (+ or −) of the bearing angle. Estimation is accomplished using a particle filter that fuses
bearing measurements over time to produce a state estimate of the tag location. The particle filter combined
with a heuristic-based controller allows the system to overcome the ambiguity in the sign of the bearing angle.
The state estimator and control scheme were validated by tracking both a stationary tag and a moving tag with
known positions. Offline analysis of these data showed that state estimation can be improved by optimizing
diffusion parameters in the prediction step of the filter, and considering signal strength of the acoustic signals
in the resampling stage of the filter. These experiments revealed that state estimate errors were on the order
of those obtained by current long-distance shark-tracking methods, i.e., manually driven boat-based tracking
systems. Final experiments took place in SeaPlane Lagoon, Los Angeles, where a 1-m leopard shark (Triakis
semifasciata) was caught, tagged, and released before being autonomously tracked and followed by the proposed
AUV system for several hours. C© 2013 Wiley Periodicals, Inc.

1. INTRODUCTION

The quantifying movement and habitat use behaviors of
large highly mobile marine organisms have posed signifi-
cant challenges for biologists. Recent advances in underwa-
ter technology have allowed for numerous studies in which
individuals of particular species are captured, tagged, and
tracked for extended periods of time. These studies pro-
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vide position measurements as a function of time that yield
insights into the daily and seasonal movement patterns of
such species.

Currently, methods for tracking fish largely involve
catching the fish and marking it with a satellite or acous-
tic transmitter tag. Satellite tags provide relatively accurate
positional data (over scales of tens of meters to tens of kilo-
meters) but only when the fish is at the surface (Voegeli et al.,
2001). Acoustic tags can be tracked with an array of station-
ary receivers (passive tracking) or with a manually driven
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boat (active tracking) that requires a human to continuously
position the boat to be within proximity of the fish and de-
tect tag signals (Lowe and Bray, 2006; Sims et al., 2003).
High-resolution positioning information can be extracted
from static receiver arrays, but only if the fish remains within
the local area of the receivers, which limits their utility for
more wide-ranging species. Conversely, manual tracking
systems allow for tracking fish (e.g., sharks) with longer
migratory paths, but they are labor-intensive and often cost-
prohibitive. Thus, the development of mobile tracking sys-
tems that can provide high positioning accuracy while si-
multaneously sampling environmental conditions would
provide an essential tool in understanding how changes in
environmental conditions influence movements of highly
mobile fish. Sharks are of particular importance as they
are considered apex predators and are important in shap-
ing populations and communities lower in the food chain
(Myers et al., 2007).

Proposed here is a prototype autonomous underwa-
ter vehicle (AUV) -based system that enables autonomous
tracking and following of tagged fish that can provide rela-
tively high-resolution position information (tens of meters)
over long periods of time (many hours) and over greater
coastal areas. The system combines an OceanServer Iver2
AUV with a Lotek MAP RT stereo-hydrophone system that
measures signal strength and bearing to commercially avail-
able acoustic fish tags. The system uses a particle filter to
estimate fish positions in real time, as well as a heuristic-
based control strategy that allows for improved state esti-
mation while simultaneously driving the AUV toward the
tagged fish, but not beyond a preset perimeter. This enables
tracking without chasing the tagged fish.

Details of the shark state estimator have been recently
presented in Forney et al. (2012), and they are expanded
upon in this work. As opposed to Forney et al. (2012), this
paper presents details of sensor modeling, shark motion
models, and postmission results that demonstrate that im-
provements to shark state estimation can be accomplished
with improved shark motion modeling. To the best of our
knowledge, the experiments documented in this paper are
the first ever autonomous tracking and following of a tagged
shark.

The paper is organized as follows. Section 2 discusses
related works and elaborates on existing research. Section 3
provides an overview of the AUV tracking system. Section
4 describes the state estimator and control scheme. Exper-
iments are described in Section 5, with results to follow in
Sections 6 and 7. Conclusions and future work are presented
in Section 8.

2. BACKGROUND

While a wide variety of underwater tracking technologies
exist, the limitations of positional accuracy, spatial cover-
age, degree of labor intensity, and operational costs have

limited movement studies of large, highly mobile fish, such
as sharks (Lowe and Goldman, 2001).

Fine-scale fish movements are typically quantified with
an acoustic telemetry tracking system, generally comprised
of two parts: a transmitter and a receiver. The transmit-
ters, often referred to as “tags,” can be implanted into or
attached to a fish, and they are designed to emit an acoustic
signal between 30 and 200 kHz, depending on the size of
the animal and the environmental conditions. The transmit-
ter can produce a uniquely identifiable ultrasonic pulse or
pulse train at fixed or varied intervals that enable the fish
to be localized using an array of omnidirectional underwa-
ter receivers or a mobile shipborne receiver and directional
hydrophone see, e.g., [Espinoza et al. (2011) Grothues and
Dobarro (2009), and Lowe and Bray (2006)]. The distance
from which a fish can be tracked is limited by the power
output of the transmitter, but it typically varies between
50 and 1,000 m. More sophisticated tags can also transmit
sensor information (e.g., depth, temperature, acceleration
vectors) via their acoustic signal, which then have to be
decoded by the receiver.

