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Abstract: Modular and Reconfigurable Robots (MRR) are a breed of industrial robots 

designed for today’s flexible and versatile production facilities. MRRs can be 

assembled in various ways to achieve numerous distinct Kinematic 

configurations (KC). In MRRs, the problem of finding the most suitable KC 

for a specific task from a predefined set of modules is called Task-based 

Configuration Optimization (TBCO). To assess a KC in TBCO, a solution to 

the Inverse Kinematics (IK) problem is required. 

    In this paper, a TBCO algorithm based on Genetic Algorithms (GA) is 

proposed that utilizes a multi-solution IK solver. By solving for multiple 

solutions of the IK, The possibility of preferring a sub-optimal KC over an 

optimal configuration is decreased. Moreover, in the proposed TBCO 

algorithm a priority based GA Selection operator is used to ensure reaching 

the right solution in case of more than one optimization criteria. 

 

Keywords: Modular and Reconfigurable Robots, Task-Based Configuration 

Optimization, Genetic Algorithms, Inverse Kinematics 

1 Introduction 

A main building block of many automated manufacturing plants is the industrial 
robot manipulator. The majority of the existing industrial robots are based on a 
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fixed joint and link configuration and are designed to perform their duties for a 
general set of tasks. Although these robots can perform well in a set of particular 
workspaces, they have limited adaptability towards changes in either environment 
or the prescribed task. MRRs , on the other hand, are assembled from a variety of 
modular components and can be physically configured to meet the requirements of 
the work space and the task at hand. The set of modules may consist of joints, 
links, and end-effectors. Joint modules are the actuators that provide the degree of 
freedom of each robot. Link modules of varying length connect the joints to each 
other. The end-effector modules consist of the tools required to interact with the 
robot environment. Figure 1 shows the schematic diagram of a joint module and an 
MRR that is assembled into a three degree-of-freedom (DOF) robot. As can be 
seen from the figure, the joint module has two mechanical input and two 
mechanical output ports. Input ports should be connected to the links closer to the 
base of the robot while the output ports should be connected to the links closer to 
the end-effector. The joint will produce different types of motion depending on 
which input and ouput ports the links are connected to. 

                          

                         a                                    b  

Figure 1)  a. The schematic of a Joint module with two mechanical inputs and two 
mechanical outputs b. An MRR assembled into a 3 DOF KC  

Different KCs can be achieved by using different joint, link, and end-effector 
modules and by changing their relative orientation and, in the case of the illustrated 
example, the joint ports used. The number of distinct KCs attainable by a set of 
modules can vary with respect to the size of the module set from several tens to 
several thousands. 

Finding the most suitable configuration for a specific task from a predefined set 
of modules is a highly nonlinear optimization problem in a discrete search space 
called TBCO. 

In the literature, different approaches to solve the have been presented. 
In (Chen 1994) Chen introduced a new representation called Assembly Incident 

Matrix (AIM) for Modular Robots. AIM is then translated to a string and is used in 
a Genetic Algorithm, with reachability and manipulability as the objective 
functions. In (Chen, et al., 1998), the same concept is expanded to make a 
modified AIM that includes the port vectors. The mutation and crossover operators 
of the Genetic Algorithm are also modified to be directly applicable to the AIMs. 
In (Leger 1999) an object orientated structure to represent robots is used with a 
GA. In some cases, the algorithm relies on a human expert to redirect the search. In 
(Kim 1992) Task based configuration optimization problem is tackled with the 
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addition of numerous optimization criteria. A two level Genetic Algorithm 
approach is used in (Chocron, at al., 1997). The upper level GA searches for the 
most suitable configuration and the lower GA solves for a single solution to the 
Inverse Kinematics. 

Most of the existing TBCO algorithms use a GA to optimize the KC. At each 
iteration of these GAs, a solution to the Inverse Kinematics problem is required. 
The approaches referenced mostly rely on numerical methods to solve the IK 
problem. Unfortunately, numerical IK methods only converge on the solution that 
is closest to their starting point. Therefore, only one solution of the Inverse 
Kinematics will be considered when two KCs are being compared. 

In this paper, a TBCO algorithm is proposed that uses a Genetic Algorithm as 
the core optimization engine (as in previous works). However, in contrast to the 
existing methods the proposed algorithm utilizes multiple solutions of the IK 
problem. To facilitate that, an IK solver capable of calculating multiple solutions of 
the IK for a wide range of robotic manipulators has been developed. 

