
Monocular Vision based Particle Filter

Localization in Urban Environments

by

Keith Yu Kit Leung

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, August 2007

c©Keith Yu Kit Leung, 2007

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

Keith Yu Kit Leung

I further authorize the University of Waterloo to reproduce this thesis by photo-

copying or other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

Keith Yu Kit Leung

ii

Abstract

This thesis presents the design and experimental result of a monocular vision based

particle filter localization system for urban settings that uses aerial orthoimagery as

a reference map. The topics of perception and localization are reviewed along with

their modeling using a probabilistic framework. Computer vision techniques used to

create the feature map and to extract features from camera images are discussed.

Localization results indicate that the design is viable.

iii

Acknowledgements

The author would like to express his appreciation for the positive support and con-

sultation received from his supervisors, Christopher M. Clark, and Jan P. Huissoon,

while performing the research presented in this thesis. The author would also like to

express his gratitude to his family for their support and encouragement during his

studies

iv

Contents

1 Introduction 1

1.1 Autonomous Navigation . 2

1.2 Thesis Objective . 6

1.3 The Proposed Solution . 7

2 Perception 11

2.1 Sensor overview and classification . 12

2.2 Laser rangefinders . 13

2.3 Global positioning system . 17

2.4 Cameras . 21

2.5 The probabilistic sensor model . 23

3 Localization 26

vi

3.1 The Bayes Filter . 29

3.2 The Kalman Filter . 32

3.3 The Particle Filter . 36

4 Feature Map Generation 40

4.1 Edge Detection . 43

4.2 Shadow Edge Removal . 45

4.3 Distraction and Vegetation Masking from the Edge Map 48

4.4 The Hough Transform . 52

4.5 Modified Progressive Probabilistic Hough Transform 58

4.6 Noise Removal from Feature Map . 65

5 Camera Measurements 70

5.1 Distraction Masking . 73

5.2 Vanishing Point Detection Overview 77

5.3 Vanishing Point Identification . 81

5.4 Feature Classification . 87

5.5 Data Representation . 92

vii

6 Particle Filter Implementation 94

6.1 State Transition . 96

6.2 The Importance Factor . 99

6.3 Particle Resampling . 104

6.4 Localization Results . 105

6.5 Sensitivity to Input Uncertainties . 115

6.6 Timing analysis . 117

7 Conclusions 120

7.1 Future Work . 122

Appendices 124

A Feature Map Processing Examples 124

B Camera Image Processing Examples 128

C Additional Localization Results 141

viii

List of Tables

2.1 Sensor classification . 14

2.2 LIDAR range vs power consumption 16

2.3 SPS and PPS comparison . 19

6.1 The effects of control input variance on the localization performance

(success rate) of the particle filter . 116

6.2 The effects of control input variance on the localization performance

(positional error and particle spread) of the particle filter 116

6.3 Particle filter localization process timing summary 118

ix

List of Figures

1.1 Layout of the proposed localization system design in relation to the

navigation process . 10

2.1 SICK laser scanner (LIDAR) . 15

2.2 The Logitech Quickcam Pro 5000 Webcam 24

3.1 The navigation loop . 27

3.2 Examples of sensor aliasing . 28

4.1 An aerial image showing the central portion of University of Waterloo

campus . 42

4.2 An overview of the feature map generation process 44

4.3 Canny edge detection on an aerial image 46

4.4 The Sobel operators . 47

4.5 The corner response of an aerial image 51

x

4.6 The corner response / distraction and vegetation mask 53

4.7 The corner response mask over the localization system testing area . 54

4.8 The normal form for the equation of a line 55

4.9 An example showing the basic concept behind the Hough Transform . 56

4.10 The Progressive Probabilistic Hough Transform (PPHT) Algorithm . 57

4.11 The corner response / distraction and vegetation mask 59

4.12 Canny edge detection threshold setting comparison 61

4.13 The modified Progressive Probabilistic Hough Transform algorithm . 62

4.14 The result of the modified PPHT feature extraction process on the

localization system testing area . 64

4.15 Coincidence check for line segments 66

4.16 Connectivity check to other line segments 68

4.17 The final result of the feature extraction process on the localization

system testing area . 69

5.1 Recovering depth information using building base lines in monocular

vision . 72

5.2 Restricting object location based on bearing information 72

5.3 An image captured by the camera for localization 74

xi

5.4 The edge map of figure 5.3 produced by the Canny edge detector . . 74

5.5 The edge map density measure for estimating areas of distractions . . 75

5.6 The edge response mask generated from the density measure 76

5.7 The resulting edge map after masking 76

5.8 The vanishing points of an object in image space 78

5.9 The Gaussian Sphere . 79

5.10 The interpretation plane normal vector 81

5.11 Identifying irrelevant intersection points 84

5.12 Result of the vanishing point analysis 90

5.13 Azimuth error due to camera tilt and roll 91

5.14 Data representation for information extracted from on board camera

images . 93

6.1 The localization test track . 99

6.2 Data representation example for map features visible to a particle . . 102

6.3 A combined data representation of expected and real measurements . 102

6.4 Low variance sampling . 104

6.5 Particle filter localization result - sequence 1 of 12 - elapsed time: 0s . 107

xii

6.6 Particle filter localization result - sequence 2 of 12 - elapsed time: 15s 107

6.7 Particle filter localization result - sequence 3 of 12 - elapsed time: 30s 108

6.8 Particle filter localization result - sequence 4 of 12 - elapsed time: 45s 108

6.9 Particle filter localization result - sequence 5 of 12 - elapsed time: 60s 109

6.10 Particle filter localization result - sequence 6 of 12 - elapsed time: 75s 109

6.11 Particle filter localization result - sequence 7 of 12 - elapsed time: 90s 110

6.12 Particle filter localization result - sequence 8 of 12 - elapsed time: 105s 110

6.13 Particle filter localization result - sequence 9 of 12 - elapsed time: 120s 111

6.14 Particle filter localization result - sequence 10 of 12 - elapsed time: 135s111

6.15 Particle filter localization result - sequence 11 of 12 - elapsed time: 150s112

6.16 Particle filter localization result - sequence 12 of 12 - elapsed time: 175s112

6.17 Indication of particle convergence in a typical test run 114

6.18 A comparison of computational demand for sub-processes of the par-

ticle filter based on mean timing information 118

A.1 An additional example on corner response / distraction / vegetation

masking . 125

A.2 An additional example on corner response / distraction / vegetation

masking . 126

xiii

A.3 An additional example on the modified PPHT process 127

B.1 An image captured by the camera for localization 129

B.2 The edge map of figure B.1 . 129

B.3 The edge map density measure for figure B.1 130

B.4 The edge response mask for figure B.1 130

B.5 The resulting edge map of figure B.1 after masking 131

B.6 An image captured by the camera for localization 131

B.7 The edge map of figure B.6 . 132

B.8 The edge map density measure for figure B.6 132

B.9 The edge response mask for figure B.6 133

B.10 The resulting edge map of figure B.6 after masking 133

B.11 The vanishing point analysis results for figure B.6 134

B.12 An image captured by the camera for localization 135

B.13 The edge map of figure B.12 . 135

B.14 The edge map density measure for figure B.12 136

B.15 The edge response mask for figure B.12 136

B.16 The resulting edge map of figure B.12 after masking 137

xiv

B.17 The vanishing point analysis results for figure B.12 137

B.18 An image captured by the camera for localization 138

B.19 The edge map of figure B.18 . 138

B.20 The edge map density measure for figure B.18 139

B.21 The edge response mask for figure B.18 139

B.22 The resulting edge map of figure B.18 after masking 140

B.23 The vanishing point analysis results for figure B.18 140

C.1 particle filter localization result, set 1 - sequence 1 of 12 142

C.2 particle filter localization result, set 1 - sequence 2 of 12 142

C.3 particle filter localization result, set 1 - sequence 3 of 12 143

C.4 particle filter localization result, set 1 - sequence 4 of 12 143

C.5 particle filter localization result, set 1 - sequence 5 of 12 144

C.6 particle filter localization result, set 1 - sequence 6 of 12 144

C.7 particle filter localization result, set 1 - sequence 7 of 12 145

C.8 particle filter localization result, set 1 - sequence 8 of 12 145

C.9 particle filter localization result, set 1 - sequence 9 of 12 146

C.10 particle filter localization result, set 1 - sequence 10 of 12 146

xv

C.11 particle filter localization result, set 1 - sequence 11 of 12 147

C.12 particle filter localization result, set 1 - sequence 12 of 12 147

C.13 particle filter localization result, set 2 - sequence 1 of 12 148

C.14 particle filter localization result, set 2 - sequence 2 of 12 148

C.15 particle filter localization result, set 2 - sequence 3 of 12 149

C.16 particle filter localization result, set 2 - sequence 4 of 12 149

C.17 particle filter localization result, set 2 - sequence 5 of 12 150

C.18 particle filter localization result, set 2 - sequence 6 of 12 150

C.19 particle filter localization result, set 2 - sequence 7 of 12 151

C.20 particle filter localization result, set 2 - sequence 8 of 12 151

C.21 particle filter localization result, set 2 - sequence 9 of 12 152

C.22 particle filter localization result, set 2 - sequence 10 of 12 152

C.23 particle filter localization result, set 2 - sequence 11 of 12 153

C.24 particle filter localization result, set 2 - sequence 12 of 12 153

xvi

Chapter 1

Introduction

The field of robotics has achieved great success and recognized to have many potential

applications. As a definition, robotics can be considered the science of perceiving

and manipulating the real physical world through computer controlled devices [1].

Industrial manufacturing is one large sector that has benefited from robotics, where it

is now a common sight to see robotic arms and manipulators installed beside assembly

lines. However, one thing that manipulators lack is mobility as they are usually fixed

at a certain location. Mobile robotics involves robots that have the freedom to travel

and this mobility has provided benefits in diverse fields of application. However,

possessing mobility also introduces difficulties which need to be addressed, especially

when a robot is required to operate autonomously.

There are numerous fields in which mobile robots can be found. Perhaps one of

the first things that will come to mind is planetary exploration or aerospace appli-

cations, made famous by the NASA Mars missions involving the rovers Sojourner

(deployed in the Pathfinder mission in 1997), Spirit, and Opportunity (both of which

were deployed in 2004). While the rovers are great achievements, one does not have

1

CHAPTER 1. INTRODUCTION 2

to go to Mars to find mobile robots. Closer to home, mobile robots are found in

humanitarian de-mining operations throughout regions of the world that have had

a recent history of conflicts [2]. Robots are also used in the removal of explosives

as well as urban search and rescue operations. In less hostile environments, mobile

robots can be found as tour guides in museums [3] or even as a vacuum cleaner [4]. As

for transportation, warehouses, manufacturing plants, and container ports [5] profit

from using teams of robots for moving goods to desired locations. Mobile robots have

also found their application in personal transport in urban environments such as the

CyCab [6] developed in France. Off the ground, the military is very keen on the

usage of autonomous un-manned aircrafts for surveillance on the modern battlefields

[7]. For underwater applications, numerous institutes and companies have developed

autonomous underwater vehicles (AUV) for research in lakes and oceans [8]. The ap-

plications listed above are only a sample from a larger list of applications. In general,

mobile robots are employed in performing tasks where either people can not get to

or where the environment is too hostile for human presence. They are also used to

autonomously perform endless repetitive tasks without consideration of fatigue. In

all the applications listed above, accomplishment of the desired tasks requires a robot

to recognize how and where it should move.

1.1 Autonomous Navigation

Autonomous navigation continues to be a challenge in mobile robotics. However, the

methods by which navigation is carried out is very similar to the methods used by

humans. Usually the objective is to travel to a goal defined in the configuration space

(defined as all allowable states for the robot), and may involve visiting waypoints

in between. Performing this task successfully requires achieving the four navigation

fundamentals of perception, localization, cognition, and motion control [9].

CHAPTER 1. INTRODUCTION 3

Perception involves gathering information of the environment or actions performed

by a robot using sensors, and interpreting the data to something meaningful for the

navigation system. Humans mainly rely on vision to perceive the surrounding world

and robots too can be given the ability to see through a camera. Besides vision,

robots can rely on other sensors such as rangefinders to perceive distance to objects

or gyroscopes to determine self orientation. Beacon based sensors such as global

positioning system (GPS) are also commonly used.

Localization is also known as state estimation. The state of a robot often contains

multiple variables in a vector that uniquely define a robot in the its workspace. For

a mobile robot, the state vector will usually define the position and orientation (or

heading direction) of the robot. Other variables that may be included in the state

vector are velocities and accelerations. In general, the variables included in the state

vector is application specific, and state variables can be omitted if they have no

influence on the task that a robot needs to achieve [1]. Being able to localize is an

important part of a robot system because actions taken to cause state transitions are

commonly dependent on the latest state estimate. In navigation, a robot needs to

have the best estimate of where it is to determine how it should continue to control

its own motion to reach the desired goal. In order to localize, it is necessary to have

a perception of the surrounding environment by obtaining measurements through

sensors. A sensor may or may not be a direct measurement of the robot state and

often times it is necessary to determine the state by referring to a measurement model

and a map. For instance, a GPS receiver is able to directly measure the position of a

robot and only the transformation between the GPS frame of reference and the local

frame of reference is required. On the contrary, a laser rangefinder can only measure

distance to an object and it is necessary to refer to a map in order to perform state

estimation. A map contains information of a robot’s workspace. Since robots rely on

this information for localization, it should be as accurate as possible. Any deviations

from reality may cause a robot to exemplify unusual and undesirable behaviours.

CHAPTER 1. INTRODUCTION 4

In some applications, a map is unavailable and a robot is required to produce a

map for itself while localizing concurrently. The problem is known as simultaneous

localization and mapping (SLAM), and it is an area of heavy research interest in

mobile robotics. The SLAM problem can be further divided into two types; the online

SLAM problem attempts to estimate the latest state and map, while the full SLAM

problem attempts to estimate the current and all previous states [1]. The extensive

research in this area has produced numerous variations of algorithms. Besides sensor

measurements, motion control inputs and the previous state estimate are necessary

to account for the state transition between measurements. The dependence of an

state estimate on a previous state estimate makes localization a recursive process.

Approaches using a probabilistic approach derived from the Bayes filter is common

in localization. Two popular methods are the Kalman filter and the particle filter.

With a probabilistic approach, a probability density function is used to describe

the belief state. Therefore, it is possible to generate a multiple hypothesis belief

state which correspond to multiple local maxima in the probabilty density function.

This capability is considered superior to a single hypothesis belief state estimation

because a single belief state is incapable of handling situations of ambiguities, where

for instance the same sensor measurement may be obtainable from being in various

states.

