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1 Abstract

This paper introduces the concept of a multi-robot community in which mul-
tiple robots must fulfill their individual tasks while operating in a shared
environment. Unlike typical multi-robot systems in which global cost func-
tions are minimized while accomplishing a set of global tasks, the robots in
this work have individual tasks to accomplish and individual cost functions
to optimize (e.g. path length or number of objects to gather).

A strategy is presented in which a robot may choose to aid in the comple-
tion of another robot’s task. This type of ”altruistic” action leads to evolving
altruistic relationships between robots, and can ultimately result in a decrease
in the individual cost functions of each robot. However, altruism with respect
to another robot must be controlled such that it allows a relationship where
both robots are altruistic, but protects an altruistic robot against a selfish
robot that does not help others.

A quantitative description of this altruism is presented, along with a law
for controlling an individuals altruism. With a linear model of the altruism dy-
namics, altruistic relationships are proven to grow when robots are altruistic,
but protect an altruistic robot from a selfish robot. Results of task planning
simulations are presented that highlight the decrease in individual robot cost
functions, as well as evolutionary trends of altruism between robots.

2 Introduction

As the number of mobile robots increases within our homes, industry, and for
scientific exploration, there is an increase in the number of situations where
many robots will have to work together within a common workspace. Such
situations will promote the necessity for a peaceful and constructive Multi-
Robot Community (MRC).
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In this work, we depart from the situation in which a group of robots are
designed, owned, or operated by a single individual or organization with the
purpose of achieving a common goal. Here, an MRC consists of robots that
may be designed, owned, or operated by several individuals or organizations
that may have different goals. Robots may be designed to act in their own
best interest and accomplish their own goals without concern of the goals of
other robots in the community. That is, robots in an MRC may be selfish.

This work proposes that robots in an MRC can achieve their goals more
efficiently through the use of altruism. We define an altruistic robot as one
which assists others in the attainment of their goals even if such actions may
be harmful to itself. Specifically, if robots are willing to perform the tasks of
other robots while decreasing their own efficiency in the short run, large gains
in individual and global efficiency can be made over long time horizons.

As an example, consider two autonomous robots commissioned to pick up
courier mail from around the city. While these robots might be owned and
operated by different and possibly competing organizations, it may be in the
best interest of both robots for them to accomplish each other’s tasks when
appropriate. That is, if robot A’s pickup location is closer to robot B, then
robot B should consider performing this pickup for robot A. This would be
an altruistic action for robot B because it reduces efficiency without accom-
plishing any of its own pickups. However, robot A might later reciprocate
this altruistic action, thereby building an altruistic relationship as a result of
which both A and B may complete their tasks more rapidly or with less total
distance traveled.

In the next section, related work is briefly covered. Section 3 defines a
framework for an MRC as well as the problem being addressed in this pa-
per. Section 4 presents a method for robots to control their altruism within
the MRC framework, highlighting the ability for robots to create altruistic
relationships while protecting them against purely selfish robots. In section
5, simulation results are presented. Finally, conclusions and future work are
provided in section 6.

3 Background

Multi-Robot Systems (MRS) have been an active area of robotics research [2],
due to the several potential advantages over single robot systems. Namely,
they offer the possibility for greater spacio-temporal sampling, force multipli-
cation, and robustness to failure. Advancements in the areas of MRS mission
planning, MRS motion planning, MRS localization, MRS mapping, and the
most related subject of task allocation have occurred over the last two decades.

3.1 Task Allocation

Of particular relevance to this work is the MRS task allocation problem, in
which the MRS must accomplish a set of tasks characterized by their geo-
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graphic location. The problem is to determine the optimal assignment of task
points to robots, along with the optimal sequence for robots to visit these
task points that minimizes the time to visit all task points. This is a variation
of the Multi-Traveling Salesperson Problem (MTSP), a problem with many
applications but no polynomial time solution (e.g. [12]). Regardless, many
good heuristic driven methods have been developed that yield sub-optimal
solutions.

One popular method of assigning tasks to robots in an MRS is to use a
Market-Based Auction approach [6]. In this method, tasks are auctioned off
to robots with the highest bids. Bids are typically based on the ability of the
robot to accomplish the task, while considering the additional cost of traveling
to the task site. While this method is not guaranteed to find optimal solutions,
it is efficient and can lead to near optimal solutions.