The receivers, usually one or more hydrophones, con-
tain most of the power of the system and are responsible
for decoding the tag’s signal. Static underwater receiver
arrays allow for a fish’s position to be derived by trian-
gulation or trilateration of the transmitter emission using
the time of arrival of the transmitter pulse to neighboring
receivers. These techniques allow for quantification of envi-
ronmental parameters in addition to movements of multiple
fish; however, if the tagged fish exhibit scopes of movement
larger than the array, the fish cannot be tracked and posi-
tional accuracy decreases as the fish near the perimeter of
the array (Espinoza et al., 2011). For example, the migratory
movements of fish tagged in estuaries along the western At-
lantic have been monitored using arrays in locations such
as Maine and Virginia and also between estuaries in the
eastern Pacific (Espinoza et al., 2011; Farrugia et al., 2011;
Grothues and Dobarro, 2009). The alternative approach is
to actively follow a tagged fish from a vessel using a di-
rectional hydrophone and shipborne receiver to determine
bearing and distance based on signal strength and direc-
tion (Bellquist et al., 2008; Lowe et al., 2003; Mason and
Lowe, 2010; Topping et al., 2005). This method can be ex-
tremely labor-intensive and cost-prohibitive, especially for
large, highly mobile species.

Related to this research is the many years of investi-
gation and development of target motion analysis (TMA).
In TMA, sea vessels use passive sonar to obtain bearing-to-
target information. A time series of such bearing measure-
ments, combined with the known location of the sea vessel,
allows for estimation of the target’s range, course, and speed
(Cunningham and Thomas, 2005; Kronhamn, 1998). Unlike
typical TMA problems, the work presented here addresses
the problem of sign ambiguity in the bearing-to-target mea-
surement.
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Using robots to track and follow moving objects in itself
is not novel. For example, there have been several projects
developed to accomplish dynamic tracking systems based
on vision. In Schulz et al. (2001), joint probabilistic data
association filters are used in conjunction with particle fil-
ters in order to track multiple humans inside a building,
and they are able to successfully and reliably keep track
of multiple persons (Schulz et al., 2001). The joint proba-
bilistic data association filter is an algorithm that improves
the separation and individual identification of data when
tracking multiple objects. This particular study compares
the success of Kalman filters to the success of particle filters
when tracking a moving being. An additional study (Schulz
et al., 2003) also used particle filters and joint probabilistic
data association filters to determine the location of people in
an office-type environment. Similarly, in Treptow and Zell
(2004), visual data are acquired by the robot in order to de-
termine its desired movement path. That particular study
focused on soccer-playing robots that need to track the lo-
cation of a soccer ball in order to determine their next move.
In Schulz et al. (2001), a particle filter algorithm is used to
predict the location of the ball.

When in close proximity, underwater robots have been
shown to track moving objects using onboard vision sys-
tems (Georgiades et al., 2004). In Zhou and Clark (2006),
a vision system was developed to conduct tracking of fish
with a remotely operated vehicle (ROV); however, it was not
implemented for autonomous tracking experiments. In Rife
and Rock (2003), a vision system was used to successfully
track and follow a jellyfish with an ROV.

The work in Goudey et al. (1998) represents some of the
first work in attempting to equip a waterborne vehicle with
the ability to autonomously track a tagged fish. A proto-
type surface vehicle was equipped with a single Vemco hy-
drophone receiver capable of detecting fish tag signals. The
system demonstrated successful system integration and the
ability to measure the bearing to the tag by rotating a direc-
tional hydrophone, although fish position was estimated to
be that of the vehicle. As pointed out by Goudey et al. (1998),
their system could benefit from multiple hydrophones that
yeild measurements of the bearing to tag angle.

AUVs have been equipped with acoustic receivers to
passively record acoustic tag signals. In Grothues et al.
(2008), an AUV was used to gather data from two tagged
Atlantic sturgeon in the Hudson River. This study demon-
strated that AUV’s are highly useful in gathering data on a
tagged fish. Grothues et al. (2010) validated the use of hy-
drophones mounted on a moving AUV to track a tagged
marine animal.

In Grothues et al. (2010), the necessity for en route de-
cision making in AUVs was identified as a problem that
needed to be addressed. AUVs have been programmed to
follow a designated GPS waypoint path, recording informa-
tion as they travel. Prior to this project, there had yet to be an
AUV that could continually follow a single acoustic tag on

a specific animal (shark) and make position estimates in or-
der to follow the changing position of the animal. Real-time
localization of the shark is necessary to track and follow
it as it moves, as well as record its movement patterns. A
major part of this real-time localization is the sensor fusion
required for such state estimation. The AUV was equipped
with a stereo-hydrophone receiver system which provided
differential time of arrival data necessary for state estima-
tion. This paper presents a particle-filter-based method for
combining measurements from the stereo-hydrophone re-
ceiver over time, enabling real-time planar estimation of the
shark state.

3. SYSTEM OVERVIEW

The proposed AUV tracking system is comprised of an
Oceanserver IVER2 AUV (Figure 1) integrated with a Lotek
MAP600RT stereo-hydrophone and receiver. The AUV is a
torpedo-shaped robot actuated with two rear fins to control
pitch, two rear fins to control yaw, and a rear propeller to
provide locomotion. As shown in Figure 2, U represents the
control vector sent to each of these five motors. The AUV’s
antenna mast has a built-in GPS receiver providing longi-
tude and latitude measurements at a rate of 1 Hz when
the AUV is at the surface. A kinematic model is used for
position state estimation when below the surface. These po-
sition measurements are represented here as ZGPS. The AUV
also has a three-axis digital compass, which provides a yaw
measurement Zθ .