In summary the contributions of this paper can be highlighted as: 
• A novel MRR representation called KMR is proposed. 
• A multi-solution Inverse Kinematics solver is used for assessing the 

KCs. 
• A novel priority base Tournament Selection operator specifically 

modified for TBCO is proposed. This operator enables the algorithm 
to search for a KC that can perform a certain task better than the others 
according to an efficiency criterion. 

• TBCO specific Crossover and Mutation operators have been proposed. 
By using the proposed operators, The GA is applied directly on the 
KMR without the necessity of coding to a string. 

This paper is organized as follows. In Section 2 the proposed TBCO algorithm is 
explained in detail. The subsections include problem formulation, Module 
inventory and kinematic representation and the Inverse Kinematics. In Section 3 
the results of applying the proposed TBCO algorithm in finding a 3DOF kinematic 
configuration for a task is presented. Section 4 discusses the conclusion and the 
future work of the project. 

2 Task Based Configuration Optimization 

The goal of TBCO is finding a KC, or an assembly sequence of the modules, 
capable of performing a certain task more efficiently than the other configurations. 

A task in the Cartesian space is defined by a set of task points. Each task point 
consists of a position and an orientation in space. The vector of the position of task 
point t with respect to the origin is represented by t

OTP  and is shown in Eq.(1.1). 
The orientation of task point t is represented by t

OTO  and can be defined as in 
Eq.(1.2). In this equation, ( , , )t t tα β γ are the Euler angles of the task point t. 
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The measure that represents the ability of a KC to accomplish a task is called 
reachability. Reachability shows how capable a KC is in reaching the position and 
orientation of the task points. Position reachability for task point t is represented by 

,
p

rch tf  and can be defined as in Eq.(1.3). 

 
,

p t

rch t OT OE
f P P= −  (1.3) 

Where OEP is the position of the end-effector of KC when it is as close as possible 
to t

OTP . In more specific terms, p

rchf  is the distance of the position of the task point 
to that of the KC when the KC is as close as possible to the task point. Eq.(1.4) 
shows the orientation reachability definition. 

min( ( , , ) ( , , ) , ( , , ) ( , , ) )o

rch t t t e e e t t t e e ef α β γ α β γ α β γ α π β γ π= − − + − −                (1.4) 

Where ( , , )e e eα β γ  are the orientation of the end-effector when it is as close as 
possible to that of the task point. The total reachability can be defined as the 
weighted sum of p

rchf  and o
rchf  as in Eq.(1.5) Where p

rchw and o
rchw are the weigthing 

factors. 

 . .
p p o o

rch rch rch rch rchf w f w f= +  (1.5) 

A position and orientation reachability of zero for a certain task indicates that 
the KC is capable of performing the task. In practice, usually more than one KC 
exist that can accomplish a certain task. Hence, the KC that can perform the task 
more efficiently than the others according to an optimization criterion (or a set of 
criteria) should be sought.  

The TBCO can be formulated into an Optimization Problem as in Eq.(1.6).  
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 (1.6) 

As can be seen from the equation, the goal is finding a Kinematic Configuration 
R capable of achieveing the task within a reachability less than a tolerance value 
ε  while minimizing an optimization criteria opf . In this reaseach, as the 
optimization criterion opf , Relative Manipulability is used. Κ represents the space 
of all the possible kinematic configurations attainable by a set of modules. 

Figure 2 shows the architecture of the proposed TBCO algorithm. The inputs to 
the algorithm are module inventory, optimization criteria, and the task. These 
inputs must be coded before entering the algorithm. The way these parameters are 
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coded greatly depends on the optimization algorithm that is used, and has a 
dramatic effect on the performance of the algorithm. 

 

Figure 2 ) Architecture of the proposed TBCO algorithm 

The first set of inputs, module inventory, is the group of available modules. 
This set determines the size and complexity of the Kinematic Configuration space 
Κ . The optimization parameters are another group of inputs to the algorithm. 
These parameters are application dependent and the set of parameters relevant to 
the tasks are highlighted and selected as the inputs of this stage. The task is the last 
input to algorithm. The task usually depends on the product or object that will be 
manipulated by the robot. From the task, a set of the more dominant task points are 
extracted.  