3.2 Altruism

In the literature on robotics there are extensive treatments of cooperation
among robots, but little mention of altruistic behaviors. Cooperation may
in fact be altruistic, but it is generally not described in those terms in the
literature. Examples of work involving cooperation are [4], [3], [10], and [8].

Work directly involving altruism includes that of [11] and [7] who describe
robot behaviors in terms of a satisfaction index and transmission/reception of
signals from other robots. A robots progress in a given task can be measured
by its satisfaction in the task, which corresponds to the fitness or performance
index indicated above. Thus, a robot needing help with a task may emit an
attraction “please help me” signal. Lucidarme et. al. [7] propose an altruism
vector based on the satisfaction index of a robot and the signals emitted
by other robots; a given robot decides on altruistic behavior based on the
magnitude of this vector. Similarly, [1] describes a software architecture for
robot colonies based on robot tropisms, defined as their likes and dislikes.
Reinforcement of particular behaviors strengthens them in future scenarios.
Here too a robot can call for help to other robots when it needs assistance in
moving heavy objects beyond its capability.

The emergence of cooperative behaviors has been studied extensively in
game theory, under the name Prisoners Dilemma, e.g.[9]. However, while the
winning strategies in this situation call for cooperation, altruism is not in the
discussions known to us.

3.3 Reputation Management

Reputation Management (RM) occurs when an agent evaluates the actions of
other agents, forms opinions about those agents, and then uses these opinions
to adjust its own actions. The field of RM involves analysis of such processes
with applications ranging from interpersonal relationships to economics. A
survey or RM with an emphasis on its application to the online marketplace
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is presented in [5]. A related example can be found in [13], where RM is applied
to the general area of ”Electronic Communities”. This work demonstrates the
positive development of altruistic relationships in which the trust of other
agents can be built up over time. This has close similarities to the application
within an MRC, but uses the trust to assess the quality of information from
other agents. Here, we use this trust to determine if robots should be altruistic
to one another, thereby improving individual performance.

4 Multi-Robot Communities

A Multi-Robot Community C = {r1, r2, ..., rN} is a set of N robots that
can interact through some shared workspace W . In this community, each
robot ri will have a set of Li individual tasks to accomplish described by the
possibly dynamic set Ti = {ti1, ti2, ..., tiLi

}. Such tasks may include taking
measurements, picking up materials, placing objects, etc.

A task tij is considered to be completed if any of the robots within C visits
the task location. Therefore, once tasks are assigned, each robot ri plans a
sequence Si of task locations to visit that minimizes path length.

Si = {tkn, tlo, ..., tmp} (1)

where indices k, l,m, n, o, p are arbitrary at this point to reflect the possi-
bility that robot ri’s task sequence Si may include any of the nth, oth, or pth

tasks belonging to any of the kth, lth, or mth robots within the community.
While different task sequencing algorithms may be used, it should be clear

that the effectiveness of the task allocation is related to how close the planned
sequences are to the optimal task sequence S∗i .

The cost incurred to accomplish a task sequence is calculated based on
the 2 dimensional euclidean distance dkn,lo between two task locations tkn

and tlo. Hence, a candidate for each robot’s personal cost function is

Ji = Ji(Si) = wi

∑

tkn,tlo∈Si

dkn,lo (2)

Where wi has units s·m−1 and for this paper has value 1. Note that, instead
of eq. (2), several other cost functions could be used within the altruistic MRC
framework that follows. The global cost function typically used to characterize
performance for task allocation in an MRS would be

Jglobal =
1
N

N∑

i

Ji (3)

This cost function can be used to measure performance of an MRC. How-
ever, individual robots participating within an MRC will most likely use only
their individual cost function described in eq. (2). Hence, controllers should
be designed with such cost functions in consideration.
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4.1 Task Fulfillment in MRC

A common approach taken for optimizing task allocation is to implement a
market-based auction system in which robots place bids for tasks (e.g. [6]).
Through inter-robot communication, each robot ri can communicate its bid
on each task as it is auctioned. The task will be awarded to the robot with
the lowest bid for that task.

A robot’s bid on a particular task will be calculated based on the ability
to complete the task in minimal time. For example, if τij is the time for robot
ri to accomplish task j and all other tasks awarded in previous bidding wars,
then the bid bij can be set to equal τij .