Cognition is the decision making step. Having localized or having a certain degree

of confidence in the belief state, it is necessary to plan how the robot should move as

it works its way towards the goal while avoiding obstacles or potentially dangerous

regions in the workspace. There exist many methods in literature [9, 10] for perform-

ing path planning. In general, planning algorithms can be classified as a road map,

cell decomposition, or potential field.

Motion control involves determining how the actuators on a robot are to operate

in order to follow the planned path or trajectory. This is specific to the design of a

CHAPTER 1. INTRODUCTION 5

robot and the configuration of its actuators. Knowledge of the dynamics or kinematics

models of the robot system is usually required to calculate the proper control inputs.

The four successive tasks described above form the architecture of map-based (or

modeled based) navigation. An alternative to map-based navigation is behaviour-

based navigation where perceived sensor data is mapped directly to motion control

inputs for the actuators. This approach is computationally less demanding but gen-

erally less flexible compared to the map-based approach if the workspace is changed.

Hybrid approaches that combine the two navigation models also exists [9].

Many mobile robots have been shown to perform successfully in indoor applica-

tions in the past. Indoor or laboratory environments tend to be more structured and

consistent, therefore perception, localization, and motion control can be achieved with

greater consistency and accuracy. Achieving autonomous operations outdoor however

is still generally a more difficult problem compared to indoor applications. Outdoor

environments can be more dynamic and unpredictable, and this leads to greater un-

certainty. The performance of sensors may be degraded in outdoor environments as

well. For instance a laser range finder has limited range and may not detect objects in

large open areas. Additionally, it is unpredictable what obstacles or objects the robot

will come across. The surfaces of particular objects may be noisy, cause faulty range

readings, or prevent the detection of the objects completely. Uncertainty also exists

in motion control. While control noises are experienced in all environments, models

used in determining control inputs may be insufficient in accounting for all outdoor

environments. Consider terrain type as an example, a wheeled robot that wishes

to accelerate to a certain velocity will perform differently if the surface of which it

sits on is wet, dry, icy, or sand covered unless there exists terrain dependent models

which the robot can correctly identify and use. Overall, managing the uncertainty is

perhaps one of the biggest obstacles in designing an outdoor robot that can operate

robustly [1].

CHAPTER 1. INTRODUCTION 6

Uncertainty in robot perception and action has promoted the use of probabilis-

tic techniques in robotics, where uncertainty is represented according to probability

theory. With this approach, it is not necessary to rely on a single best estimate of sen-

sor measurement or real actuator output. Instead, information is represented using

probability distributions where uncertainty can be quantified. When the probabilistic

paradigm is applied to localization, a robot can represent its current belief state as a

probability density function over the state space (representing all possible robot loca-

tion and poses). The distribution is then updated according to sensor measurements

or robot interactions with the environment.

1.2 Thesis Objective

This thesis proposes the design of an urban outdoor localization system using a high

resolution aerial image as the map of an operation workspace while attempting to

minimize the cost and complexity of the the sensors involved in the implementation

of the solution. The urban outdoor environment is chosen in this investigation to

address the problem where beacon based sensing and localization (such as with the

use of GPS) is not possible or has degraded performance due to buildings in the

operation area that interfere with beacon signals [11].

The use of an aerial image as the map for localization is a new challenge. A

computer is required to process the given aerial image to pick out an appropriate

set of features that will serve as the navigation map. These same features must

also be identified from information gathered from on board sensors. By matching

the features obtained from the sensors with those from the aerial image, the robot’s

pose can be estimated. The ability to perform the feature extraction and matching

processes will have a direct influence on the ability to localize correctly. Being able to

CHAPTER 1. INTRODUCTION 7

achieve localization with an aerial image provides an additional degree of autonomy

for a robot system, as it will show that a human operator is no longer required to

manually compile a map that is comprehensible by machine. So far no research has

been published regarding the use of aerial images for urban localization.

Minimizing the number of sensors is beneficial because it reduces the physical

space required for installation and thus promotes the use of the proposed solution on

robot platforms of various sizes. Furthermore, interfacing of the hardware components

to the robot computer becomes simpler, with less components to connect. Besides

quantity, the types of sensor that will be used also needs to be considered in terms

of cost, and the information that they will provide. The drawback of minimizing

the cost and complexity of on board sensors is a reduction in information available.

Sensor aliasing (where different objects look the same to a sensor) may also become

more noticeable. Therefore, in general it becomes harder to localize. Robots that

have been successfully employed in urban outdoor environments in the past rely on

an array of different sensors to perceive the environment, such as the one presented

in [12] which uses multiple cameras, a laser scanner, proximity sensors, and GPS. So

another challenge in this thesis is to achieve localization with less resources.

The end objective is to achieve autonomous localization in an outdoor urban

environment defined by an aerial image without knowledge of the initial position and

heading.

1.3 The Proposed Solution

The proposed solution uses a single digital camera as the only sensor connected to

the localization system for perception. This allows the aim of minimizing cost and

complexity of hardware use in the localization system implementation to be achieved.

CHAPTER 1. INTRODUCTION 8

Other researchers have tried using monocular vision in localization because of

the simplicity of the hardware involved. However, the work in this area is currently

limited, suggesting that the problem of localization using only monocular vision has

not been an area of concentrated research previously. Only recently has related work

been published in relation to this problem In recent publications, researchers have

tried using a database of images to serve as the map in localization. In [13], images

at various points in the operating workspace is tagged with GPS position readings

and stored in a database. Matching of features between the database images and

the on board camera images was carried out by performing scale invariant feature

transform (SIFT). In [14], the appearance of the city skyline from various locations

were used instead as the map and similar work are indicated to have been done

by looking at the details of building facades. In the most related and recent work

presented in [11], a robot is first guided through a course as it captures a video of

the scene. The information is used offline where distinct image features are selected

to generate a three dimensional map. The robot is then shown to localize itself

using on board camera images using a trajectory close to the path which the robot

took in generating the map. The methods highlighted share the similarity that a

map is created by capturing images at known locations and then compared to on

board camera images when localization is performed. The approach that this thesis

undertakes is different in that it is not necessary to obtain on board images of the

environment before performing localization. Instead, this information will come from

an aerial image, which is a highlight of the proposed design.

Image processing techniques are applied to the aerial image to highlight building

boundaries (walls), which are obstacles that a robot must avoid as it travels through

the workspace. The building boundaries are also a good feature to look for because

they can be seen from the on board camera, and thus there is a similar type of object

that can be compared between the aerial image and an on board image for localiza-

tion. A shape detection process based on the Hough Transform is used to convert

CHAPTER 1. INTRODUCTION 9

the building boundary information on the aerial image to a set of line segments, a

higher level parameterized representation. For the on board camera images, a similar

technique is used to highlight features on building walls. It is assumed that most

man-made structures have walls that are planar and orthogonal to the ground. With

this assumption, the orientation of a building boundary can be estimated using van-

ishing points and compared directly to the aerial map. There are existing methods

for vanishing point detection and the proposed localization system design enhances

these methods to better suit the purpose of the system.

Feature comparison will be carried out as a component of the particle filter. This

localization method based on the probabilistic framework of the Bayes filter is used

because of its ability to perform state estimation with unknown initial position and

orientation. In the implementation and testing of the localization filter, a real robot

will not be used. Instead, the equipment that will be involved is only a computer and

a camera. Therefore, the motion control component of navigation is done manually.

It is assumed that state transition (motion) information (limited to forward velocity

and yaw) is known but noise will be artificially added to imitate a robot with known

motion control inputs. Also, the system is tested offline using saved camera footage.

The way in which the proposed solution for localization fits into the map based

navigation framework is shown in figure 1.1.

This figure shows the four components of map based navigation and their relation-

ships with each other. Since a probabilistic approach is taken for state estimation, it

is expressed as a probability density function p(x), where x is the state vector. The

state estimate is used in motion planning, which generates the controls u necessary

to maintain the planned trajectory. The control inputs causes the actuators to in-

teract with the environment to produce physical motion, and at the same time this

information is made available to the particle filter to allow the localization system

CHAPTER 1. INTRODUCTION 10

Figure 1.1: Layout of the proposed localization system design in relation to the

navigation process

to account for state transition due to the control inputs. The information regarding

the changed state of the robot in the real world is captured by sensors. The sensor

measurements z are then compared to the expected measurements, which is expressed

as a probability density function using the sensor model and the perceived state. The

remainder of this thesis contains discussions on perception and localization in greater

details. Implementations of the proposed solution will follow, explaining the image

processing and computer vision techniques involved in manipulating camera images

and the ariel map, as well as how the information is used by the particle filter. Results

and discussion on the localization result is presented at the end.

Chapter 2

Perception

Sensors are vital to an autonomous mobile robot to allow it to perceive its operating

environment in relation to its own position, whether the robot is trying to localize

itself in order to navigate, create a map of the surrounding, or simply avoid obstacles

in its path of travel. This thesis investigates the ability to perform autonomous

localization using a camera as the only available sensor.

The rationale behind using only a single sensory device is threefold, with the hy-

pothesis that the objective of autonomous localization can be achieved at the end.

First, it simplifies the hardware requirement, which is beneficial in some applications.

This constraint may be due to physical spacing, power requirement, hardware inter-

facing issues, or even cost. Second, the amount of information obtainable from a

camera is greater than from other sensors, but only a single camera will be used to

minimize the computation requirement. Third, the result of this investigation can be

used as a benchmark for other systems that uses a vision based approach in urban

environments similar to that used in this study. Theoretically, providing additional

sensory capability besides a single camera should improve localization results by re-

11

CHAPTER 2. PERCEPTION 12

ducing the uncertainty in the estimation and possibly the time required to determine

the correct state estimate.

This chapter will provide a general overview of sensors commonly used in mobile

robotics. This will include a discussion of sensor types and classification. It will

then focus on the laser rangefinder and global positioning system (GPS), highlighting

advantages and disadvantages of each device, as they too can conceptually be used in

the presented localization problem. This will be followed by a section on the camera

and the chapter will finish off with a look at how the probabilistic approach is applied

to sensor readings.

2.1 Sensor overview and classification

Sensors can be classified as proprioceptive or exteroceptive and as active or passive

[9]. Proprioceptive sensors allow system internal measurements to be made. An

example of this type of measurement for a mobile robot is the rotational speed or

position of a wheel. These sensors allow a robot to know what it is doing but does not

provide information in relation to the surroundings. Attempting to track or perform

localization based on proprioceptive sensors alone will likely yield inaccurate results

because a robot’s internal measurements or belief in its own actions will often deviate

from reality due to sensor noise and error. An exteroceptive sensor on the other

hand is able to take measurements of the robot’s environment. These measurements

can further be used to extract features that are representative of the surrounding

environment. For the localization problem being studied, exteroceptive sensors are

required, and a camera is one example of this type of sensor.

An active sensor is one that emits energy and measures the response to the emis-

sion. Note that an active sensor does not necessarily have to be an exteroceptive

CHAPTER 2. PERCEPTION 13

sensor, and an optical encoder that is used for measuring the rotation of a wheel is

one such example. Another example of an active sensor is a laser range finder which

emits a laser beam and takes measurements on the reflecting beam. A passive sensor

is one that measures the energy present in the environment without emitting any

energy. Hence it does not look for any reflections but examines the energy presently

existing in the environment. A camera is a passive sensor and gives information

regarding light in the environment.

Sensors commonly installed on mobile robots can generally be classified into seven

groups. These are identified in table 2.1 [9].

2.2 Laser rangefinders

Rangefinders are popular devices because the sensor readings represent distances to

targets, which are very easy to interpret. These sensors can be electromagnetic, laser,

or ultrasonic based. However, for outdoor ground applications, laser rangefinders

are usually preferred over ultrasonic sensors because of their effective range. The

maximum range for an ultrasonic sensor is roughly five meters, which is not useful

in large open spaces. In addition, ultrasonic sensors tend to underperform laser

rangefinders in terms of accuracy, bandwidth (frequency of measurements), and cross-

sensitivity (susceptibility to noise generated by other sources in the environment).

The working principle behind a laser rangefinder can be based on time of flight

measurement, phase shift measurement, or optical triangulation [9]. The time of

flight measurement calculates the distance to an object by using the speed the light

propagation and the time it took for a laser beam to be reflected back to the sensor.

For rangefinders that uses phase shift measurements, the phase of the transmitted

signal is compared to the reflected signal to determine distance traveled. However

CHAPTER 2. PERCEPTION 14

Classification Description

Tactile sensors This is the most primitive type of sensor, which
activates when they experience physical contact.
Example: Contact Switch

Wheel sensors Proprioceptive sensors that measure the position
or the velocity of wheels on a robot. Example:
Optical Encoder

Heading sensors These sensors are able to determine the orienta-
tion of a robot in an external reference frame. Ex-
ample: Digital compass

Beacons Beacons emit signals that are used to triangulate
a position solution in a given reference frame. At
least three beacons with known positions are re-
quired to acquire a position fix. Providing more
than the minimum number of beacons can help
reduce error. Example: GPS

Active-ranging sensors These popular sensors use either time of flight
measurements, phase shift measurements, or op-
tical triangulation to determine the distance to a
target. Example: Laser rangefinder

Motion sensors These sensors are able to detect velocity and ac-
celeration Example: Inertial measurement unit
(IMU)

Vision-based sensors Vision sensors capture the light in the environ-
ment and provides a two dimensional representa-
tion of the three dimensional world. These sensors
are not limited to operating in the visible section
of the electromagnetic spectrum. They are able
to provide an abundance amount of information
about the surrounding. Example: CCD camera

Table 2.1: Sensor classification

CHAPTER 2. PERCEPTION 15

the maximum range is limited by the wavelength of the emitted signal. In optical

triangulation sensors, the reflected light beam emitted by the sensor is focused by

a lens. The position of this focus point will vary depending on the distance to the

target object from which the light beam is reflected.

The sophistication of laser rangefinders available in the market varies greatly, and

the cost can range from tens of dollars to thousands of dollars. Low cost ranging

devices usually only provide a measurement to objects directly in front. More so-

phisticated units are able to perform quick plane sweeps and return multiple range

measurements over an arc with sub-degree resolution. Laser rangefinders capable of

performing such sweeps are referred to as LIDAR (light detection and ranging) sen-

sors, as shown in figure 2.1. Further details on LIDAR design and operation can be

found in [15]. Many groups involved in outdoor mobile robotics applications have

used these sensors, and a few examples can be found in [16, 17, 18].