An optimization algorithm is the core of TBCO. This part of the algorithm 
reads the inputs and finds the optimized kinematic configuration. In this research, 
Genetic Algorithms are used because of their high efficiency in searching highly 
nonlinear discrete or continuous spaces. In the GA block, an initial population of 
the Kinematic Configurations is randomly generated. Each of the individuals of 
this population represents a kinematic configuration. According to their fitness 
value the best ones are selected to form a parent pool. To calculate the fitness value 
for each of the KCs, the Inverse Kinematics and Forward Kinematics should be 
solved. After undergoing the Crossover and Mutation operators a new generation 
of kinematic configurations is formed. This process will continue until a 
termination criterion has been met. 

Finally, a decoding stage will convert the output of the optimization algorithm 
to a kinematic configuration. The output of this stage can include DOF, joint and 
link types, assembly sequence, and relative orientation of joints.  

In the following sections, each of the blocks of the proposed TCO algorithm 
will be explained in more detail. 

1.1 Module Inventory Encoding and Kinematic Configuration 
Representation 

Figure 3 shows the module inventory used in the proposed algorithm. As can be 
seen, all the links and joints are symmetrical along the axis of the mechanical ports. 
Therefore, a joint can be connected to a link in four different orientations.  
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         a                                     b                                   c                                    d         

Figure 3 )  Module Inventory – a) Rotational Joint Module  b) Pivotal Joint Module  
c) Perpendicular-Rotational Joint Module  d) Link Modules in three different sizes 

To represent a KC assembled from the module inventory, a representation called 
Kinematic Matrix Representation (KMR) is proposed. Eq.(1.7) shows the KMR of 
an n DOF robot.    
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In KMR, the elements of the first column ( 1φ ) represent the orientation of each 
joint module relative to the previous one. This orientaion is measured along the 
axis perpendicular to each mechanical port. In the second column, the joint module 
types ( iM ) are stored. The third column represents the link module types ( iL ). The 
values that each of these variables can store are shown in Table 1. The KMR 
matrix has 3 column and n+1 rows, where n is the DOF of the robot. The first row 
represents the first link of the robot. This link is perpendicular to the ground and 
connects the first joint to the base of the robot. Last element of the matrix, at row 
n+1 and column 3, is the last link which can store a value corresponding to a tool 
or a spherical wrist. 

Table 1 ) Eligible Values for the variables in KMR 

Variable Value Meaning  Variable Value Module 

iφ  0 0 Radians  iL  0 No Links 

 1 2π Radians   1 Small Link 

 2 π Radians   2 Medium Link 

 3 3 2π Radians   3 Large Link 

    iM  0 Rotational Joint 

     1 Pivotal Joint 

     2 Perpendicular-rotational 

1.2 Optimization Criteria 

As the optimization criteria Relative Manipulability ( rM ) is used (Kim 1992). rM  
is defined as in Eq.(1.8). Where m and n are the number of rows in the Jacobian 
Matrix (the dimension of the task space) and the number of joint respectively. 

ia and id  are the link length and joint offset of the ith joint. Larger values of 
Manipulability in robots are preferable. 
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1.3 Genetic Algorithm and GA operators 

1.3.1 The Algorithm 
A Genetic Algorithm, through Selection, Cross-over and Mutation operators, finds 
the individuals (in our case KCs) that have the best fitness values and combines 
them to produce idividuals that offer better fitness values than their parents. This 
process continues until the population converges around the individual that have 
the best fitness value (Goldberg 1989). In our application, a Microbial GA (Harvey 
1994) (Harvey 2001) which has been modified for TBCO was implemented. In the 
original Microbial GA, Tournament Selection is used. In Tournament Selection 
two individuals are randomly picked from the GA population and  after 
comparison the one with the better fitness value is selected as the winner. In our 
modified microbial GA, to find the two parents, two sets of Tournament Selections 
are performed in parallel. The losers of the two Tournaments will be replaced by 
the offsprings of the crossover of the winners. 