The AUV has two processors, the primary one of which
runs waypoint tracking missions, monitors the status of the
robot’s actuators, and enables sensor and actuator commu-
nications. The secondary processor is designated for exter-
nal programs, and it is where the acoustic receiver software,
estimator, and controller are run. The Lotek receiver soft-
ware produces measurements of the bearing to the tag zα

and signal strength zss , and it passes these measurements
to the estimator. The estimator processes the inputs and
then outputs the estimated shark state Xshark, which it sends
to the controller. The controller takes Xshark as an input and
uses this to make decisions about the movement of the AUV
relative to the estimated shark position.

The stereo-hydrophones, acoustic receiver, and receiver
software are part of the Lotek MAP RT-A Hydrophone sen-
sor system. The hydrophone system is designed to listen for
frequencies of 76 kHz, the same frequency of signals emit-
ted by the Lotek brand tags. The tags transmit encoded ana-
log signals that allow them to be identified uniquely on the
same frequency. This permits tracking of a single individual
within a group of many tagged individuals. Additionally,
tag signals can be modulated to transmit depth information,
enabling accurate depth estimation if required. An external
frame was created in order to hold the stereo-hydrophones
in place. The Lotek MAP RT-A system was designed to have
the hydrophones set 2.4 m apart, and at least 1 m below the
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Figure 1. The OceanServer Iver2 AUV equipped with a test stereo-hydrophone acoustic receiver system. Two protoype configu-
rations are shown. In (a), a carbon fiber frame is used to attach the hydrophones. In (b), a pvc tube frame is used.

surface of the water. The hydrophone cables are internally
connected and fed through sealed holes in the tail end of
the hull of the AUV.

4. STATE ESTIMATION AND CONTROL

The proposed system uses an estimation method in which
the AUV alters its control signals to increase informa-
tion gain. As described below, the estimation method aids
in reducing the effects of sign ambiguity in the bearing
measurements.

4.1. Shark State Estimation

The estimation problem is depicted in Figure 3. In this figure
a top down view of this system is shown with hydrophones
h1 and h2 positioned just ahead of the AUV nose and just be-
hind the AUV tail, respectively. XAUV represents the position
and yaw of the AUV with respect to an inertial coordinate
frame and is determined by OceanServer’s proprietary soft-
ware. The estimator uses XAUV and Zt as inputs to estimate
the shark state Xshark comprised of the two-dimensional (2D)
planar position [xshark yshark], heading angle θshark, forward
velocity vshark, and rotational velocity wshark at each time step
t . More precisely, for t ∈ [0, tmax],

Figure 2. Flow of control variables through the AUV tracking
system, from sensors to actuators.

Given that

XAUV,t = [xAUV yAUV θAUV ẋAUV ẏAUV θ̇AUV]t , (1)

Zt = [zss zα]t , (2)

determine

XSHARK,t = [xshark yshark θshark vshark wshark]t . (3)

Challenges associated with the stereo-hydrophone sys-
tem include its limited range (L ≈ 100 m), its low resolution
(= π/9 rad), and the ambiguity of the sign of the bearing
angle. This ambiguity is illustrated in Figure 3, where the
AUV cannot determine if a single bearing measurement zα

corresponds to angle +α or −α. X′
shark represents the other

possible location of state based on the ambiguous sensor
reading. The limited range was determined through experi-
ments as the distance at which the signals were consistently
lost. The signal strength value zss was not used in real-time
estimation due to the inconsistencies seen in the range of
the tags.

There exist a variety of filtering methods which are
commonly used in robotics for state estimation including
applications in localization and mapping (Thrun et al.,
2005). These techniques are largely based on Kalman

Figure 3. Top down view of the sample measurement.
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filter (KF) or Monte Carlo (MC) methods. One such method,
particle filter (PF) estimation, is heavily based on the MC
localization algorithm (Thrun et al., 2001). A particle filter
state estimator approximates a belief state using a set of par-
ticles (Thrun et al., 2005). Each particle represents a single
randomized representation of state and has an associated
weight that represents the likelihood it is the actual state.
Together, the set of particles creates a multiple hypothesis
sample set. In this work, the particle filter’s ability to accom-
modate multiple hypotheses of the state is leveraged to deal
with a stereo hydrophone system that cannot determine the
sign of the relative angle to a detected fish tag.

The PF used to estimate the state of the shark uses a
set of P particles, each with a state defined in Eq. (3). Each
particle represents a single estimate of the shark state, with
a position, orientation, velocity, and weight. Initially, each
particle is randomly assigned a position, orientation, and
velocity by selecting from a uniform random distribution.
Planar positions (x, y) are randomly selected from a 2L me-
ter by 2L meter square area with the initial location of the
AUV as the center of the distribution. Here, L is the range
of the acoustic receiver system.

After being initialized, particles are updated with the
PF algorithm that is called at each iteration of the AUV’s
control loop. The algorithm has two main steps, a prediction

step and a correction step. The prediction step predicts the
shark state of every particle. If a new valid signal from
the shark tag is received, the likelihood or weight of all
particles is calculated and the correction step will be called
to resample the particle distribution. At the end of these two
steps, the shark state estimate can be calculated as the state
estimate of highest weight or as the weighted average for
position, orientation, and velocity of all P particles.