Figure 2.1: SICK laser scanner (LIDAR)

Top of the line LIDAR can have a range of 250 meters while performing sweep

CHAPTER 2. PERCEPTION 16

Laser Scanner Model Maximum range [m] Power Consumption [W]

SICK PLS 50 m 17 W

SICK LMS 221-30206 80 m 20 W

SICK LD-LRS 250 m 36 W

Table 2.2: LIDAR range vs power consumption

scans over a 360 degree arc. In practice however, the effective range of these devices

may be significantly less (up to 90% less) than the maximum range, depending on the

reflectivity properties of objects being scanned.The effective range of these sensors is

proportional to their power, as shown in table 2.2 [19].

As evident from table 2.2, a LIDAR sensor with scanning range suitable for out-

door applications can consume a lot of power for a mobile robot, which usually de-

pends on an onboard battery to supply power. Also, the size and weight of a LIDAR

sensor may make it difficult to package on a mobile platform. A long range scanner

can weigh up to 3 kg.

For the urban environment localization problem presented, a LIDAR sensor is a

viable tool to use as it possesses excellent sensor range, and accuracy. Its performance

is reflected in high cost compared to other sensors, and this is a drawback in some

situations, aside from power consumption, physical size, and weight. It is also suscep-

tible to detecting unforeseen obstacles that a robot may encounter (such as people) in

the operating environment. In such a case, it is up to the sensor supporting software

to perform the necessary filtering.

CHAPTER 2. PERCEPTION 17

2.3 Global positioning system

Beacon based positioning systems use multiple emitters placed at known locations

and with known signal emitting times to triangulate the position of the receiver in

a reference frame by measuring signal time of flight. Satellite systems are especially

useful in outdoor environments where satellites orbiting the Earth serve as beacons.

The global positioning system (GPS) commissioned by the Unites States of America

is one such system, but it is not the only one in existence. Russia also has a satel-

lite positioning system known as the global navigation satellite system (GLONASS).

The European Union is also launching a satellite system called Galileo, which will

be functional in the near future. The systems identified above are able to provide

global coverage. Some countries are launching their own satellites to provide regional

coverage. While there are military incentives in the installation of these satellite posi-

tioning systems, they have also benefited civilian applications, one of which is outdoor

navigation for mobile robots. The remainder of this section will focus on GPS usage

and performance.

The GPS consists of an array of 24 satellites in 6 orbital planes to provide global

coverage. In an ideal situation, only three satellites are required to obtain a position

fix for ground applications if signal timing information is available. One can visualize

this by representing the signal emitted from satellites as spherical surfaces. The

intersection of two spherical surfaces is a circle, and with a third sphere yields two

points. One of these points should be on the surface of the Earth, which can be

identified by the calculated elevation and this point is taken as the solution. Another

way to think about this is mathematically: there are three variables to solve for to

define a point in 3d space, which leads to the requirement of three satellites [20]. In

the real world, timing information also needs to be estimated and as such a fourth

satellite is required to determine the solution [21]. GPS signals are distorted by many

CHAPTER 2. PERCEPTION 18

factors, which manifest as psuedorange (the perceived satellite to receiver distance)

errors. The proper name for this error is user-equivalent range error (UERE), which

can be considered the statistical sum of all error contributions associated with a

particular satellite. To overcome this problem, a GPS receiver will lock on to the

signals from more than four satellites to reduce the error in the calculated position

using a least squares approach [21]. Commercially available GPS receiver units are

usually capable of tracking up to twelve GPS satellites simultaneously and will not

provide a solution unless it is able to track at least four satellites. The solution to

a position fix is given in geodetic coordinates (longitudes, latitudes, and elevation)

according to the world geodetic system (WGS-84). A closed form solution exists to

convert the geodetic coordinates to Cartesian coordinates in an Earth centered Earth

fixed (ECEF) reference frame. For more information on this matter, refer to [20].

The signal transmitted by a GPS satellite for distance(pseudorange) measurement

is called pseudorandom noise (PRN) code. Satellite trajectories and system time are

also embedded into the code, allowing a receiver to know when and where a signal is

sent so that distance can be calculated. However, timing error and the inability to

maintain perfect synchronization will offset the clocks on both satellites and receivers;

hence calculated distances are referred to as psuedoranges. The code transmitted by

each satellite using a code division multiple access (CDMA) method is performed on

two frequencies (L1 at 1575.42MHz, and L2 at 1227.6MHz) which allow for two

types of services. These are known as standard positioning service (SPS) and precise

positioning service (PPS). SPS is primarily for civilian use and relies on the coarse

acquisition (CA) code transmitted by the satellites that repeats every 1 ms. PPS

is mostly used in military applications and requires the precision (P, or also known

as the encrypted, Y) code which repeats itself every 7 days. Cryptographic features

known as selective availability (SA, which intentionally induces error in satellite clock

and navigation data) and anti-spoofing (AS, for preventing signal jamming) are de-

signed into PPS codes to limit accuracy [20]. Fortunately, the SA feature has been

CHAPTER 2. PERCEPTION 19

PPS SPS

Horizontal plane positioning accuracy 22m 100m

Vertical plane positioning accuracy 27.2m 156m

UTC (coordinated universal time) accuracy 200ns 300ns

Table 2.3: SPS and PPS comparison

disabled since May 2000 to allow civilian service codes to achieve greater accuracy

[22]. Table 2.3 [20] compares the performance of SPS and PPS. The values listed

should be achieved statistically 95% of the time.

Realistically, positioning accuracy that is much higher than the specified values

can be achieved for outdoor applications. In a GPS error budget presented by [20], the

UERE for SPS without SA is estimated at 8.0m while that for PPS is at 6.6m. A wide

area differential service (WAAS) exists to serve as an enhancement for standalone GPS

service. This system uses four geostationary satellites (known as the INMARSAT civil

navigation satellite overlay) to transmit information to ground stations operated by

service providers such as the Civil Air Administration (CAA). The ground stations

are able to estimate positioning error in an area and relay this information to any

GPS receiver to improve their accuracy [20].

There are many sources of error for a GPS solution, and the performance of a

receiver depends on its psuedorange measurement quality. The model is used to com-

pensate for certain effects, and the accuracy of the satellite ephermeris (trajectory)

data which the receiver obtains. In general, GPS error is mathematically expressed

as a product between geometric error (caused by the relative location of satellites and

the receiver) and the pseudorange error [20].

Selective availability (SA) used to be a major source of psuedorange error. This

feature involves intentionally inducing error in satellite clock and trajectory data that

CHAPTER 2. PERCEPTION 20

is broadcasted to receivers, and can cause errors of up to 70m that oscillates every

4 to 12 minutes. This feature is currently disabled to allow improved SPS accuracy,

but when activated, its spatially correlated effect can also be overcome by differential

GPS (DGPS) services [20, 22].

Multipath is another major source of psuedorange error, and occurs when satellite

signals reflect off objects in an environment. These objects may be buildings in an

urban environment, or trees in a forest. This is a major concern for using GPS for

localization in urban environments. Not only do the reflections cause timing errors,

they also create multiple paths to the receiver and at times may confuse a receiver

to the point where it loses track of a satellite. Multipath effects are very location

dependent but can cause positioning errors of up to 150m for SPS and 15m for PPS

[20, 22].

Other sources of psuedorange error include atmospheric errors that can delay

satellite signals. Ionospheric (higher part of atmosphere 70 to 1000 km above the

Earth’s surface) effect is signal frequency dependent and arises from the interaction

between solar activities and the Earth’s geomagnetic field. This is very difficult to

model and account for but there are models which are able to remove about 50%

of ionospheric effects. Typically, signals from satellites that are low on the horizon

with respect to a receiver are more prone to this type of error, which can vary from

a few to 20 meters in a day. Tropospheric (lower atmosphere) error is a function of

the tropospheric refractive index, which depends on the temperature, humidity, and

pressure at the receiver location. Most of this signal delaying effect can be accounted

for and will only cause a few meters of psuedorange error, but the error can be as

high as 20m if the effect is uncompensated. Aside from atmospheric effects, other

physical influences include relativistic effects due to the satellites’ high speed of orbit,

clock errors on satellites and receivers, and receiver noise. For further details and

additional sources of GPS error, refer to [20, 22].

CHAPTER 2. PERCEPTION 21

Geometric error is quantified by what is known as a dilution of precision (DOP)

value and this is affected by the position of satellites and the receiver. Satellite avail-

ability also affects the DOP, which is commonly experienced in urban environments

when a receiver loses track of satellites due to multipath. The dilution of precision

value should be minimized for a more accurate positioning result. Physically, this

implies containing the receiver and tracked satellites in an imaginary rectangular box

and trying to maximize its volume. Mathematically, the DOP can be thought of as a

ratio that compares how big the covariance of the positioning solution is to the covari-

ance of psuedoranges measured. A DOP value can be represented in several ways, the

most common of which is called the geometric dilution of precision (GDOP). Other

representations that exist include the positional dilution of precision (PDOP), the

horizontal dilution of precision (HDOP), the vertical dilution of precision (VDOP),

and time dilution of precision (TDOP) [20, 21].

Overall, the GPS SPS available for civilian use is convenient for obtaining position

measurements in any outdoor localization and navigation applications. With GPS,

it is unnecessary to compare the position measurements to features on a map. All

that is required is knowing the coordinate transformation between the global frame

of reference used in GPS and the frame of reference used by the robot. However,

the unpredictable behaviour of GPS in urban settings due to multipath makes it

unreliable for autonomous navigation if it is the only available sensor.

2.4 Cameras

Vision provides an abundance of information about the surrounding. Humans rely

heavily on eye sight to carry out many tasks successfully including navigation, and

this gives the incentive for providing vision for machines [23]. The benefit of vision is

CHAPTER 2. PERCEPTION 22

that it is a passive system and theoretically has infinite range as a camera or an eye

receives light emitted from any source in the three dimensional world and captures

that information on a two dimensional image. Practically, this means that a camera

has longer range than most other sensors such as a laser rangefinder.

Providing the equipment to give vision to a machine is not difficult. There are

many charged coupled device (CCD) cameras or CMOS cameras available on the

market at low cost and they can easily be interfaced with a computer. The difficulty

comes in interpreting the data that is retrieved from a camera frame. To a machine,

it must make sense of this raw data, which is an array of numbers representing light

intensity at each pixel. A human eye captures light in a fairly similar manner to

a digital camera, but the processing of a scene is very instinctive and seems to be

almost effortless regardless of the complexity or the number of objects in sight. The

same cannot be said for computer vision, which is still far from being to mimic

human vision. The computation involved in understanding an image can be very

demanding, depending on what processes are involved and what information needs

to be extracted. Typically, obtaining a high level understanding, such as identifying

specific objects and feature extraction in an image is computationally more demanding

than acquiring low level features such as edges and corners. Overall, the processing

requirement involved in using a camera can be a disadvantage when used on a mobile

robot that is limited in computational power.

In some applications, multiple cameras are used to provide stereo vision, just as hu-

mans see with two eyes to obtain three-dimensional perception of the surrounding [23].

Stereo vision is definitely an option for localization and has been put into use in the

past. However for this thesis, it is desired to determine the performance benchmark

with the most basic vision system involving a single camera. Using multiple cameras

should improve on what is achievable with a single camera. For further information

on this stereo vision and its application to mobile robotics, refer to [9, 24, 25, 26].

CHAPTER 2. PERCEPTION 23

The three sensors that were discussed in detail so far (laser rangefinder, GPS, and

the camera) are all susceptible to distractions in the environment that may cause

errors in measurements. With GPS, it is not possible to identify such noise and filter

them before making calculations to determine a position fix. It may be possible to

acknowledge the presence of multipath or other sources of error based on inspecting

the DOP value but the effects can not be corrected for. With laser rangefinders, it may

be possible to take distractions into account by excluding outliers in a measurement

scan. However, the information available to base this filtering upon is limited and

the source of such distractions is difficult to identify. Filtering distractions is also

potentially possible and perhaps can be achieved more successfully with a camera

using the abundance of information that it receives from the surrounding, but of

course this will come with a price of higher computational power. Mobile robots are

always required to work in real time and demonstrating that this is possible using a

camera will be a challenge addressed in this thesis.

The camera that will be used to investigate the urban localization problem will

be a Logitech Quickcam Pro 5000 webcam as shown in figure 2.2. It has a horizontal

viewing angle of 48 degrees which was experimentally verified, and is capable of

capturing images at a maximum pixel resolution of 640× 480. The maximum frame

rate achievable by the camera is 30 frames per second.

2.5 The probabilistic sensor model

In the introductory chapter, the probabilistic approach to mobile robotics was briefly

mentioned. In this section, the act of perception will be expressed mathematically.

This is essential as it forms part of the formulation for solving the localization problem.

To reiterate, the reason for using a probabilistic approach to robotics is to address

CHAPTER 2. PERCEPTION 24

Figure 2.2: The Logitech Quickcam Pro 5000 Webcam

the uncertainty involved in all robot actions. Sensor measurements or information

derived from the measurements, whether from a laser range finder, a GPS receiver, or

from a camera all contain a certain degree of noise and error that leads to uncertainty.

Fortunately, noise can be modeled.

In robotics, it is common to see the vector z used to represent a measurement

or a series of measurements. The measurement value that is obtained is dependent

on where the measurement is taken, or the state of a robot, which is commonly

represented as the state vector x. In a deterministic model, the relation between

measurement and state is expressed as

z = f(x) (2.1)

With the deterministic model, there is no consideration for uncertainty, which exists

not only in the measurement, but also in the robot state. The probabilistic approach

CHAPTER 2. PERCEPTION 25

provides the means for accommodating uncertainty and is able to track its propa-

gation. By defining measurement z and state x as vectors of random variables, a

measurement can be described by a conditional probability density function

p(z|x) (2.2)

Some sensors (such as a camera or a laser rangefinder) provide measurements based

on objects present in the surroundings, which should be included in the model as well.

Features in the environment collectively compose a map, which can be expressed as the

vector m. For the localization problem, the map is considered known or deterministic.

Thus the measurement process can be expressed as

p(z|x,m) (2.3)

The Gaussian distribution is commonly used as a basis for measurement models but

this is not a requirement. Using a set of sensor data with a known truth reading is a

good way of determining the measurement model. The next chapter will show how a

measurement model is incorporated into the localization process.

Chapter 3

Localization

Localization contributes an element of feedback in navigation as shown in figure 3.1.

This feedback element is essential for successful navigation due to the errors that

accumulate under open-loop control of a mobile robot. This uncertainty in actuator

performance and how the actuators interact with the environment (especially outdoor)

leads to uncertainty in motion. In mobile robotic applications, localization usually

refers to the estimation of the position and orientation of a robot in a reference frame.

In general, localization refers to state estimation, and the state should include all the

important parameters necessary to define the robot in a specific application. When

a robot tries to perform localization without sensors to perceive the environment

(in other words, using only proprioceptive sensors or only knowledge of the motion

control inputs), the action is known as dead reckoning, and this usually leads to poor

navigation results in the long run due to errors inherent with actuator control or

interaction with the environment that integrates (or accumulate) over time.