In this work, each robot ri can auction any of its own tasks from Ti. Other
robots can choose to bid on robot ri’s tasks, thus acting in an altruistic manner
if they win the bid and complete the task. This choice is based on the level of
altruism one robot may have towards another robot.

To be precise, we define the variable αij ∈ [0,∞] as the level of altruism
robot ri has towards robot robot rj . A robot ri will bid on other robot rj ’s
task tjk according to:

bi,jk =
{

Ji(Si ∪ tjk) if αij > Ji(Si ∪ tjk)− Ji(Si)
∞ else

(4)

The goal is to control this value of α such that robots will behave altruis-
tically towards one another. This will lead to robots doing each other’s tasks
when more efficient, thereby decreasing cost functions Ji.

However, since robots are trying to minimize their own cost, they have
incentive to act in a selfish manner by maximizing the number of their tasks
completed by other robots and minimizing the number of tasks they them-
selves complete. Hence it is not always beneficial to simply set αij to some
constant that ensures altruistic behavior (e.g. setting αij = ∞ ). Instead,
robots can adapt αij on-the-fly in response to the actions of other robots, or
more specifically in response to the complimentary altruism, αji.

When such dynamic altruistic behavior is allowed, analysis of the altruistic
dynamics within an MRC is required. To do so, a standard discretized linear
time-invariant state space model is proposed:

αt+1 = Aαt + But (5)

In this equation, α = [α12 α21 α13 α31 ... αij ]T is the state vector, t is
the time step, A = INxN is the state matrix, B = 1 is the input matrix,
and u = [u12 u21 u13 u31 ... uij ]T is the control input. While this implies a
simple model, different values for A and B are possible and may require more
complicated control laws.
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5 Altruism Controller Design

This section provides a controller for setting u in equation (5), that allows for
mutually altruistic relationships to form. Before proceeding to the design of
control laws for αij , it should be noted that the system assumes: 1) all robots
can reliably communicate with one another to conduct auctions and bidding,
and 2) all robots can either directly measure the altruistic nature αji of other
robots. This second assumption implies that individual cost functions have
the same units and can be compared.

In the control strategy proposed, each robot ri will try to set its altruistic
nature αij towards another robot to be that which the other robot rj has
toward it. This is accomplished through the following proportional control
law:

uij = Kij(αji + εij − αij) (6)

The control gain Ki > 0 determines the rate at which αij approaches the
desired value of αji + εij . The first term in this desired value is the altruism
that robot rj has towards robot ri. The second term, εij > 0, indicates how
much more altruistically robot ri will act towards robot rj .

It is important to note that εij is used to allow altruism to grow between
two robots in that if both robots use such a control law, their complimentary
values αij and αji will grow throughout time. Consider the resulting state
model of the altruistic relationship between 2 robots that can occur, regardless
of the other robots in C. Note that without losing generality, it is assumed
K12 = K21 = K and ε12 = ε21 = ε.




α12

α21

ε




t+1

=




1−K K K
K 1−K K
0 0 1







α12

α21

ε




t

(7)

The stability of the system can be evaluated through a coordinate transfor-
mation e1 = α12−α21. Given this transformation, the system can be restated
as error dynamics:

e1t+1 = (1− 2K)e1t (8)

Hence if |1− 2K| < 1 the error dynamics will be stable and it follows that
the error (α12 − α21) → 0 as t →∞.

Now, consider a desired rate of change of altruism to be Kε, then the error
in the rate of change of altruism is:

e2t+2 = (α12t+1 − α12t)−Kε (9)

Substituting the top row of eq. (7) into eq. (9) yields:

e2t+2 = −Ke1t (10)
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(a) (b) (c)

Fig. 1. Task fulfillment in an MRC when for all i,j, the altruistic nature in (a)
of robots αij = 0% and individual robot paths must span large portions of the
workspace to visit individual task points. In (b), αij = 5% and when αij = 100%
(c). With altruism, robots tend to create more localized paths that demonstrate
increased efficiency. Altruism are percentages of greatest distance a task can add to
a robots path in the given workspace.

Again if |1 − 2K| < 1, e1 → 0 as t → +∞. It then follows that e2 → 0
as t → +∞. More explicitly, the rate of change of altruism (α12t+1 − α12t)
stabilizes to Kε.