Algorithm 1. PF_Shark_State_Estimator({Xp}, XAUV, zα , zss)

1: //Prediction

2: for all p particles do
3: X

p

shark,t
← Motion_Model(Xp

shark,t−1)
4: if zα is valid then
5: α

p
exp ← atan2(yp

shark − yAUV, x
p

shark − xAUV) − θAUV

6: α
p
exp ← gα(αp

exp)
7: ssp

exp ← gss(dist
p
exp)

8: wp ← h(zα, α
p
exp, zss, ssp

exp)
9: end if

10: end for
11:
12: //Correction

13: if α is valid then
14: {Xp}temp ← {Xp} for all p

15: for all p particles do
16: Xp ← RandParticle({Xp}temp)
17: end for
18: end if

4.1.1. Prediction Step

At every time step, each of the P particles in the set {Xp}
is propagated forward according to a first-order motion
model (Line 3 of Alg. 1). The motion model is a func-
tion of the previous particle position (xp

shark, y
p

shark), orien-
tation θ

p

shark, velocity v
p

shark, and the uncertainty associated
with these values, specifically the standard deviations σθ

and σv .
Several motion models were considered for this predic-

tion step, most of which are based on mathematical mod-
els that attempt to describe the motion tendencies of indi-
vidual animals that have been tracked in previous tagging
and tracking experiments. For example, diffusion models
have been applied to a variety of species to represent dis-
persal of fish populations (Hilborn, 1990, Johnson et al.,
1992, Skalski and Gilliam, 2000). At the individual level,
diffusion modeling can be incorporated into an individ-
ual’s movements using a particle-based approach that mod-
els movements as a random walk [see e.g., Bailey and
Thompson (2006)]. Several types of random walks have
been considered, including Brownian motion and Levy
flights (Sims et al., 2011) as well as mixtures (Morales et al.,
2004). For example, the Levy flight foraging hypothesis,
in which optimal foraging for predators is accomplished
with Levy flights when prey is sparse, was confirmed by
Humphries et al. (2010) for particular shark species for
which extensive tracking data existed. The uncertainty of
such movement models was incorporated into a state space
formulation in Jonsen et al. (2005), allowing a compari-
son between different movement behavior models via error
covariance.

Other particle models assume an individual follows
simple kinematic equations that are affected by the state of
its local neighbors (Hensor et al., 2005; Huse et al., 2002;
Katz et al., 2011). For example, in Hensor et al. (2005), an
individual’s motion is a function of its repulsion, align-
ment, and attraction to other individuals. From these in-
teractions, there can emerge general trends in the move-
ment of the population. This is often seen in shoaling,
schooling, and aggregating species. This grouping behavior
and the predictability of the movements of the group can
have great consequences on the dispersal of bioaccumulated
contaminants, overharvesting, and ultimately ecosystem
health.

The particular motion models investigated here in-
clude a MomentumRandomWalk, BrownianRandomWalk,
and a LevyF light . For the MomentumRandomWalk (Alg.
2), the velocity, v

p

shark, is randomly sampled from a Gaus-
sian distribution with a mean equal to the previous
particle velocity and standard deviation equal to the
expected change in shark velocity. The step direction,
θp , is randomly sampled from a Guassian distribution
with a mean equal to the previous particle yaw θ

p

shark
and standard deviation equal to the expected change in
yaw.
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Algorithm 2. Motion_Model_MomentumRandomWalk(Xp

shark,t
)

1: //MomentumRandomWalk

2: v
p

shark ← NormalRandom(vp

shark, σv)
3: θ

p

shark ← NormalRandom(θp

shark, σθ )
4: x

p

shark ← x
p

shark + v
p

shark cos (θp

shark)�t

5: y
p

shark ← y
p

shark + v
p

shark sin (θp

shark)�t

For the BrownianRandomWalk (Alg. 3), the velocity,
v

p

shark, is randomly sampled from a uniform random dis-
tribution between 0 and vmax, where vmax is a maximum
velocity. The step direction, θp , is randomly sampled from
a uniform random distribution between −π and π .

Algorithm 3. Motion_Model_BrownianRandomWalk(Xp

shark,t
)

1: //BrownianRandomWalk

2: v
p

shark ← Unif ormRandom(0, vmax)
3: θ

p

shark ← Unif ormRandom(−π, π )
4: x

p

shark ← x
p

shark + v
p

shark cos (θp

shark)�t

5: y
p

shark ← y
p

shark + v
p

shark sin (θp

shark)�t

For the LévyF light motion model (Alg. 4), the step di-
rection is also randomly sampled from a uniform random
distribution from −π to π . However, the step length is ran-
domly sampled from the heavy tailed probability density
function Pr(l), shown in Eq. (4).

Pr(l) = γ

π [l2 + γ 2]
. (4)

In this distribution, the distance l is likely to be short
but does have a minimum likelihood of larger l values. This
typically results in a random motion involving many small
steps followed by a large step. Tuning studies (Viswanathan
et al., 1999) on different species have suggested that the dis-
tribution decays according to Pr(l) = l−2. To achieve similar
behavior, γ is set to achieve similar exponential decay while
considering the size of the time step �t .