A map is a required component in localization because it is the only item that

indicates to a robot how the surroundings should look if it has perfect perception

26

CHAPTER 3. LOCALIZATION 27

Figure 3.1: The navigation loop

abilities. The map is what is used to estimate the state when sensor measurements

are available. The way in which a map is represented should reflect the characteristics

of perceived sensor information, and in general there are two types of representation:

featured based map and location based map [1]. The feature based map is simply

a list that contains all the relevant features in the operating environment and their

properties. The next chapter will present the creation of a map from an aerial image

using this type of representation, which coincides with the information (features) ex-

tractable from camera images. A location based map describes the entire operating

environment by defining all the occupied and non-occupied spaces, an example of

which is an occupancy grid. Range measurements to obstacles are sensor representa-

tions that may work well with a location based map.

The challenge in localization for a mobile robot is to try and infer the state of

the robot from measurements and control inputs provided for motion control that

contain a certain degree of uncertainty. At the end of the previous chapter, the

probabilistic model was introduced to account for the uncertainty in perception due

to sensor noise. Another problem that will definitely arise from perception is aliasing

CHAPTER 3. LOCALIZATION 28

[9]. Due to limitations in the information that can be perceived by a sensor , it is

often impossible to distinguish where a measurement was taken to define the state of

a robot (see figure 3.2 for an example). The uncertainty that comes from noise and

aliasing is carried on to any state estimation that is made using sensor measurements,

and hence the probabilistic framework needs to be extended for state estimation.

Figure 3.2: Examples of sensor aliasing: In (a) is a 1d aliasing problem where the

same distance measurement is obtainable in two locations. (b) shows an aliasing

problem in 2d, where again distance measurement is available but it is not possible

to determine orientation.

The operating environment of a robot and the detectable objects within it can

have a significant influence on the difficulty to localize. Drawing from the example

presented in figure 3.2, there is no way for a robot to localize because of the sym-

metry in the environments shown. In real life fortunately, environments are rarely

so symmetrical (especially outdoor), but having similar features in an environment

can mean that a robot will not be able to localize itself without having traveled the

environment for a distance where it can detect more distinctive features. It would be

useful in this case to keep multiple hypotheses for the state estimate, and hence the

use of a probabilistic approach again is convenient. Multiple hypotheses can be main-

CHAPTER 3. LOCALIZATION 29

tained until distinct features are detected, at which time the number of hypotheses

can be reduced. A type of localization method known as active localization aims to

control the motion of a robot such that its uncertainty in state estimates is reduced.

This more advanced method will usually yield better results compared to a passive

method [1, 27], which is used in this thesis.

Moving objects create a dynamic environment in which localization becomes more

difficult. This is especially the case if the moving objects are not expected to be

present and hence not on the robot’s internal map. Unless these dynamic objects can

be identified, sensors may mistake them as features that a localization system will

try to compare against the map, and lead to wrong inaccurate state estimates.

In some applications, the starting state of the robot is known, in which case the

localization problem becomes a tracking problem. A more difficult scenario is where

a robot does not know where it is starting, or has been turned off and reactivated at

an unknown location (known as the kidnapped robot problem). This is the problem

this thesis will address with the localization filter that will be implemented.

The remaining of this chapter will describe the probabilistic approach to local-

ization by first introducing the Bayes filter, followed by its derivatives, the Kalman

filter and the particle filter, and then discuss why the particle filter was chosen over

the Kalman filter for implementation.

3.1 The Bayes Filter

The Bayes filter is the most general method for state estimation. It is a recursive

method, with only two conceptually simple steps. Three inputs are required to gen-

erate a state estimation output:

CHAPTER 3. LOCALIZATION 30

xt−1 the last state estimate

ut the motion control inputs

zt the latest measurements

All the parameters listed above are random variables with probability density func-

tions associated with them to represent uncertainty. The probability density function

associated with the last state estimate can be referred to as the prior probability

p(xt−1). The new state that is to be estimated can be referred to as the posterior

probability p(x) [1, 10].

The first step in the Bayes filter algorithm is to determine the effects of control

inputs on the state estimate, given knowledge of the prior probability distribution.

This control input propagated (intermediate) state estimate will be represented by x′

and mathematically determined using the theorem of total probability as shown in

equation 3.1.

p(x′t) =

∫
p(xt|ut, xt−1)p(xt−1)dxt−1 (3.1)

This prediction step is sometimes informally referred to as the ”act” step. The

second step in the Bayes filter involves using sensor measurements to again estimate

and correct the believed state by assuming that measurements were made at the

intermediate state. This measurement update step is sometimes referred to as the

”see” step, and is expressed mathematically in equation 3.2 in accordance with the

Bayes rule.

p(xt|zt) =
p(zt|x′t)p(x′t)

p(zt)
(3.2)

The use of the Bayes rule is important because it is difficult to come up with the

CHAPTER 3. LOCALIZATION 31

conditional probability density p(xt|zt). However, it’s inverse p(zt|x′t) can be modeled

as indicated in the previous chapter, and Bayes’ rule provides the relationship between

a conditional probability density function and its inverse. The conditional probability

density describing the new state given the most recent measurements is the posterior

probability that is being sought. In the next iteration of the Bayes filter, it will become

the prior probability density function that will be used to find the new posterior

density function.

Notice that with the Bayes filter, the estimation of the new belief state only de-

pends on the previous estimation, making all previous estimations irrelevant. This is

known as the Markov assumption (or the complete state assumption). In practice,

the inability to provide complete and perfect models for a robot violates this assump-

tion. For instance, un-modeled interactions with the environment, errors in the map

used for localization, or inaccuracies in the probability density function used to model

sensor measurements. Even though this is the case, in general the Bayes filter or its

derivatives are usually robust towards these violations provided that the effect of not

modeling some states is negligible and close to random [1, 9].

The Bayes filter is conceptually straight forward but there is a problem with

implementing it in a real robotic system because the mathematical operations of

integration and multiplication shown in equation 3.1 and equation 3.2 need to be

carried out in unbounded continuous space [10], which makes it difficult to find a

closed form solution [1]. One possible solution is to discretize the entire state space

of a robot, an approach known as Markov localization [9] which only works well in

limited applications due to the computationally intensive nature of this method. Two

other solutions to this problem will be presented in this chapter: the Kalman filter,

and the particle filter.

CHAPTER 3. LOCALIZATION 32

3.2 The Kalman Filter

It was previously mentioned that one way of implementing the Bayes filter is to dis-

cretize the state space but using such an approach is computationally inefficient, and

the computation required would grow exponentially as the size of the state space or

the resolution of discretization increases. One approach exists which enables belief

states to be determined in continuous space while at the same time remain computa-

tionally efficient (an appreciated trait for any program that runs on a mobile robot).

This implementation of the Bayes filter is perhaps the most studied method, and it

is known as the Kalman filter.

The Kalman filter is able to implement the Bayes filter in continuous space because

it assumes a Gaussian distribution for all the probability density functions used by

the Bayes filter. In addition, it assumes that the system to which the Kalman filter is

applied is linear [1, 10, 9]. More formally, three requirements must hold for the basic

Kalman filter so that the act and see steps of the Bayes filter can be carried out in

continuous space.

The first rule is that the state transition function which models the effects of

motion control inputs must be linear with Gaussian noise, which can be expressed

according to equation 3.3 [1].

xt = Atxt−1 + Btut + et (3.3)

CHAPTER 3. LOCALIZATION 33

where, xt−1 is the previous belief state,

xt is the control propagated belief state,

ut is the control input,

At, and Bt are coefficient matrices

et is the zero mean Gaussian noise

A Gaussian distribution is defined by two parameters: the mean and the variance

(or standard deviation). Following the state transition function (equation 3.3), the

mean of the propagated state belief is shown in equation 3.4 where µ represents the

mean of a Gaussian distribution.

µ′t = Atµt−1 + Btut (3.4)

The variance of the propagated state can also be easily computed according to

equation 3.5. Here, the covariance of the control input is assumed to be constant [28].

Σ′
t = AtΣt−1A

T
t + Rt (3.5)

where, Σ′
t is the covariance of the propagated belief state,

Σt−1 is the covariance of the prior belief state,

Rt is the covariance of the control noise

The second requirement for the basic Kalman filter again is a linear system re-

striction, but this time the requirement refers to the measurement model, which can

be expressed according to equation 3.6 [1]. Similar to the control input covariance,

the covariance associated with the measurement noise is assumed to be constant [28]

zt = Ctxt + δt (3.6)

CHAPTER 3. LOCALIZATION 34

where, zt is the measurement vector,

xt is a state vector,

Ct is a coefficient matrix,

δt is the zero mean Gaussian measurement noise

The third requirement for the Kalman filter is that the initial belief state has to

follow a Gaussian distribution [1].

The prediction step of the Bayes filter is implemented through the Kalman filter

using equations 3.3 to 3.5, and now it is necessary to address the second half of the

problem where measurement data is used to update and correct the belief state. For

this, an important matrix known as the Kalman gain needs to be introduced. This

matrix can be calculated using the parameters of the measurement model and the

covariance of the control input propagated belief state as shown in equation 3.7.

Kt = Σ′
tC

T
t (CtΣtC

T
t + Qt)

−1 (3.7)

where, Kt is the Kalman gain,

Σ′
t is the covariance for the propagated belief state,

Ct is the coefficient from the measurement model,

Qt is the covariance for the measurement noise

The Kalman gain can be regarded at as a measure of confidence in the measure-

ment data and therefore how much weighting the measurements will have when the

information is used to determine the new belief state. The calculations involved in

determining the mean (µt) and covariance (Σt) of the new state estimate is shown in

equation 3.8 and 3.9.

µt = µ′t + Kt(zt − Ctµ
′
t) (3.8)

CHAPTER 3. LOCALIZATION 35

Σt = (I −KtCt)Σt (3.9)

where, I is the identity matrix

In equation 3.8 the expression (zt − Ctµ
′
t) is often referred to as the innovation,

which is the difference between the real and expected measurements [9].

The detailed mathematical derivations for the formulation of the Kalman gain,

and the use of the Kalman gain to calculate the mean and covariance of the new belief

state can be found in [1, 10].

Since the Kalman filter starts with a Gaussian random variable and only applies

linear transformations to it, the resulting output will maintain a Gaussian distribu-

tion, and this will remain the case as the algorithm iterates. The ability to calculate

new state estimates in closed form makes it very efficient and highly valued in mobile

robotics, but there are drawbacks to the algorithm.

One of the problems is the assumption of linear state transition and measurement

models, which may be rather optimistic in the real world. More advanced Kalman

filters get around this problem by trying to linearize the non-linear transition and

measurement models. The extended Kalman filter is one such example where a first

order Taylor expansion is used to approximate the non-linear system [1, 10]. Another

variant is the unscented Kalman filter which performs stochastic linearization [1].

A problem that is more severe in comparison to dealing with non-linear systems

comes from the Kalman filter’s inherent dependency on Gaussian distributions. While

the distribution is generally adequate in describing control and measurement noise

that might be encountered, it is not possible to express multiple hypotheses for state

estimation because a Gaussian distribution is uni-modal. Consider the problem pre-

sented by this thesis, where it is required for a robot to localize itself without knowing

its starting state. A uniform distribution would be more appropriate for the starting

CHAPTER 3. LOCALIZATION 36

state. As the localization process iterates, ambiguities may cause the belief state’s

probability density function to have local maxima at several locations. In such a case,

it is important to keep track of these high density regions but this can not be done

with a Gaussian distribution. Therefore, a Kalman filter may be very suitable for a

robot tracking problem (where the initial state is known) but it is inappropriate for

the kidnap robot problem (where the initial state is unknown).

3.3 The Particle Filter

Two implementations of the Bayes filter for localization have been discussed so far but

each presents its own problems. Markov localization is able to represent any form of

probability distribution in the entire state space but its computational requirement

makes it impractical in many applications. The Gaussian filter is computationally

efficient but lacks the ability to represent a belief state estimation in anything other

than a Gaussian distribution. What is needed is an implementation of the Bayes filter

that is computationally practical and at the same time capable of representing any

belief state probability distribution.

The particle filter is an implementation of the Bayes filter using a finite number

of parameters to describe the belief state distribution. These parameters are the

particles, and they are sampled from the state space according to the belief state

probability density distribution. The spatial density of the particle set reflects the

shape of the probability density function that it is sampled from, and hence the

particle set is an approximation of the belief state probability distribution. A high

density of the particles in the state space reflects the high likelihood of the true

state in the vicinity [1]. An interesting point to note is that in the limiting case

where the number of particles used to sample the belief state distribution approaches

CHAPTER 3. LOCALIZATION 37

infinity, the particle filter will operate as if it is dealing with probability distributions

in continuous space [29].

A benefit of the particle filter that should be apparent is that it works for any

probability distribution. This implies that it is able to handle the kidnap robot

problem, where the initial state of a robot is unknown. It also enables the particle

filter to track multiple state hypotheses. Another advantage in using the particle

filter is its ease of implementation.

The first step in implementing a particle filter is generating a set of particles that

is representative of the starting state. A random sample from a uniform distribution

can be used if nothing is known of the starting state. On the other hand, if the

exact starting state is known, all the particles can be initiated in the same state (thus

occupying the same point in the state space).

Both the ”act” and ”see” steps of the Bayes filter are still carried out with the

particle filter. The effects of motion control inputs (with noise) are applied to all

particles using a state transition model [10]. Any type of function (linear or non linear)

can be used in this case provided that it generates a propagated state vector based

on the input of a previous state vector and a control input vector. The propagated

particle set is now a sample of the motion control propagated belief state distribution

as expressed in equation 3.10 [1, 30, 31].

x
[m]
t ∼ p(xt|x[m]

t−1, ut) (3.10)

where, m is the particle index,

xt and xt−1 are the output and input state vectors respectively,

ut is the control input vector

CHAPTER 3. LOCALIZATION 38

To take into account sensor measurements, an importance factor (weighting) is

assigned to each particle based on the probability density function associated with

the measurement model as shown in equation 3.11[1, 10, 30, 31].

w
[m]
t = p(zt|x[m]

t) (3.11)

where, w
[m]
t is the importance factor for particle m,

zt is the sensor measurement vector,

x
[m]
t is the state vector for particle m

Particles that are situated in locations in the state space where the expected

measurements (obtainable by referring to a map) and the real measurements are

similar should receive a high importance factor.

The importance factors are used to resample the particle set. In this step, a new

particle set with the same number of particles as the current particle set is generated.