To estimate the potential of individuals, a fitness value should be allocated to 
them. In TBCO, the fitness value is evaluated by rchf and opf . To fit the TBCO 
problem into the GA structure, the optimization problem of Eq.(1.6) can be 
reformatted as in Eq.(1.9). In the new equation, the goal is finding an R which is 
able to minimize both rchf and opf . 

 min ,rch op
R

f f
∈Κ

 (1.9) 

In most of the existing TBCO algorithms, a weighted sum of rchf and opf  is used as 
the fitness value. But it should be noted that opf  becomes of importance only if a 
KC can satisfy the reachability requirements. Hence the necessity of a selection 
scheme which considers the priority of Reachability over the optimization criteria 
arises. Figure 4 shows the Pseudo code of the proposed Selection Scheme.  
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Figure 4 ) Pseudo code of the proposed Selection Scheme 
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Where κ , ϕ  and ρ  are constants. According to the scheme, when two KCs are 
being compared three cases could happen. If the reachability of the two KCs are 
very close to each other the one with the better opf is the winner. If the 
reachabilities are fairly close, the one with better opf  with a certain probability of 
ρ  will be the winner. Finally, if the difference between the reachabilities is large 
the one with the better reachability is selected as the winner. It can be observed that 
the scheme considers opf only if the KCs have approximately the same rchf . 

1.3.2 The GA operators 
In the proposed TBCO algorithm, the Cross-over operator is implemented as 

follows. One element of the kinematic configuration matrix is selected randomly. 
Within the two matrices undergoing crossover, all elements located after the 
selected element are swapped. To accomplish the Mutation, one of the elements of 
the kinematic configuration matrix is selected randomly. This element is replaced 
with another randomly generated number. The mutated number should comply 
with the element type it is being stored in. Figure 5 shows an example of applying 
the operators on the KMR. 
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Figure 5 ) The proposed GA operators: a. Crossover  b. Mutation 

1.4 Inverse Kinematics 

In order to calculate the reachability and most of optimization criteria a solution to 
the IK problem is required. In most of the existing TBCO algorithms, IK is solved 
numerically. The numerical IK algorithms converge to the closest solution to their 
initial value. As a result, only the fitness values that corresponding to only that IK 
solution will be used in the Tournament Selection. In this case, there always is a 
chance that a good IK solution of a less suitable KC will be preferred to a worse 
solution of a desirable KC. To solve this problem, a multi-solution IK solver based 
on Niching Genetic Algorithms has been developed by the authors (Tabandeh, et 
al., 2006). The algorithm is developed based on a Niching GA algorithm. Niching 
GA has the ability to converge on multiple solution regions. In the mentioned 
algorithm, the output is filtered and the solution regions are detected after being 
passed through a clustering algorithm. In the present research, the outputs pass 
through two more blocks, a numerical IK and a selection phase. The numerical IK 
is used to reduce the error even more. In the selection phase, the best IK solution 
according to the optimization criteria is chosen to be included in the TBCO 
algorithm. 
Figure 6 shows a block diagram of the IK. The inputs to the algorithm are the robot 
kinematic configuration and the task in space. 
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Figure 6 ) Schematic Diagram of the proposed Multi-solution IK solver  

3 Results 

The proposed TBCO algorithm was used to seek the most suitable 3DOF 
configuration for a single point task. Since it was assumed that spherical wrist is 
used, only position reachability was considered. As was mentioned earlier, 
Relative Manipulability was used as the optimization criteria. The desired task 
point is shown in Eq.(1.10). 
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The TBCO algorithm was set to run for 200 generations. Figure 7-a shows the 
progress of the minimum Reachability of each generation with respect to the 
generation number. As can be seen, the Reachability decreases to 7.5 ( 3% of 
the OTP ) with the progree of the algorithm. It should be noted that it is possible to 
gain even lower reachabilities by increasing the maximum generation number. The 
KMR of the robot that could reach the least reachability in the last generation is 
shown in Eq.(1.11). Figure 7-b shows the robot corresponding to this KMR. The 
black sphere close to the end-effector of the robot is the desired task point. The 
Relative Manipulability of the robot in reaching the task is 0.0866. 

          

              a                   b 

Figure 7 )  a. Progress of the Reachability with respect to the generation number  b. 
The output of the TBCOalgorithm 
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4 Conclusions and Future work 

A Task-based Configuration Optimization based on a Genetic Algorithm was 
presented. The algorithm uses a Multi-solution IK solver to calculate the fitness 
value of Kinematic Configurations. The proposed TBCO algorithm uses a novel 
Selection scheme. Moreover, modified Crossover and Mutation operators to handle 
KMRs were explained. The algorithm was used to find a KC capable of performing 
a certain task while achieving a high relative Manipulability. 

To fully utilize the capabilities and deficiencies of the algorithm, 
implementation of a larger set of optimization criteria is the next phase of the 
research. Moreover, addition of orientation reachability and expanding the 
algorithm to search in the space of n DOF Kinematics configuration for a larger set 
of task points could be another focus of the TBCO development.  
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