Algorithm 4. Motion_Model_LévyFlight(Xp

shark,t
)

1: //LévyF light

2: l
p

rand ← LévyDistance(�t)
3: θ

p

shark ← Unif ormRandom(−π, π )
4: x

p

shark ← x
p

shark + l
p

rand cos (θp

shark)
5: y

p

shark ← y
p

shark + l
p

rand sin (θp

shark)

4.1.2. Weight Calculation

Particle weights are only calculated (Alg. 1, lines 5–8) when
a “valid” tag detection is received, i.e., when both hy-
drophones detect a signal from the tag to enable calcula-

tion of the bearing. This actual bearing measurement zα is
compared with the expected bearing measurement for each
particle α

p
exp to determine the weight of the particle. Ideally,

the closer the match between these two bearings, the higher
the weight.

When a new bearing measurement is calculated by the
Lotek MAPHost software, the bearing value is written to a
text file accessible to the estimator. The coordinate system
and units of this measurement are not conventional in that
they are integer values that span from −9 to 9, which are
roughly mapped to a range of −90◦ to +90◦. A value of
0 indicates the tag is in the direction perpendicular to the
baseline separating the hydrophones. Figure 4(a) illustrates
a third-order polynomial mapping between measured bear-
ing angle in degrees to units exported by the Lotek MapHost
software.

To create the mapping function between these two
units, a large number of ocean experiments were conducted
in which bearing angle was varied from −90◦ to +90◦ (in
increments of 45◦) and the range between the tag and the
AUV was varied from 25 to 200 m (in increments of 25 m).
Using data from such experiments, a least-squares best fit
was used to generate a model of the relationship between
units. Equation (5) provides an example of a third-order
model generated for the data in Figure 4(a), that converts
the bearing units from degrees to Lotek MAPHost software
units.

gα

(
αp

exp

)
= −1 × 10−6

(
αp

exp

)3
+ 2 × 10−5

(
αp

exp

)2

+ 0.0947αp
exp − 0.2757. (5)

The function gα() in Eq. (5) is used to convert the ex-
pected bearing to the shark α

p
exp for any particle p from

degrees to Lotek MAPHost software units. Note that it is
straightforward to calculate the expected bearing in degrees
using the shark state of the particle X

p

shark and the AUV state
XAUV. This calculation followed by the conversion is shown
on lines 5 and 6 of Alg. 1.

The particle can be assigned a weight on line 8 of Alg.
1 through the following Gaussian weighting function:

hα(zα, α
p
exp) = 0.001 + 1√

2πσα

e

−(αp
exp−zα )2

2σ2
α . (6)

The weight has a minimum value of 0.001 and is given
a higher value when the particle’s expected angle, α

p
exp, is

closer to the measured angle, zα . As the angle difference
decreases, a higher weight value is assigned. The standard
deviation σα of the Gaussian function was determined us-
ing the same experiments described above. The results are
shown in Table I.

Weight calculations may also consider the signal
strength measurements as a sensor value. While work in
Forney et al. (2012) that used the PF in real time did not
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Figure 4. Mapping hydrophone measurements. In (a), the polynomial function representing the mapping from bearing measure-
ments in degrees to Lotek MAPHost software units. In (b), a polynomial function representing the mapping from distance (m) to
signal strength in Lotek MAPHost software units.

Table I. Filter parameter values.

Parameter Value

σv 0.3 m per second
σθ π/2 radians
σα 1.0 lotek angle units
σss 15 lotek signal strength units

incorporate the signal strength value into the state estima-
tion, it can be shown to provide a more accurate shark state
estimation. A 1,500-s data set with measured distances (us-
ing GPS) and Lotek signal strengths was used to create a
mapping between signal strength and distance. The data
were split into bins of 5 m. The Lotek hydrophone signal
strength in each of the bins is averaged and displayed in
Figure 4(b) with error bars indicating the standard devia-
tion. A curve fit was found based on the model that the
signal strength “ss” versus distance “dist” relationship is
linear on a logarithmic scale. The relationship is given by
Eq. (7) for constants a and b:

log10(ss) = b + a ∗ log10(dist). (7)

Given a and b, the expression for ss is given by

gss(dist) = 10b × dista. (8)

The resulting fit from experimental data produced val-
ues a = −0.871 and b = 2.18 as plotted in Figure 4b. Equa-
tion (8) can be used to determine ssp

exp given an expected dis-
tance distpexp. σss is estimated from the standard deviations
of the bins. The following Gaussian weighting function can

then be used to weight distance in the particle filter:

hss(zss, ss
p
exp) = 0.001 + 1√

2πσss
e

−(sspexp−zss)2

2σ2
ss . (9)

The weight has a minimum value of 0.001 and is given
a higher value when the particle’s expected signal strength,
ssexp is closer to the measured signal strength zss. The stan-
dard deviation σss of the Gaussian function was deter-
mined from past experiments. Finally, a proposed modi-
fied weighting function hmod for a particle filter including
bearing and sensor strength measurements is given by

hmod = 0.001 + 1√
2πssp

exp
e

−(sspexp−zss)2

2σ2
ss × 1√

2πα
p
exp

e

−(αp
exp−zα )2

2σ2
α .

(10)

4.1.3. Correction Step

Once weights are calculated using either of hα , hss or hmod,
the particle population is randomly resampled to produce
a set that has a higher proportion of particles with higher
weights. The resampling is shown in Alg. (1), lines 13–18.
A copy of the propagated particle set is saved in {Xp}temp.
Then, each particle state is repopulated by randomly select-
ing from {Xp}temp using the function RandParticle(). This
function selects a particle at random, with a likelihood of
selection proportional to the particle’s normalized weight.