Particles with a high importance factor are more likely to be sampled (maybe more

than once). On the other hand, particles with a low importance factor may not be

sampled and fail to reach the next iteration of the particle filter. The new particle set

generated by this survival of the fittest technique is representative of an approximation

to the (posterior) state estimation after considering sensor measurements [1, 10, 30,

31]. In the next iteration of the particle filter, the posterior particle set will represent

prior belief state.

The way in which the particle filter handles state transition and incorporation

of measurements to update the belief state makes it suitable for use with non-linear

models. A drawback of the particle filter is that it can still be computationally

expensive depending on the number of particles used [30]. There is no set rule for

determining how many particles should be used for different types of problem, and this

CHAPTER 3. LOCALIZATION 39

is something that needs to be tuned during application. Generally, a large state space

requires more particles than a smaller one to ensure that the belief state distribution

is represented properly. Too few particles may lead to a high chance of the particle

deprivation problem occurring, where through resampling, particles near the true

state does not make it to the next state estimate iteration by chance [1].

Overall, the particle filter is more applicable to the localization problem under

investigation, where the starting state is unknown. Additionally, the use of a camera

as the sensor and extracting image features leads to a complicated and non-linear

model which a particle filter can deal with. The details on the implementation of

the particle filter for the localization problem will be presented in a later section, but

before that it is necessary to generate a map as the reference for localization, and

determine how to extract the useful features from images captured by the on board

camera.

Chapter 4

Feature Map Generation

In the previous chapter, it was identified that a map is needed as part of the local-

ization process. It was also mentioned that there are two types of map: the feature

based map which is a list of objects and their properties, and the location based map

where objects are recorded by locations they occupy. In the vision based localization

problem being investigated, it would be ideal if the perceived information from the

camera is in a representation that is similar with the map so that they can be com-

pared in the localization filter. In computer vision, a raw image containing low level

information (raw data) is usually processed to highlight the information of interest.

Other operations are performed afterwards to obtain a high level representation or

features. Therefore, it would be appropriate to use a feature based map for vision

based localization.

In the current investigation, an aerial image of the operating area is the only

information of the environment that is given to the localization system. Aerial images

are resources that are becoming more readily available, and they have been used as

resources for geographic information systems (GIS). Similar to an image captured

40

CHAPTER 4. FEATURE MAP GENERATION 41

with a camera, it contains low level information which needs to be interpreted and

processed so that high level features can be retrieved.

The aerial maps that will be used in the localization system are orthoimages, which

are images derived from normal perspective images in a way such that displacements

caused by sensor (camera) placement and relief of terrain are removed. These high

resolution images are in the format of grayscale bitmaps, where 10cm in real life

resolves to approximately 1 pixel length. A bitmap is basically an array of intensity

values, where the value at every pixel is defined. The depth of the bitmap is 8-bit,

therefore, a pixel can hold one of 256 (28) values from 0 to 255. Figure 4.1 is an

example an aerial image. All the aerial images used in this research are properties of

the Regional Municipality of Waterloo, Ontario, Canada.

A robot will benefit most if a map contains information about obstacles in the sur-

rounding so that they can be avoided while the robot navigates. Therefore, high level

features of interest are the boundaries of buildings or any large objects on the ground.

This however is not an easy task due to the complexity of outdoor environments and

how they appear on an image.

The goal of extracting boundary features from aerial imagery is similar to the prac-

tice of building detection. Automatic detection of buildings from aerial images is of

great interest in many GIS related fields such as cartography, urban mapping, urban

planning, land use analysis, and geo-information engineering [32][25][33]. In general

there are three ways to approach the building detection problem: stereo vision, line

analysis, and using auxiliary information. However, there is unlikely a method that

can perfectly detect all buildings in every aerial image. In line analysis approaches,

a rectangular building model or one that consists of several rectangles is usually as-

sumed as a hypothesis and used for interpreting groups of detected features [34]. Lines

are considered appropriate since most man made structures are rectangular or contain

CHAPTER 4. FEATURE MAP GENERATION 42

Figure 4.1: An aerial image showing the central portion of University of Waterloo

campus

mostly straight edges. Shadow analysis is an example of using auxiliary information.

A building model is also assumed for this approach along with information on the

source of illumination (or sunlight) [25]. Most building detection methods start with

low level image processing methods of edge and line detection. The end result is very

much influenced by how well relevant low level information are extracted or filtered

for further use. The problem of building detection is made difficult with the presence

of shadows, surface markings, vegetation, and other distractions which may add un-

wanted boundary lines or fragmented boundaries of interest. These effects together

are known as the figure-ground problem, and it has a much more significant impact

CHAPTER 4. FEATURE MAP GENERATION 43

compared with sensory noise [32]. Having obtained the low level features, higher level

pattern recognition techniques and graph search on connected line features is applied

to interpret the presence of closed contours or edges that may belong to a building

[25].

The sections in this chapter will sequentially explain the aerial image feature

extraction process which is summmarized in figure 4.2. The first step is the processing

of raw data using edge detection techniques to highlight the pixels likely to be part

of building boundaries in an edge map. This is followed by the removal of edge

pixels from the edge map that were produced by shadows instead of true building

boundaries. The edge map is further filtered by masking edges that may have come

from vegetation or other distractions in the aerial image. High level line segment

(boundary) features are identified using a special version of the Hough Transform

and its algorithm will be reviewed along with the standard Hough Transform. In the

closing sections of this chapter, it will be shown how the high level features are filtered

and the feature extraction results will be shown for the area covering the localization

filter test site.

4.1 Edge Detection

Buildings on an aerial map can be identified by the way they appear compared to

everything else on the ground. More specifically, boundaries of buildings in a grayscale

map can be spotted where the image intensity changes, and these are known as edges

in image processing. Edge detection is a common operation used on images containing

intensity (low level) data so that information of interest (or edges) are highlighted to

provide a higher level of image understanding.

Edges in an image occur when there is a sharp change in local intensity in the

CHAPTER 4. FEATURE MAP GENERATION 44

Figure 4.2: An overview of the feature map generation process

spatial domain of the image. Another way of defining edges is by considering an

image to be a signal (by performing a Fourier transform on the image), where edges

are represented by high frequency signals in the spatial-frequency domain. Image

processing researchers have come up with many different approaches to edge detection

in the past. For spatial domain approaches, a kernel based on difference equations is

usually used to convolute the image. Such a kernel is actually an approximation to

taking the derivative of image intensity, and the response to such a kernel will be high

if an edge exists. Some well known kernels that use a first order approximation for

image intensity derivative include the Roberts Cross, the Prewitt operator, and the

Sobel operator [23]. Perhaps the most well known operator is Canny edge detector

[35].

The Canny edge detector is considered optimal as it is able to maximize the signal-

to-noise ratio (SNR) of the intensity gradient so that as many true edges are identified

as possible while minimizing false edges. Additionally, the Canny edge detector can

accurately localize a detected edge so that the error in location between the true edge

CHAPTER 4. FEATURE MAP GENERATION 45

and detected edge is minimized. Furthermore, the Canny edge detector is able to

minimize multiple responses to a single edge so that an edge is only identified once.

The Canny edge detection algorithm consists of four steps: noise reduction, inten-

sity gradient calculation, non-maxima suppression, and double thresholding. First,

a grayscale input image is usually smoothed with a Gaussian filter to reduce noise.

The magnitude of the local intensity gradient and the gradient’s direction are then

calculated (commonly using the Sobel operator). In the non-maxima suppression

stage, a pixel is discarded if a neighbouring pixel at a perpendicular direction to

the intensity gradient direction has a greater gradient magnitude. In the final step,

double thresholding is performed to generate the binary edge response image. Here,

two thresholds are defined with the upper threshold at approximately 1.5 times the

lower threshold. Pixels with an intensity gradient magnitude greater than the upper

threshold are automatically defined as edges. Pixels with gradient magnitudes less

than the upper threshold but greater than the lower threshold are defined as an edge

if it is adjacent to another edge pixel [23]. The end result is a binary edge map.

For the vision-based urban localization problem being studied, the Canny edge

detector will be used on aerial images to highlight and extract the boundaries of

interest to an edge map. An example of an image that has been processed by the

Canny edge detector is shown in figure 4.3.

4.2 Shadow Edge Removal

The strong gradient that exists between an area overcast by shadow and an adjacent

area that is not shaded implies that it is inevitable that the edge of a shadow will

induce a response from the edge detector, which can be seen in parts of figure 4.3.

This means that during the feature extraction process, shadow edges will appear as

CHAPTER 4. FEATURE MAP GENERATION 46

(a) Original image

(b) Processed image - the edge map

Figure 4.3: Canny edge detection on an aerial image

CHAPTER 4. FEATURE MAP GENERATION 47

building boundaries.

Shadows can be easily identified in an aerial image as they appear much darker

(or have a much lower intensity) compared to all other objects on an aerial image.

This distinctiveness makes it easy to segment shaded areas from an aerial image. The

Canny edge detector can again be used to determine where the edges of shadows

lie. However, to correctly remove the effects of shadow, it is necessary to distinguish

whether a shadow edge is shared with a building boundary (which should not be

removed), or shared with the ground (which should be removed). One way of doing

this is by taking into account the source of illumination, or the direction of sunlight.

The intensity gradient over an edge of a shadow calculated using Sobel operators

(shown in figure 4.4) can be used to speculate whether an edge should be part of

a building. If this is the case, the intensity gradient should be decreasing in the

direction of the illumination (away from the light source). If this is not the case, the

shadow edge is likely not shared with a building and thus can be eliminated.

Figure 4.4: The Sobel operators

It must be acknowledge that more advanced techniques of shadow detection exist

in model-based building detection research (such as the method presented in [36]),

but the method used is adequate for generating the maps required for the localization

method developed in this project.

CHAPTER 4. FEATURE MAP GENERATION 48

4.3 Distraction and Vegetation Masking from the

Edge Map

Edge detection has allowed pixels that are on the boundary of a building to be high-

lighted. However, aside from shadows, pixels from other irrelevant objects and dis-

tractions have also been highlighted by the edge detection process as evident in fig-

ure 4.3(b). These unwanted edge responses need to be removed before trying to

extract higher level information from the image to prevent false features from being

identified as a building boundary.

Many of the distraction edge responses come from vegetation in the environment.

Image intensities in vegetation areas as well as other distraction areas vary in a way

that give the appearance of rough texture. It is desired to find these regions and mask

the edge responses that appear within so that they will not be considered as building

boundaries. The use of Gabor filters is an option as it has been proven to work well in

texture segmentation in images [37, 38, 39, 40]. However, classification of textures is

computationally very expensive since the number of Gabor filters required corresponds

to a pattern recognition problem with a high number of feature dimensions. A variety

of other texture analysis methods exist [41], but a much simpler method will be used

instead.

The rough and random appearance of the texture in vegetation areas as well as

other distraction objects indicate that image intensity is changing in multiple di-

rections. In the process of detecting building boundaries which appear as intensity

change in a single direction, the edge detector inevitably also responded to the in-

tensity gradients from distractions. Therefore, it is proposed that pixels showing

gradients in multiple directions be masked. In image processing, these pixels are

known as corners, and so the corner response measure will be used to discriminate

CHAPTER 4. FEATURE MAP GENERATION 49

vegetation and other distractions.

A pixel can be labeled as a corner if it has a sharp change in gradient in two

orthogonal directions. However, theses two directions does not necessarily have to

coincide with the axes of an image and therefore, strictly computing the intensity

gradient or the derivatives in the image axes directions (x, y) is inadequate. The

Harris corner detector [42] is able to provide a measure of corner response using only

the x and y derivatives (∂I
∂x

, ∂I
∂y

) in the intensity gradient covariance matrix M shown

in equation 4.1.

M =




∑
∂I
∂x

2 ∑
∂I
∂x

∂I
∂y∑

∂I
∂x

∂I
∂y

∑
∂I
∂y

2


 (4.1)

The elements in M are sums of derivative products within a pixel of interest’s

neighbourhood (kernel). The diagonalized version of M can be determined by finding

the eigenvalues (λ1, λ2) of the matrix [43]. These eigenvalues correspond with the

gradient strength in the principal directions defined by the corresponding eigenvectors.

A corner is found if both eigenvalues are greater than zero, indicating that there are

strong changes in intensity in two directions. If one of the eigenvalues is equal to or

close to zero, it indicates that a strong intensity gradient is found in one direction

and it can be concluded that only an edge is discovered. In the case where both

eigenvalues are approximately equal to zero, it indicates that the local intensity is

constant or changing very slowly. As an alternative to evaluating both eigenvalues,

they can be considered together by defining a corner response measure R, which

expresssed in equation 4.2.

R = λ1λ2 − k(λ1 + λ2)
2 (4.2)

CHAPTER 4. FEATURE MAP GENERATION 50

In equation 4.2, k is a tunable constant usually set between 0.04 to 0.06. However,

since evaluating eigenvalues is computationally expensive, the above expression can

be rewritten as equation 4.3 using the trace and determinant of M .

R = |M | − k(tr(M)2) (4.3)

A corner is considered found if R is greater than zero. In practice, a corner

response threshold is usually set and corners are labeled at all local maximums in a

corner response image. An edge is found if R is less than zero, and a R value of zero

indicates constant intensity.

It was found that most distractions that appear in an aerial image to be within

a certain range of corner response values as shown in figure 4.5. In this case, the

constant k from equation 4.3 was set to equal 0.05. The original version of this image

has been shown previously in figure 4.3(a). From the corner response image, an edge

response mask is created by identifying pixels where the corner response value is

between 0.00001 and 0.001.

The resulting corner response (distraction) mask at this point contains some small

gaps and point noise that need to be eliminated. This will be accomplished using

morphological operators. These operators are used frequently in image segmentation

where there is a need to merge or split regions or boundaries. Morphology is a

mathematical based set-theory image processing technique mostly applied to binary

images. All morphological operations involve an image with pixels of interest (in this

case they are the masking pixels of the corner response filter). These pixels will be

identified to belong to set A. In addition, a structuring element that can take on any

shape is required and pixels from this can be labeled as belonging to set B. Likewise,

pixels belonging to the resulting morphological operation is labeled as belonging to

CHAPTER 4. FEATURE MAP GENERATION 51

Figure 4.5: The corner response of an aerial image

set C. The two basic morphological operators are dilation (⊕) and erosion (ª) [44].

If a, b, and c represent image coordinates of pixels in sets A, B, and C respectively,

then the two operators can be mathematically expressed as equations 4.4 and 4.5.