Thus, for gain conditions 0 < K < 1, the mutual altruisms α12 and α21

will both match each other and grow over time.
If, on the other hand, robot ri attempts to be altruistic towards a selfish

robot rj , (i.e. αji = 0), then the state transition from eq. (7) reduces to:
(

α12

ε

)

t+1

=
(

1−K K
0 1

)(
α12

ε

)

t

(11)

In this case we can define the error to minimize with the transformation
e3 = α12 − ε. Substituting top row of eq. (11) into this transformation yields
error dynamics:

e3t+1 = (1−K)e3t (12)

Hence if 0 < K < 1, then e3 → 0 as t → +∞, and it follows that the
corresponding state α12 is stable. In fact, this behaves like a Proportional
control system where ε is the desired state.

To note, the αij controller presented above is dependent on the reciprocal
altruism αji. If robot rj can not be trusted, then its altruism must be esti-
mated based directly on its actions and any task point tik on which it bids.
In this work, a conservative estimate is used:

α̂ij,t+1 =
{

max(α̂ij,t, Jj(Sj ∪ tik)− Jj(Sj)) if robot j bids
min(α̂ij,t, Jj(Sj ∪ tik)− Jj(Sj)) else

(13)
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6 Results

To demonstrate the general effect on an MRC when robots create altruistic
relationships, a simulated task fulfillment experiment was conducted in which
500 tasks were randomly created within a 6.4x6.4 m 2D workspace as shown
in Fig. (1). Each task was randomly assigned to be within the task set of one
of 8 robots operating in the space. After each of the 500 tasks are assigned,
robots auction them off to all robots using an assumed wireless communication
system. Robots will bid if they have sufficiently large altruism towards the
auctioneer. The order of auctioning is random.

Fig. 2. Potential effects of increased altruism within an MRC

For each run of the experiment, robots had fixed but equal values of altru-
ism. Between experiments, the altruism was incremented by 1% up to 20%,
then incremented by 10%. In Fig. (2), the average robot path cost in meters
is plotted for these values of altruism. Note that the values for altruism are
normalized with respect to the percentage of the maximum value defined as
the greatest distance between two points in the workspace (i.e. the length of
the diagonal connecting opposite corners). The path costs show a dramatic
decrease when compared with the case with no altruism. The cost plateaus
where additional tasks typically won’t cost a robot more than 20% of the
largest distance a task point can occur on path cost for the given workspace.
This can be observed in Fig. (1) as well, where in (a) no altruism results
in paths that cross one another and the entire environment. However, in (c)
where 100% altruism is used, paths are more localized and the personal cost
functions decrease to the effect that the global cost function is also minimized.

To demonstrate the effects of the control law, consider the case where two
robots start with random values for altruism with respect to each other (e.g.
0%, 18%). As shown in Fig. 3(a), the altruism between the two robots first
converges and then grows with time (i.e. as new tasks are auctioned). It can
be noted that the rising slope calculated from Fig. 3(a) is 1/16 which matches
the expected value of Kε = (0.25)(0.25).
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When robots are acting selfishly, the controller invoked by the altruistic
robot is stable, (see Fig.3(b)). The altruism towards such selfish robots reaches
equilibrium at the point ε greater than 0. Hence, the altruistic robot is still
protected against selfish robots. Note that increasing the gain K increases the
speed of convergence. In (c) and (d), cases where the altruism of other robots
are estimated using equation (13) are presented. In (c), robot 1 has altruism
fixed at 100%. Robot 2’s altruism towards 1 starts at 100% and converges to
the maximum bid used by robot 1. In (d), robot 1 has altruism fixed at 0, it
can be seen that robot 2’s altruism converges towards ε.

7 Conclusions and Future Work

This paper presented the idea of a Multi-Robot Community in which several
robots sharing a common workspace are attempting to complete their individ-
ual tasks. It was shown that altruistic actions, where robots assist with each
other’s tasks, can lead to decreased path costs for individual robots.

While a controller was presented that can set altruism such that altruistic
relationships can evolve between two altruistic robots and still protect against
selfish robots, the real contribution comes from the idea of analyzing the
stability of altruism as a linear time-invariant system. Future controllers can
be designed and analyzed in a similar fashion.

Considerable work is still required, especially to resolve the assumptions
listed above. In the future it is hoped that better estimation of another robot’s
altruism can be achieved, selfish robots that have variable values for alpha are
addressed (e.g. gaming robots), situations with uneven task distribution are
considered (5 tasks for one robot 100 for another), and practical implementa-
tion and experimentation may occur.
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