4.2. Control for Improved Estimation

To minimize the distance between the AUV and the shark,
while trying to improve the shark state estimation, a
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Figure 5. The control strategy: The AUV is stepped through a
series of three desired headings to track. The sensor footprints
after the first and second headings tracked are shown in gray.

repeated three-step controller was used in which the de-
sired heading was changed at each step. To track each de-
sired heading, a simple P controller was used (notably only
stable assuming linear kinematics). Regardless, the heading
error, (θdes − θ ), has been shown to decay to zero for all
real-time experiments. This control loop iterates at 1.0 Hz
(i.e., time step size = 1 s), as limited by the communication
with the Iver2’s proprietary control software that handles
all real-time actuation.

At the start of step 0 of the three-step controller, the
estimated bearing to the shark β0 is calcuated using the PF’s
shark state position estimate. Despite having intermittent
Lotek measurements with possible errors, the PF fuses the
measurements over time to produce an updated state es-
timate of highest likelihood (Thrun et al., 2005) at every
iteration of the control loop. The desired heading θdes is set
relative to the same value of β0 for each step 0, 1, and 2,

θdes,t = β0 + γt , (11)

where

γt =
⎧⎨
⎩

π

4 if step = 0
− π

4 else if step = 1
0 else if step = 2

⎫⎬
⎭ . (12)

The controller increments the step variable by 1 once
|θdes,t − θt | < τ , where τ is a threshold representing toler-
ence on a heading tracking. The three steps are depicted
in Figure 5, where the sensor footprints at the end of step
0 and step 1 are shown. This depiction highlights the ad-
vantage of changing the sensor’s vantage point in that only
particles residing in the overlap of these two footprints will
obtain high weights during both sensor readings and have a
greater likelihood of surviving resampling. Because of this
approach, the negative effects of the sign ambiguity in the
bearing measurements are reduced.

5. EXPERIMENTS

5.1. Avila Beach Pier Experiments

A series of validation experiments were performed at
the Cal Poly Center for Coastal Marine Science (CCMS)
(Figure 6a). The facility is located at the end of a large pier
in Avila Beach, CA. A lower landing dock allows easy de-
ployments of the AUV. Water depths are on the order of 8 m
and the bay is relatively well protected from high surf and
waves.

The experiments at the CCMS included sensor charac-
terization (e.g., determine σα), AUV tracking of a stationary
tag, and AUV tracking of a moving tag. During station-
ary and moving tag experiments, the AUV’s start position
relative to the tag was varied to ensure tracking could be
performed from every direction. AUV start positions were
also varied according to initial distance from the tag (i.e.,
20, 50, 75, and 100 m). For moving tag experiments, the tag
was attached to a second Iver2 AUV (AUV2). During these
experiments, the tag was fixed 2.0 m below the surface, and
the water depth was 10.0 m. AUV2’s GPS receiver mea-
surements were recorded to provide measurements of the
tag’s location as a function of time. Once the AUV was de-
ployed for these experiments, it would autonomously track
the tag’s position estimates produced by the PF.

5.2. Port of Los Angeles Experiments

The experiments from CCMS were repeated in SeaPlane La-
goon, Port of Los Angeles, CA, to verify the accuracy and
functionality in a new environment (see Figure 6b). The la-
goon varies in depth from 0.0 to approximately 2.0 m. There
is a high density of eel grass growth in some areas that can
be problematic both for AUV navigation and attenuation of
acoustic signals.

In addition to the same validation experiments con-
ducted at CCMS, a 1-m-long leopard shark (Triakis semifas-
ciata) was caught in the lagoon, externally fitted with an
acoustic transmitter, and tracked (Lotek MM Series, 76 kHz
freq, 2 s, and 5 s ping rate). This type of tag and attachment
method are standard use for tagging large marine fishes.
Once the tagged shark was released, the AUV was deployed
to track and follow it.

6. REAL-TIME OCEAN TRACKING RESULTS

To validate the system and evaluate performance, the fol-
lowing metrics were used: shark state estimation error,
shark state estimation error variance, and distance between
the AUV and the shark position as a function of time. These
metrics were applied both to real-time experiments as well
as in off-line state estimation experiments using measure-
ments logged during the real-time experiments.
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Figure 6. Field sites used for system validation: In (a), a top down view of the Cal Poly Center for Coastal Marine Science (CCMS)
is shown. In (b), Sea Plane lagoon in the Port of LA, CA is shown.

6.1. Stationary Tag Tracking Results

For stationary tag tracking experiments, the lower state esti-
mation errors are expected, and there is an expectation that
the distance between the AUV and the tag will be driven
to a small bounded error over time. An example of a sta-
tionary tag experiment is shown in Figure 7. The position
estimation error drops quickly to 10 m and stays relatively

constant while the AUV continues its course toward the
tag. This reduces the distance between the tag and the AUV
until the 360th second. At this point, the AUV continues
its control sequence to track π/4 radians left of the direct
line to the target, which at that close distance moves the
AUV away from the target. However, once it completes the
control sequence it continues on toward the estimated tag

Figure 7. Tracking a stationary tag: In (a), the path of an AUV (white) as it autonomously navigates toward a stationary tag (cyan).
The red path indicates the path of the tag as estimated by the AUV. Particle locations at the last time step are shown in yellow. In
(b), error (m), distance to the shark, and standard deviation (m) of the position estimate are plotted for the same experiment.
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position. The standard deviation of the particles in both di-
rections can also be seen to decrease over time, indicating
the particles are clustering to a size on the same order of
magnitude as the error.