A⊕B = {c|c = a + b, aεA, bεB} (4.4)

AªB = {c|c + bεA, bεB} (4.5)

With the dilation operator, a pixel that contains the value 1 will cause all neigh-

bouring pixels to hold the same value. In erosion, a pixel will be set to 0 if any

neighbouring pixels hold the value of 0.When dilation is followed by erosion, the com-

CHAPTER 4. FEATURE MAP GENERATION 52

bined operation is known as closing. Similarly, if erosion is precedes dilation, the

combined operation is known as opening. Closing operations are applied to the cor-

ner response mask to remove small gaps over vegetation and distraction areas, and

figure 4.6 is an example of the resulting mask. This mask image will be applied to

the edge map from the Canny edge detector using the binary and operator, causing

any edge responses under the mask to disappear. Figure 4.7 is another example of

the masking operation over the area where the particle filter localization system will

be tested. Further examples of this masking operation can be found in appendix A.

4.4 The Hough Transform

Edge detection allowed building boundaries from an aerial image to be highlighted.

However, the boundaries are still no more than a collection of pixels in a binary

image and a higher level representation such as simple geometric entities is still seeked.

Straight line segments are appropriate features for representing the information in the

aerial image derived edge map since building boundaries in an urban environments

are often straight. The Hough transform (HT) is a powerful tool in computer vision

used for shape detection. It was first introduced as a method for detecting complex

patterns of points in a binary image [45]. The idea behind the HT is to take a spatial

domain pattern consisting of pixels that may be spatially spread out and transform

it into a parameter space where the original pattern can be identified as a spatially

compact feature [46]. As a simple example, consider the detection of straight lines.

In an image, one mathematical representation of a line in Cartesian coordinates using

the parameters θ and r is expressed in equation 4.6 and illustrated in figure 4.8.

x cos θ + y sin θ = r (4.6)

CHAPTER 4. FEATURE MAP GENERATION 53

(a) Original image

(b) Original image superimposed with the mask

Figure 4.6: The corner response / distraction and vegetation mask

In this representation, r is the length of the perpendicular of the line that runs

through the origin, and θ specifies the angle of the perpendicular. A line that passes

through a point (x, y) in Cartesian space is represented by a sinusoidal curve in

parameter space, and a point in parameter space represents a line in Cartesian space.

Therefore, it can be expected that a line that passes through many points in Cartesian

space will be the point (or a spatially compact feature) where many sinusoidal curves

CHAPTER 4. FEATURE MAP GENERATION 54

(a) Original image

(b) Original image superimposed with the mask

Figure 4.7: The corner response mask over the localization system testing area

CHAPTER 4. FEATURE MAP GENERATION 55

Figure 4.8: The normal form for the equation of a line

in parameter space converge upon as shown in figure 4.9.

In practice, to perform the HT, the parameter space is discretized into accumulator

cells in which a vote will be cast if a curve passes through the cell. A line is considered

detected if the vote in an accumulator cell is greater than a threshold value. Overall,

the HT makes it considerably easier to detect extended point patterns in image space

[46][45].

Many variation of the HT exists, and the Progressive Probabilistic Hough Trans-

form (PPHT) [47][48] is a variation that falls into the Monte Carlo (or probabilistic)

class of HT methods. The objective of probabilistic HT (PHT) class is to achieve the

same detection result as a standard HT (SHT) method using only a subset of points

from the input binary image [49][50]. Therefore, PHT methods are considerably faster

than the SHT and are suitable for real-time applications [47]. Three threshold values

are required for this algorithm: the accumulator threshold, the gap threshold, and

the minimum length threshold. For a flowchart of the PPHT algorithm, refer to fig-

ure 4.10. As a brief outline, the algorithm starts by randomly selecting a pixel and

removing it from the input image while updating the accumulator space accordingly.

Pixels are continually sampled until the highest peak in the accumulator is greater

CHAPTER 4. FEATURE MAP GENERATION 56

Figure 4.9: An example showing the basic concept behind the Hough Transform -

Three points are sampled from a line in Cartesian space and are shown as three

sinusoids in parameter space. The three curves intersect at a single point, leading

to the conclusion that the three sampled points belong to the same line in Cartesian

space with the equation x cos 3π/4 + y sin 3π/4 = 0 or x = y.

than a threshold. At this point, the longest line segment corresponding to this peak

is found in image space. Small gaps are allowed in this line segment provided that

their size is less than the gap threshold. All the pixels belonging to the line segment

are then removed from the image and the corresponding votes in the accumulator

from those pixels are also eliminated. As a last check, the line segment found is only

labeled as a detected line segment if it is longer than the minimum length threshold

(in Cartesian space). The entire process iterates until the input image is empty. For

additional information regarding the PPHT algorithm, refer to [47][48].

An algorithm extended from the PPHT algorithm will be used for extracting line

CHAPTER 4. FEATURE MAP GENERATION 57

Figure 4.10: The Progressive Probabilistic Hough Transform (PPHT) Algorithm

features from aerial image edge maps. Besides having the benefit of being more

efficient than the SHT, features returned by the PPHT are line segments. This is

beneficial because not only is the PPHT able to indicate the pose of a line (which

is the output from the SHT), the PPHT is also able to indicate its endpoints, which

is important in defining the building boundary features on the map. The drawback

in using any HT algorithms is that it can only detect shapes that it is programmed

to find. Therefore, it is impossible to detect the boundary of a building if it is not a

straight line and in a shape that can not be parameterized. Fortunately, most man

made structures contain straight boundaries. Figure 4.11 is an example of an edge

map that is processed by the PPHT transform. Three observations should be made

from this figure; first, the edge maps were not filtered with the corner response mask

CHAPTER 4. FEATURE MAP GENERATION 58

and this has led to many line segments detected in vegetation and distraction areas.

Hence the necessity to perform the corner response filtering is shown. The second

observation to make is that on building boundaries, many line segments are extracted

and this makes the feature map look messy or ”hairy”. Therefore, further processing

of the feature map is required to reduce the many overlapping line segments. The

third observation is not so obvious, and it is that the line segments extracted depends

on quality of the input edge map. Since these edge maps are results of the Canny

edge detection process, it implies that the parameters used in edge detection will

affect the line segments extracted. It is difficult to say what edge detection settings

work best with the HT process to extract the best feature map. Therefore, it would

be appropriate to evaluate edge maps generated with different settings. This process,

along with augmentations to the PPHT that will make the resulting feature map less

”hairy”, will be introduced in the next section.

4.5 Modified Progressive Probabilistic Hough Trans-

form

The PPHT was introduced as an effective algorithm for identifying line segments (or

other simple geometric shapes) from a binary edge map. However, using this algo-

rithm on an aerial image derived edge map (whether filtered by the corner response

or in the unaltered state) yields a resulting feature map where many line segments

overlap each other on a building boundary and causes the overall feature map to look

messy.

The cause of this problem is partly due to the detail and resolution of the aerial

image, and on the nature of the PPHT. High image detail allows details of physical

objects near or on a building boundary to be shown. For instance, the ledge on the

CHAPTER 4. FEATURE MAP GENERATION 59

(a) Input edge map

(b) Output feature (line segment) map

Figure 4.11: The corner response / distraction and vegetation mask

CHAPTER 4. FEATURE MAP GENERATION 60

roof of a building may appear as two parallel lines. In addition, due to perspective,

sides of buildings can often be seen and objects such as windows will contribute

to the edge map in the case where the corner response filter fails to mask them.

Image resolution reduction is an option but this is not favoured because it introduces

additional errors into the position of orientation of extracted line segments.

The PPHT algorithm itself is a cause of problems because it stops searching the

accumulator space when a threshold value is reached. This accumulator threshold,

along with the minimum length threshold has to be kept low in order to detect all

lengths of building boundaries. Unfortunately it also means that it is more likely to

extract many short line segments instead of one long line segment from the highly

detailed edge map. The feature map can be left at this state because the many over-

lapping line segments may be argued to sufficiently represent a building boundary,

but it will cause great inefficiencies in the localization filter when the real measure-

ments are compared to the perceived measurements (which come from the feature

map).

Another problem highlighted from the previous section is that the resulting feature

map is dependent on the parameters of the edge detection process and the parameters

used. Consider figure 4.12, where edge maps of figure 4.3(a) are processed with the

Canny edge detector using different threshold values. Using a high threshold level

will yield less line segments and alleviate the messy feature map problem. However

the resulting set of line segments may not represent a building boundary properly

because the edge map is likely to have gaps in locations where a building boundary

exists. Setting the threshold too low will ensure that the edge map fills pixels on

building boundaries properly but will augment the messy feature map problem.

Some modifications to the PPHT are necessary to overcome the messy feature

map problem and the edge detector parameter setting uncertainty. The modified

CHAPTER 4. FEATURE MAP GENERATION 61

(a) Low Thresholds (b) Medium Thresholds

(c) High Thresholds

Figure 4.12: Canny edge detection threshold setting comparison

PPHT algorithm is shown in figure 4.13.

The first modification is to allow the PPHT algorithm to accept multiple edge

maps. Three input edge maps with different Canny edge detection threshold settings

are shown as inputs in this case with corresponding accumulator spaces. The accu-

mulator space search will be performed sequentially starting from the high threshold

edge map. Any lines that are detected will have its corresponding pixels removed from

all input edge maps. Furthermore, the accumulator spaces will be updated according

to the pixels removed.

The second modification is allow the thresholds to vary. The thresholds should

be initially set at a high value representing the desire to search for long line segments

CHAPTER 4. FEATURE MAP GENERATION 62

Figure 4.13: The modified Progressive Probabilistic Hough Transform algorithm

first. When no line segments are detected in all the accumulator spaces at the current

threshold values, they are decremented and the accumulator space search is repeated.

This process continues until the thresholds reach a lower limit, which represents the

shortest line segments that is desired to be detected.

The third modification is in the pixel removal process from the edge maps when a

line is detected. Instead of only deleting pixels that are coincident with the detected

line segment, all pixels within a certain distance from the line segment (for instance,

3 pixel lengths) can be removed as well.

CHAPTER 4. FEATURE MAP GENERATION 63

By allowing for multiple edge maps as inputs, there is no longer the difficulty and

expectation of relying on a single edge detection threshold setting to produce an edge

map with minimal noise while maximizing the response to true building edges (in

other words, trying to maximize the SNR). This desired result is instead achieved by

collaboratively using information from multiple edge maps. The accumulator space

of the edge map with the highest threshold is searched first because it have the least

noise and thus less likely to extract irrelevant line segments.

The PPHT algorithm uses fixed threshold inputs and they have to be kept at a

value low enough to detect short building boundaries. By using varying thresholds,

pixels making long line segments will be eliminated from the image first and will have

a less likely chance to contribute to shorter line segments in the same location.

The change in the pixel removal process is placed to further reduce the problem

or short line segments being detected and overlapping an existing longer segment.

Results of this modified PPHT process over the localization system testing area

can be seen in figures 4.14. Compared to the previous unmodified PPHT result in

figure 4.11(b), improvements can be seen around building boundaries where short

overlapping line segments no longer exist and the number of features is significantly

reduced without compromising the integrity of the feature map. Two other observa-

tions to make from this figure is that from all the filtering and masking that have been

performed, a few short edges unrelated to building boundaries still scatter throughout

the feature map. Also, there are unwanted line segments that are extracted because

they come from objects that look like the edge of a building (like the side of a road

for example). The final step in this feature map generation process will try to address

these two problems. Additional examples of the modified PPHT process results can

be found in Appendix A.

CHAPTER 4. FEATURE MAP GENERATION 64

(a) Original image

(b) Result of the modified PPHT process

Figure 4.14: The result of the modified PPHT feature extraction process on the

localization system testing area

CHAPTER 4. FEATURE MAP GENERATION 65

4.6 Noise Removal from Feature Map

Any line segments extracted from the process covered in the previous sections that

do not belong to a building boundary can be considered as noise in the feature map.

These line segments exists because the shadow effect removal process or the corner

response mask were not able to detect their source on the edge map. However,

caution must be taken in removing these noisy features so that the good features

are not disturbed. On other boundaries, the feature map may display discontinuities

because the edge detector failed to respond at a certain location or perhaps it was

mistakenly masked.

The building boundary gap problem can be easily corrected by searching the

feature map for line segments that are coincident on the same line or close to parallel

and close to each other in terms of distance. It is important to realize that in computer

graphics, two lines that are meant to be coincident may actually not be when their

orientations are calculated using image coordinates because an image is discretized

into pixels. Therefore, it is necessary to relax the rules in determining if two lines

are coincident. Here, line segments are considered coincident if their orientation is

no more than the angular threshold of three degrees apart. The line segments are

merged if the distance between them is less than a certain distance threshold. This

threshold is set in proportion to the length of the line segments being examined. It is

assumed that the length of a detected line segment is proportional to the probability

of it being part of a true building boundary. Therefore longer line segments have

more influence in the line merging process. the merged line segment is created by

making the longest line segment possible from the four endpoints of the merging line

segments. As a final check, the orientation of new newly merged line should be exceed

the angle threshold when compared to the orientations of the merging line segments.

Figure 4.15 is an illustration of the line merging procedure.

CHAPTER 4. FEATURE MAP GENERATION 66

Figure 4.15: Coincidence check for line segments

Many short line segments scatter the edge map as shown previously in figure 4.14(b).

To distinguish whether they are part of a real building boundary, consider a simple

model of a building. A building should be enclosed and therefore the line segments

making up its boundary should be close to each other. Theoretically, if the edge

map used for feature extraction was perfect, both endpoints of a line segment should

connect to another segment. However, since the edge map is not perfect, this re-

quirement is relaxed in determining whether a line segment is part of a real building

boundary. Instead of looking for coincidental endpoints, the distances from both

endpoints of a segment to other line segments are considered. A minimum distance

threshold proportional to the line segment is again used in determining the threshold.

A line segment is removed from the feature map if it fails this test and figure 4.16 is

an illustration of the test. A line segment which passes the test is unaltered.

At this point, the end of the feature map generation process has been reached,

and the final result can be seen in figure 4.17. This map is now ready to be used

CHAPTER 4. FEATURE MAP GENERATION 67

to provide expected measurements in the particle filter localization system. The

feature map is not perfect, meaning that a robot using this map will have errors in

its interpretation of the real world. Fortunately, Bayes filters are known to remain

robust even with such discrepancies. Having a map, it is now necessary to focus on

the sensor measurements and extract information from there that can be compared

with the feature map.

CHAPTER 4. FEATURE MAP GENERATION 68

Figure 4.16: Connectivity check to other line segments

CHAPTER 4. FEATURE MAP GENERATION 69

(a) Original image

(b) The resulting feature map

Figure 4.17: The final result of the feature extraction process on the localization

system testing area

Chapter 5

Camera Measurements

The processing of camera image frames for the vision based localization system is

in many ways similar to the processing performed on an aerial image to extract

features. The features that are of interest are the walls or building boundaries, which

are obstacles that a mobile robot needs to navigate around to avoid a collision. The

challenge again is to be able to identify features that indicate the presence of a

building boundary while trying to minimize the responses from irrelevant items in

the surrounding. This is especially difficult in an outdoor environment because of

numerous objects in the surrounding area that may act as distractions. Trees are one

example of distractions, as not only will they generate responses in processes such as

edge detection, they may also occlude features that are of interest. Dynamic objects

such as people walking around in the operating environment are also distractions.

While filtering can be performed to reduce the responses from distractions, little can

be done to retrieve information lost from occlusions.

Up to this point, it has not been revealed what feature properties will be used for

the comparison between the observed measurement and the expected measurement

70

CHAPTER 5. CAMERA MEASUREMENTS 71

in the localization system. As indicated earlier in section 2.4, in monocular vision

information from the three dimensional world is projected onto a two dimensional

image plane. In this process, information regarding the depth of objects in the scene

is lost in the raw image data. Without the use of stereo vision, it may be possible

to recover this information by assuming a fixed camera position (height) and using

the base of a building to determine distance as depicted in figure 5.1. However,

this method is susceptible to changes in orientation or more specifically the tilt of

the chassis on which the camera is mounted. In outdoor environments, it would be

very optimistic to assume that the ground is flat and leveled. In addition to this

problem, the imaging system needs to be able to correctly identify where the base of

a building is regardless of the building orientation with respect to the camera. This

is a difficult object recognition problem, and to add to the difficulty, distractions

in a scene are usually more prominent near the ground level and therefore the base

line of a building may be occluded. Also a problem with operating outdoors is that

buildings in the scene are usually a fair distance away from the camera and therefore

the image resolution available may not be adequate to provide depth information with

accuracy. Overall, while distance is theoretically a possible feature measurement, it

is difficult to obtain practically and therefore it will not be used as a feature property

for comparison in the localization system.

Although information regarding depth is lost in an image, the bearing of an object

with respect to the camera can be used as a measure to restrict the possible location

of an object as shown in figure 5.2. If distance measurements are obtainable, or

the actual size of the object in view is known, then it would be possible to locate

an object. Unfortunately these measures are unavailable and having only a bearing

measurement is inadequate. There needs to be another measure indicating another

useful property of objects in the field of view.

The orientation of a building wall with respect to the direction at which the camera

CHAPTER 5. CAMERA MEASUREMENTS 72

Figure 5.1: Recovering depth information using building base lines in monocular

vision

Figure 5.2: Restricting object location based on bearing information

CHAPTER 5. CAMERA MEASUREMENTS 73

is pointed can potentially be another source of information. This information can be

recovered from the effect of perspective (or how objects near-by appear larger in an

image compared to a same sized object far away) using a technique known as vanishing

point analysis. In order to use this method, it is necessary to extract line segments

on the walls of buildings, so edge detection and the Hough transform (PPHT) will

again be used in the process. In the next section, the distraction masking process

for camera images is examined. Then the remainder of this chapter will look at at

how the vanishing point analysis is used to retrieve information on the orientation of

building boundaries.

5.1 Distraction Masking

The first step in processing a camera image for the localization system is to identify

the edges in a scene. The Canny edge detector presented in section 4.1 will be used

to generate an edge map from the scene. From this, the PPHT algorithm presented

in section 4.4 will be used to extract line segments as features, which will in turn

be used as inputs to the vanishing point analysis so that the orientation of building

boundaries can be determined.

Shown in figure 5.3 is a typical example of an image captured by the camera

for the localization system. The resulting edge map obtained using the Canny edge

detector is shown in figure 5.4.

Many objects such as the tree shown in the figure respond to the edge detector

because of the strong contrast the objects possess compared to other objects and the

background of the image scene. It is necessary to remove the edge responses from such

objects because features that do not belong to a building wall may cause incorrect

and unpredictable results in the vanishing point analysis.

CHAPTER 5. CAMERA MEASUREMENTS 74

Figure 5.3: An image captured by the camera for localization

Figure 5.4: The edge map of figure 5.3 produced by the Canny edge detector

CHAPTER 5. CAMERA MEASUREMENTS 75

Inspection of numerous edge maps created from camera images suggests that edge

responses from distractions in a scene are usually cluttered in certain areas of the

edge map. The edge responses of interest from objects on building walls on the other

hand are usually free from such cluttering or experience less of it. Therefore, creating

a mask using a measure of edge pixel density seems feasible. To do this, the edge

density at each pixel is measured using an n × n kernel, where n is an odd and

positive integer, and where each element of the kernel is equal to 1/n2. As this kernel

is convoluted over an image, the response at each pixel will represent the percentage

of pixels in the neighbourhood that responded to the edge detector. For the images

used in the localization system, the value of n is set to 5, and it was determined that

a pixel should be masked if the edge density exceeds 60%. Using a morphological

closing operation will help fill in small gaps in the mask. Figure 5.5 shows the density

measure of figure 5.4, and figure 5.6 is the mask derived from the density measure.

The resulting edge map after the density mask is applied is shown in figure 5.7.

Figure 5.5: The edge map density measure for estimating areas of distractions

CHAPTER 5. CAMERA MEASUREMENTS 76

Figure 5.6: The edge response mask generated from the density measure

Figure 5.7: The resulting edge map after masking

CHAPTER 5. CAMERA MEASUREMENTS 77

Note that in the masked edge map, a large portion of the edge response produced

by the tree has been eliminated. Although some distraction edge responses still

remain, they are now less cluttered and therefore have a low chance of being detected

in the Hough Transform. Another observation to make is that some edge responses

that are of interest have been inevitably removed by the mask. This is a problem

often faced in filtering where there is the need to retain the desired information while

minimizing the noise. As will be shown later by the results, a good portion of the

desired information is still present to complete the vanishing point analysis, suggesting

that the density threshold used in generating the edge map filter is appropriately set.

More examples of filtering using edge density measure are available in appendix B.

The filtered edge map is now ready to be put through the Hough Transform to extract

higher level information.

5.2 Vanishing Point Detection Overview

The concept of the vanishing point has been known for centuries. When parallel

lines in 3d space (or object space) are projected onto an image plane using a central

projection model, the lines on the image plane will intersect at a point known as the

vanishing point [51, 52] as shown in figure 5.8. The central projection model forms an

image by taking the light rays that pass through a common focal point. This model

is consistent with human vision as well as cameras such as the one used with the

localization system, and the 3d to 2d transformation governed by this model is the

reason for perspective [53].

Note that in figure 5.8, a set of lines in object space may project onto the image

plane as parallel lines. In this case, the vanishing point for this pair of lines is

at infinity. The Gaussian sphere shown in figure 5.9 was introduced as a method

CHAPTER 5. CAMERA MEASUREMENTS 78

Figure 5.8: The vanishing points of an object in image space

of defining vanishing points that avoids such singularities [53, 51]. The Gaussian

sphere is a unit sphere centered on the focal point of the vision system. Using the

Gaussian sphere, a vanishing point can be defined by its projection (using the central

projection model) on the sphere, where it has a unique coordinate (azimuth and

elevation). Another way of finding a vanishing point on the Gaussian sphere is to

look at the plane formed by a line in object or image space, and the focal point.

This plane is known as the interpretation plane, and it will intersect the Gaussian

sphere to produce a great circle. Multiple parallel lines in object space correspond to

multiple great circles on the Gaussian sphere that will intersect at a common point.

This point is equivalent to the projection of the vanishing point in image space onto

the Gaussian sphere.

When a vanishing point has been identified in an image, it is possible to infer

the orientation of 3d objects from an image [55]. For an image captured with the on

board camera of the localization system, finding the vanishing point for a group of

CHAPTER 5. CAMERA MEASUREMENTS 79

Figure 5.9: The Gaussian Sphere [54]

line features that belong to the same building wall will allow the orientation of the

wall to be predicted.

In this problem, there is difficulty in determining which lines on an image has to

be grouped together (in other words it has to identify the lines which are parallel

in space). A historically well known approach introduced in [53] adopts the Hough

Transform method and discretizes the Gaussian sphere as an accumulator plane.

Great circles projected by lines on the image plane will cast votes in the accumulator

space as in the Hough Transform, and vanishing points are found by looking for

local maxima. This method is identified as the Gaussian sphere approach in many

publications, but was realized to have several problems. The first is as with any

Hough Transform approach, the size of accumulator cells is arbitrary. A more serious

problem is that a regular quantization in the parameters (azimuth and elevation) does

not lead to equal sized accumulator areas on the Gaussian sphere [51, 56, 57, 58],

CHAPTER 5. CAMERA MEASUREMENTS 80

which can bias the voting scheme. Although this is the case, the Gaussian sphere

approach is still well known and popular, and in realization of the existent problems,

many methods have been developed to enhance the Gaussian sphere approach such

as the ones presented in [54, 59].

A slightly different approach which still uses the Gaussian sphere as an accu-

mulator space looks at the intersection between all line pairs in an image [60, 57].

These intersections are then used to cast votes in the accumulator space. To avoid

the problems of the Hough Transform approach, [56] proposed to find vanishing

points by clustering intersection points. Furthermore, in the presented approach, an

intersection point is weighted by properties of the contributing lines to represent the

likelihood of the intersection point being a true vanishing point.

Besides the methods described above, many other implementations exists. One

approach chooses to look at more than two line features from the image plane at the

same time [51]. Another approach assumes that the faces of objects in an image are

orthogonal and searches for three vanishing points in mutually orthogonal directions

at the same time. While good results can be seen from these publications, these

approaches have been acknowledged to be computationally expensive and unsuitable

for real time applications [61]. Other vanishing point methods that exists in the

literature include [62, 63, 58, 64].

The use of vanishing points in mobile robotics has been used in the past in [65].

However the navigation in this case is behaviour based, meaning that the vanish-

ing point observations are directly linked to motion control. The urban localization

system in development on the other hand is map based, and the method taken for

vanishing point detection is based on the intersection clustering approach. Some mod-

ifications and assumptions are made however to better suit the localization system.

CHAPTER 5. CAMERA MEASUREMENTS 81

5.3 Vanishing Point Identification

An intersection clustering based approach is taken as the vanishing point detection

method because it avoids problems that exist with the Hough Transform based Gaus-

sian sphere approach. However, the Gaussian sphere is still used as a tool in this

method. The vanishing point detection problem is essentially a pattern recognition

problem where it is necessary to identify the existing classes (vanishing points). When

this is accomplished, features (line segments from building walls) can be classified ac-

cordingly, with the azimuth of the vanishing point corresponding to the orientation

of a building wall in space.

Given a line segment identified by using the Hough Transform on the image plane,

its corresponding interpretation plane is formed by itself and the center (focal point

and origin) of the Gaussian sphere. This plane can be represented by a normal vector

φ as shown in figure 5.10.

Figure 5.10: The interpretation plane normal vector

If vectors P1 and P2 go from the origin to the end points of the line segment, the

CHAPTER 5. CAMERA MEASUREMENTS 82

normal vector can be calculated using equation 5.1 [53].

φ = (φx, φy, φz) =
P1 × P2

|P1||P2| (5.1)

A vector to an arbitrary point on the surface of the Gaussian sphere g can be

expressed in Cartesian coordinates using the Gaussian sphere azimuth α and elevation

β parameters according to equation 5.2 [53].

g = (sin α cos β, sin β, cos α cos β) (5.2)

When an interpretation plane intersects with the Gaussian sphere, the great circle

formed is formulated when the condition expressed in equation 5.3 [53].

g · φ = 0 (5.3)

By manipulating equations 5.1, 5.2, and 5.3, the great circle can be defined by

the elevation as a function of azimuth as shown in equation 5.4 [53]

β = arctan

(−φx sin α− φz cos α

φy

)
(5.4)

The point of intersection between two great circles is potentially a vanishing point

of building walls in the camera image. However, this can not be determined until

all intersection points are found and analyzed through clustering. The intersection

between two great circles (identified by subscripts 1 and 2) occurs when equation 5.5

holds true.

CHAPTER 5. CAMERA MEASUREMENTS 83

−φx1 sin α− φz1 cos α

φy1

=
−φx2 sin α− φz2 cos α

φy2

(5.5)

The above equation can be solved for in terms of the azimuth parameter, which

leads to equation 5.6

α = arctan

(
φz2φy1 − φz1φy2

φx1φy2 − φx2φy1

)
(5.6)

Equation 5.6 can then be back substituted into equation 5.4 to solve for the

corresponding elevation of the intersection point.

Up the this point, the approach to finding intersections is largely the same as the

methods presented in [60] and [56]. One enhancement is used to reduce the number

of intersection points and also to eliminate the ones that are extremely unlikely to

be a true vanishing point. To identify these points, it is necessary to examine the

corresponding intersection of lines on the image plane. As illustrated in figure 5.11,

a true vanishing point is always found beyond the endpoints of the corresponding

line segments. Therefore, by performing a simple check on where an intersection

between two line segments is located on the image plane, irrelevant candidates can

be eliminated.

Consider a line segment (a) with endpoints (x1, y1) and (x2, y2), and another line

segment (b) with endpoints (x3, y3) and (x4, y4) on the image plane. Taking the first

line segment as an example, it can be expressed according to equation 5.7, where

0 ≤ ua ≤ 1.

CHAPTER 5. CAMERA MEASUREMENTS 84

Figure 5.11: Identifying irrelevant intersection points

x1 = ua(x2 − x1)

y1 = ua(y2 − y1) (5.7)

The intersection between two lines extended from the two line segments occurs at

a particular value of ua and ub as indicated in equations 5.8 and 5.9.

ua =
(x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3)

(y4 − y3)(x2 − x2)− (x4 − x3)(y2 − y1)
(5.8)

ub =
(x4 − x1)(y1 − y3)− (y2 − y1)(x1 − x3)

(y4 − y3)(x2 − x2)− (x4 − x3)(y2 − y1)
(5.9)

If either 0 ≤ ua ≤ 1 or 0 ≤ ub ≤ 1, it implies that the intersection point is

coincident with one of the line segments and therefore it should be ruled out as a

possible vanishing point. With this implementation, it was found that errors at the

end of the vanishing point analysis were greatly reduced.

CHAPTER 5. CAMERA MEASUREMENTS 85

In the intersection clustering approach taken by [56], intersection points were

weighted to signify their likelihood of being a true vanishing point. A similar approach

is taken here, and a weight is assigned to an intersection point according to the lengths

of the contributing lines. A longer line segment is less likely to be the product of noise

and therefore an intersection point resulting from a long ling segment should be more

likely to exist as a vanishing point. Mathematically, given line segments a and b of

lengths La and Lb respectively, the weight of the intersection point Wi is determined

by equation 5.10, where k is a constant.

Wi = min(kLa, kLb) (5.10)

In the field of pattern recognition, there are numerous approaches to clustering,

which are used for data exploration and to provide prototypes for classifiers [66].