Note that the control system used here drives the AUV
toward the shark. However, the closer the AUVs are to the
shark, the more likely the presence of the AUV will influence
the behavior of the shark, making the more accurate posi-
tions useless from an ecological standpoint. To account for
this, the AUV is programmed to remain motionless when
it is within some predetermined distance of the shark to
enable accurate shark localization without altering shark
behavior.

6.2. Moving Tag Tracking Results

To demonstrate system performance with a moving target,
results are presented from an experiment in which an acous-
tic tag was attached to a second Iver2 AUV. Figure 8(a)
shows the paths for both the tracking vehicle (named AUV)
and the tagged vehicle (named AUV2). AUV2 was manu-
ally driven within the lagoon, mimicking the relatively slow
movement of a leopard shark. AUV autonomously tracked
and followed AUV2 using the PF and controller described
above. To note, the speed of AUV2 was bordering on the
maximum speed that still allowed AUV1 to track and fol-
low it.

The error and standard deviations can be seen in
Figure 8(b). At t = 2,500 s, there is a significant increase
in error. This corresponds with poor quality acoustic mea-
surements we observed as the AUVs crossed an area with a
high density of eel grass. This can be observed as the darker
coloring in the center of Figure 8(a).

The signal rate, i.e., the frequency of usable measure-
ments, is also plotted. As expected, as the signal rate de-
creases, standard deviations and error increase. Though the
tag emits a signal every 2 s, many of the signals are un-
usable (only one hydrophone picked up the signal) or are
not picked up at all. For example, the maximal signal rate
for the stationary experiment was 30 signals/min, and the
highest signal rate seen was just over 25 signals/min. Unfor-
tunately, due to environmental factors and the short range
of the tag signal, rates as low as 3 signals/min were seen.

6.3. Shark Tracking Results

On August 8, 2011, a leopard shark was tagged and released
in the early afternoon. It initially moved away from the lo-
cation of capture to a deeper portion of the lagoon before
returning in the late afternoon. The AUV was deployed to
conduct autonomous tracking, but it was relatively unsuc-
cessful since the shark moved to a very shallow beach area
(≈0.40 m depth), which is a common behavior of leopard
sharks during this time of year. The AUV continuously at-
tempted to drive itself into this shallow area to follow the
shark, only to dig the frame and hydrophones into the sandy
bottom.

On August 9 and 10 of 2011, the AUV was deployed
with a shorter hydrophone support frame, and the tagged
leopard shark was successfully tracked by the AUV for sev-
eral hours with little interruption while it moved in a deeper
portion of the lagoon. The experiments were stopped only
a few times for the following reasons: 1) the batteries in
the laptops used by researchers to monitor the experiments
were low, 2) the AUV batteries were low, and 3) the AUVs
had been programmed to halt tracking operations after
45 min to reduce the risk of loss. In the future, an

Figure 8. Tracking a tagged AUV: The trajectories of the tracking AUV, the tagged AUV2, and AUV2 as estimated by AUV are
shown.
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Figure 9. Tracking a tagged shark: In (a), the trajectories of the tracking AUV and the estimated position of the tagged shark are
shown. In (b), the standard deviation (m) of the position estimate and the signal rate (signals/min) of the same experiment are
shown.

automobile battery and inverter could be used to remedy
issue 1).

The AUV and estimated shark paths from a 48-
min-long tracking experiment are shown in Figure 9(a).
Figure 9(b) shows the corresponding standard deviations of
the particle set as well as the signal rate from the acoustic tag.
While no estimation accuracy was obtained, these experi-
ments demonstrated the ability for long-term autonomous
AUV tracking and following of a live shark, while not
chasing it. Table II summarizes the results, with a notable
maximum tracking time of 1.67 h.

Table IV and Table V show statistics about missions
that were performed. The misson length and area covered
give an indication of the duration and difficulty of the ex-
periments. The tables demonstrate that stationary tracking
has better results due to the fact that signal rate declines in
the moving experiments with the introduction of external
factors. This is depicted in Figure 8(b) by the error spike at
time step 2,500 where the received signal rate drops to close
to zero. The standard deviations are a measure of error un-

Table II. Comparing error with standard deviation.

Comparison Proportion of smaller error (%)

ex < σavgX 36
ey < σavgY 42
ex < σX 22
ey < σY 26
e < σ 42

certainty. The proportion of time at which the error was less
than the standard deviation of the particle spread is shown
in Table II for the two AUV experiments. Errors were less
than the standard deviations 42.12% of the time.

While only one shark was tagged, it was tracked and
followed for several hours at a time over a two-day period. A
greater number of longer duration experiments with vary-
ing conditions are planned to further validate the robustness
of the system.

7. OFFLINE RESULTS

Using the first 1,500 s of the two AUV experimental datasets,
several classes of particle filters were investigated and com-
pared for potential improvement over the PF used during
the real-time tracking experiments:

1. Standard PF used for real-time estimation during the
tracking experiments. The prediction step used the Mo-
mentumRandomWalk model and the correction step used
only bearing measurements to weight particles.

2. Acoustic SS PF The prediction step used the Momentum-
RandomWalk model and the correction step used bearing
and signal strength measurements to weight particles.

3. Brownian Only PF The prediction step used the Brown-
ianRandomWalk model and the correction step used only
bearing measurements to weight particles.

4. Lévy PF The prediction step used the LévyFlight model
and the correction step used only bearing measurements
to weight particles.

5. Combined Brownian PF The prediction step used the
BrownianRandomWalk model and the correction step used
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Table III. Average error of particle filters for first 1,500 s (values given in meters).

Particle filter type Mean 25th quartile Median 75th quartile

Standard PF 24 23 24 24.4
Acoustic SS PF 21 21 21 22
Brownian only 19 19 19 19
Lévy γ = 1e − 2 32 24 28 32
Lévy γ = 1e − 1 23 22 23 24
Lévy γ = 1e0 39 39 39 40
Combined Brownian 17 17 17 18
Combined Lévy γ = 1e − 3 93 78 93 107
Combined Lévy γ = 1e − 2 22 20 21 24
Combined Lévy γ = 1e − 1 22 22 23 23
Combined Lévy γ = 1e0 28 27 28 28

Table IV. Mission data.

Time Mission length Area covered
Mission name Date of day (min) (m2)

sharkTrackA 8/9/11 10:41 48 14,025
sharkTrackB 8/9/11 12:07 37 3,150
sharkTrackC 8/9/11 14:42 41 9,720
sharkTrackD 8/9/11 15:33 1:41 7,280
auv2Track 8/10/11 11:19 1:38 27,7148
stationaryTrackA 8/7/11 16:19 4 2,408
stationaryTrackB 8/7/11 16:24 10 1,782
stationaryTrackC 8/7/11 20:47 10 2,376

Table V. Mission results.

Avg error Min error Max error Min σx Max σx Min σy Max σy

Mission name (m) (m) (m) (m) (m) (m) (m)

sharkTrackA n/a n/a n/a 4.23 51.59 3.44 56.12
sharkTrackB n/a n/a n/a 4.95 52.10 2.79 46.89
sharkTrackC n/a n/a n/a 1.54 79.83 2.77 65.75
sharkTrackD n/a n/a n/a 1.91 80.91 2.34 87.72
auv2Track 41.73 0.85 140.43 0.85 106.95 1.51 112.75
stationaryTrackA 7.01 0.25 15.46 2.61 13.43 3.17 12.00
stationaryTrackB 16.88 1.53 47.26 6.92 23.51 4.42 32.68
stationaryTrackC 21.70 3.13 47.54 4.21 29.10 3.49 31.05

bearing and signal strength measurements to weight par-
ticles.

6. Combined Lévy PF The prediction step used the
LévyFlight model and the correction step used bearing
and signal strength measurements to weight particles.

A total of 100 trials were run for each PF design and the
error was averaged over each trial. The results are given in
Table III.

The signal-strength based particle filter and Brownian
motion model particle filter had an average error that was

lower than that of the standard particle filter. The Lévy
flight motion model particle filter demonstrated an average
error approximately equal to or greater than that of the
standard particle filter depending on the scaling parameter.
The most effective particle filter combined the Brownian
motion model for the prediction step and the signal strength
sensor value in the correction step. It had the lowest average
error of all the particle filters.

These results provide evidence that the usage of the sig-
nal strength can be an effective sensor value in the particle
filter. Its inclusion in the standard particle filter and motion
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model based particle filters improved performance. It also
shows that alternative models of shark behavior, such as
Brownian motion, could be effective in state estimation.

There may be an explanation for the relatively high er-
ror for Lévy flight based particle filters. Particle filters based
upon specific behavioral models, such as a Lévy flight,
would be expected to be most effective when tracking a
living member of that species behaving in a normal man-
ner. The data set consists of an AUV autonomously tracking
a human-controlled AUV that was attempting to mimic a
shark. It may be that a particle filter based upon a Lévy
flight could be more effective when tracking living sharks
in the field.

8. CONCLUSIONS AND FUTURE WORK

This work presented results from the first attempt to au-
tonomously track and follow a shark using an autonomous
underwater vehicle. Despite the current prototype hy-
drophone configuration having high drag, the ambiguity
in bearing measurement sign, the high variance in signal
strength measurements to distance mapping, and the low
signal reception rate, the AUV was still able to follow a
tagged leopard shark for several hours.

There is considerable work to be done to improve this
system, including reducing the hydrophone frame profile
and drag, incorporating multiple AUVs, demonstrating the
use of signal strength measurements during real-time state
estimation, and developing optimal control policies for ac-
tive shark state estimation.

While the shark state estimation accuracy seems to be
on par with current mobile tracking methods, i.e., via a
human-driven surface vessel, future work will include a
systematic comparison between methods. Specifically, sim-
ilar tracking experiments (of a tagged shark) could be con-
ducted while simultaneously employing one of the tradi-
tional manual tracking methods.

As part of future work, the controller will be extended
to 3D motion by using the pitch control fins to incorporate
undulations as part of the AUV path. That is, the AUV will
be programmed to dive and surface at regular time inter-
vals [as the authors have done in Clark et al. (2013)], to bal-
ance the trade-off between increasing AUV state estimation
with surface-enabled GPS measurements upon increasing
the frequency of variable depth-obtained ocean sampling
measurements.

The system presented can also easily be extended to
include the capability to enter a circular search pattern (of
growing radius) when no tag signals have been detected
for a certain amount of time. In moving toward tracking
experiments of longer duration, researchers must address
the issue of the limited battery life of the AUV, as well
as ensuring maximum efficiency by minimizing the sensor
configuration profile to reduce drag.
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