In this case, the data is the set of intersection points, and the prototypes are the

vanishing points being seeked. Once found, these will be used to classify the line

segments observed in the image. The weighted k-means method was used in [56], but

this clustering method requires the number of clusters to be known beforehand. Here,

the subtractive clustering algorithm [67, 68]is used instead as it does not require the

number of clusters to be known.

The subtractive clustering algorithm is iterative. The first step is to find the

density measure D at each data (intersection) point xi by looking at its distance to

n other data points according to equation 5.11. In this equation, δ() is the distance

measuring function and ra is a scaling constant.

Di =
n∑

j=1

exp

(
−δ(xi, xj)

(ra/2)2

)
(5.11)

CHAPTER 5. CAMERA MEASUREMENTS 86

Traditionally, the Euclidean distance is taken between data points to determine

the density because feature dimensions for data points are usually placed in Euclidean

space. However, since a Gaussian sphere is used and the intersection points are defined

by the azimuth and elevation, the arc distance on the sphere is used as a substitute.

This distance can be calculated according to equation 5.12 [60].

δ(xi, xj) = arccos
(
cos

(π

2
− βi

)
cos

(π

2
− βj

)
+ sin

(π

2
− βi

)
sin

(π

2
− βj

)
cos (αi − αj)

)

(5.12)

Once the density Di at all data points has been calculated, they are multiplied by

the weighting factor Wi calculated previously. The point with the largest density Dc

is chosen as a cluster center xc. The density influence of this cluster center is then

subtracted from all the data points according to equation 5.13, and all the density

measures are updated. In this equation D′ is the updated density measure and rb

is a scaling factor similar to ra. The magnitude of rb will determine the extent to

which other data points are influenced by the subtraction. Literature on subtractive

clustering suggests setting rb = 1.5ra.

D′
i = Di −Dc exp

(
−δ(xi, xc)

(rb/2)2

)
(5.13)

The clustering process then looks for the next highest density measure and den-

sity subtraction is repeated. This will continue iteratively until an end condition is

satisfied. For the localization system, the end condition is a threshold T which will

end the clustering process when T > Dc.

To further aid the clustering process, it is assumed that the onboard camera will

normally remain leveled and not experience severe tilting and rolling. With this

CHAPTER 5. CAMERA MEASUREMENTS 87

assumption, it follows that vanishing points will likely appear near the pole (from

vertical lines in object space) and the equator (from horizontal lines in object space)

of the Gaussian sphere. Therefore, the clustering problem can be divided into two

parts; one that searches above a certain angular elevation for a vanishing point near

the pole (for instance at greater than 70 degrees), and one that searches between two

elevations slightly above and below the horizon (at less than 20 degrees and greater

than -20 degrees for example). This implementation has been tested and confirmed

to generate better and more accurate vanishing point detection results.

The number of cluster centers (vanishing points) that the clustering process will

find is dependent on the scene of the corresponding image. In a scene where building

walls are heavily occluded by trees and other distractions, it is possible to find no

vanishing points at all. In general however, usually three vanishing points can be

detected from a scene captured by the onboard camera of the localization system.

These three points correspond to the vertical edges and usually two orthogonal build-

ing walls, where the azimuth of the vanishing points are approximately 90 degrees

apart. At this point the prototypes for classification have been identified, and it is

now possible classify the line segments found in an image to associate them with a

particular vanishing point.

5.4 Feature Classification

Classification in pattern recognition involves identifying the membership of a data

point given information regarding the possible classes that the point can belong to.

Previously, vanishing points have been identified through subtractive clustering and

they are to serve as the classes in the classification process. The objects that need

to be classified are the line segments in image space. In [56], the approach taken

CHAPTER 5. CAMERA MEASUREMENTS 88

was to classify the intersection points and backtrack to label the line segments from

which the intersection point was created. A different approach is taken here with

the argument being that some intersection points may not belong to any class at all

because they may be the product of lines that are not parallel in object space, or

noise. The method taken proposes to classify line segments directly using distance to

vanishing point measures on the Gaussian sphere.

Line segments in image space project onto the Gaussian sphere as great circles.

Often in pattern recognition, a data point being classified has the same features as the

classification prototypes. Vanishing points (a point on the Gaussian sphere) and great

circles (a set of points on the Gaussian sphere) are different entities but classification

is still possible by considering the point on the great circle closest to the a given

vanishing point. In other words, the great circle distance between a vanishing point

and the great circle that originated from a feature in the image space will be used to

classify the same feature.

Membership of a class is won by the shortest distance measure. The distance

calculation can be accomplish using vector mathematics, so the first step to take is

to convert the vanishing points Vi into Cartesian coordinates using equation 5.2. The

interpretation plane normal vector φ is a unit vector perpendicular to the great circle

formed by the projection of a line segment onto the Gaussian sphere. Using this, the

distance to the vanishing point di can be calculated using equation 5.14.

di =
π

2
− arccos (φ · Vi) (5.14)

In order to avoid mistakenly classifying line segments, a maximum threshold dis-

tance is set. A vanishing point class Ci will only win the membership of a line segment

λj if the distance measure is less than the distance measure to all other vanishing

CHAPTER 5. CAMERA MEASUREMENTS 89

points, and if the distance measure is less than the threshold dmax. Mathematically,

the classification criterion is expressed in equation 5.15.

λj ∈




Ci if dij ≤ dmax;

∅ if dij > dmax

(5.15)

Another precaution taken is to ignore all features below a certain elevation because

of their proximity to the ground where the chance of a feature being a distraction is

higher.

The result for line segment classification can be seen in figure 5.12. In this figure,

the thick line segments are the ones detected from using the PPHT on figure 5.7.

These line segments are colour coded according to the vanishing point that they

belong to. Red lines belong to the first vanishing point, green lines belong to the

second vanishing point, and blue lines belong to the third. A black line segment is

one which does not belong to any class so its orientation is unknown. The location of

the corresponding vanishing points on the Gaussian sphere has also been identified

in the figure by their azimuth and elevation in units of degrees. The azimuth is of

greater interest as it indicates the orientation of line segments in object space. When

the azimuth is at zero, it implies that the line segments are parallel with the direction

in which the camera is pointed. When the azimuth is at 90 degrees or −90 degrees,

it means that the line segment is perpendicular to the viewing direction. Additional

results can be found in appendix B.

It turns out that the vanishing point analysis is quite capable of enduring unwanted

rolling and tilting of the camera without causing much deviation to the estimate of

building wall orientations. To prove this, consider a camera that has endured some

degree of rolling (rotation about the direction of view) and pitching (rotating that

causes the camera to tilt up and down). It is more convenient in this case to use the

CHAPTER 5. CAMERA MEASUREMENTS 90

Figure 5.12: Result of the vanishing point analysis

vanishing point for vertical lines as an indication of tilt and roll. Camera movement

will be offset the vanishing point for vertical lines from the pole of the Gaussian

sphere. Correcting this offset requires two mathematical transformations in Cartesian

coordinates as shown in equation 5.16. Here, the angles γ and θ are required to move

the offset vanishing point back to the pole of the Gaussian sphere.

RγRθ =




cos γ − sin γ 0

sin γ cos γ 0

0 0 1







1 0 0

0 cos θ − sin θ

0 sin θ cos θ




=




cos γ − sin γ cos θ sin γ sin θ

sin γ cos γ cos θ − cos γ sin θ

0 sin θ cos θ


 (5.16)

CHAPTER 5. CAMERA MEASUREMENTS 91

Applying this transformation to other vanishing points reveals that their azimuths

are almost unchanged. Since tilting and rolling causes the most change in azimuth

near the zero azimuth mark, figure 5.13 is generated to show how little effects camera

movement (quantified by the offset of the vanishing point at the pole of the Gaussian

sphere) has on the azimuth measure at this location. It is not until severe camera

tilting and rolling occurs that more significant error is experienced. For a simplified

explanation of why the azimuth measure has such tolerance to camera movement,

consider how the cosine of a small angle (representing some rotation) remains close

to the value of one, and apply this concept to the Gaussian sphere.

Figure 5.13: Azimuth error due to camera tilt and roll

CHAPTER 5. CAMERA MEASUREMENTS 92

5.5 Data Representation

It would be useful to organize all the classified line segments into a structure that is

convenient to use in the particle filter. This is done by first identifying the azimuth of

all the line segments that have an associated non-vertical vanishing point (hence the

line segment is not a vertical line in object space). These points along the azimuth

signal a change in the orientation or the number of observable objects. A data struc-

ture list is created and each element of it holds information regarding the orientation

of the objects in view at each section. In other words, each element contains the

vanishing point azimuth of objects visible in the corresponding view section. This

data representation scheme is illustrated in figure 5.14. Here, the detected features of

the building in view are already associated with vanishing points and hence each of

their orientation has already been estimated. The corresponding data structure list

is illustrated beneath the scene, and the contents of selected elements are shown as

examples. The top-down view of the building in the scene is also drawn in the figure

to better illustrate the configuration of the building in the scene.

CHAPTER 5. CAMERA MEASUREMENTS 93

Figure 5.14: Data representation for information extracted from on board camera

images

Chapter 6

Particle Filter Implementation

In the previous chapters, methods for feature map generation and camera image

processing were described. These two processes provide the map and measurement

inputs essential for the implementation of a particle filter localization algorithm, or

any Bayes filter in general. Also required is the ability to predict state transition

between measurements. This can be accomplished using control inputs and a state

transition model, both of which are assumed to be available.

In this chapter, the implementation of the vision based urban localization system

is discussed. First, the state vector x which the particle filter attempts to estimate

is defined by two robot position variables (x,y) and a robot heading variable (ϑ) as

expressed in equation 6.1.

x =




x

y

ϑ


 (6.1)

94

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 95

To review, the particle filter algorithm contains the following steps. First particles

are distributed in state space according to the initial belief state. Each particle is

then moved according to the state transition model and motion control inputs, the

details of which will be discussed in the following section. After state transition, each

particle will compare the expected and observed sensor measurements. The expected

measurement is different for particles at different states, and it is necessary to refer to

the processed aerial image to determine the expected measurement for each particle.

Observed, or real measurements come from the on board camera, and were extracted

using the image processing techniques and vanishing point analysis described in the

previous chapter. The comparison of expected and real measurements results in an

importance factor for each particle. This factor is used in the resampling of particles,

or deciding which particles will survive onto the next iteration of the particle filter.

Validation of the particle filter is done over a course set in an urban environment

that covers an area of approximately 220m× 180m. The aerial map of this area has

already been presented in figure 4.14. In the duration of this course, the maximum

velocity that will be reached is 2.8m
s
, the lowest is 1.0m

s
, and the average velocity is

1.9m
s

The on board camera is used to capture and save images in the duration of the

course and the images are then processed offline.

Results of the localization system will be presented for the kidnapped robot situ-

ation, where the initial state is unknown. Additionally, the sensitivity of the localiza-

tion system to changes in the control input covariance is examined. Finally, process

timing information will be presented.

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 96

6.1 State Transition

Transition of the state estimate between measurements is accounted for by applying

the state transition to all the particles of the particle filter. During this operation,

the spread of the particles in state space goes from a sample of the prior probability

to a sample of the probability density function representing the transitioned state.

This was presented in a mathematical form in equation 3.10.

It is assumed that information regarding the forward velocity v and the yaw ∆ϑ is

available for the localization system. The availability of motion control inputs is gen-

erally dependent on the design and the equipment on board a specific robot. Robots

equipped with encoders on the wheels may be able to provide information on velocity

and displacement. An inertial measurement unit is able to provide accelerations and

angular velocities, and a compass may indicate rotation. The motion control input

vector u for this implementation is expressed in equation 6.2.

u =


 v

∆ϑ


 (6.2)

The fact that yaw (angular displacement) instead of yaw rate (angular velocity)

is used is of little consequence because it is assumed that yaw rate remains constant

in a time step of state transition, and yaw is simply the integral of the yaw rate over

the elapsed time.

It is necessary to develop a state transition model based on the motion control

input vector. For the current implementation of the particle filter, a velocity motion

model will be used. The state transition model between the prior state vector xt−1

and the new state vector x′ is shown in equation 6.3 [9], where ∆t is the time elapsed

in the state transition. It is assumed that the control vector remains constant in this

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 97

duration.




x′

y′

ϑ′


 =




v∆t cos (ϑ + ∆ϑ/2)

v∆t sin (ϑ + ∆ϑ/2)

∆ϑ


 +




xt−1

yt−1

ϑt−1


 (6.3)

This model is actually a simplification of a more precise model shown in equa-

tion 6.4. However, the prior model is simpler to compute and the difference between

the two can be considered almost negligible because large changes in heading is not

expected over a time step. Furthermore, random noise that will be added to the

control input will also make the difference between the two models insignificant.




x′

y′

ϑ′


 =




− v
∆ϑ/∆t

sin ϑ′ + v
∆ϑ/∆t

sin (ϑ′ + ∆ϑ)

v
∆ϑ/∆t

cos ϑ′ − v
∆ϑ/∆t

cos (ϑ′ + ∆ϑ)

∆ϑ


 +




xt−1

yt−1

ϑt−1


 (6.4)

In order to incorporate uncertainty in the control inputs, zero mean Gaussian

noise is added to the control input variables. In other words, the control inputs are

modeled as a Gaussian distribution with a mean at the specified control input values.

The spread of this distribution is governed by the covariance. It is assumed that the

two input variables have no correlation with each other, and that the covariance is

constant. The resulting covariance matrix Σis shown in equation 6.5.

Σ =


 σ2

v 0

0 σ2
ϑ


 (6.5)

To add random noise to the controls for particle propagations according to a Gaus-

sian distribution, a random number generator that draws randomly from a normal

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 98

distribution is required. Common random number generators usually generate num-

bers based on a uniform distribution. The Box-Muller transform [69] can be used to

convert a set of uniformly distributed points to follow a normal distribution. Another

algorithm for approximate sampling from the normal distribution is shown in equa-

tion 6.6 [1]. Again, a uniform distributed random number generator rand(−b, b) is

used, where it generates a number between b and −b. The value b should be set equal

to the standard deviation of the desired normal distribution. This can be obtained

by taking the square root of a variance σ2
v or σ2

ϑ. One should find that the output

of this method (w) will approximately follow the specified normal distribution with

a standard deviation of b.

w =
1

2

12∑
i=1

rand(−b, b) (6.6)

In figure 6.1, the path taken for testing of the localization system is dotted, and

the direction of travel along the dotted path is labeled with arrows. These dots are

also representative of the state transition experienced by a particle if it starts at the

true initial state, and if the above transition model is used. The time elapsed between

each dot is one second, and the entire course lasts 3 minutes and 20 seconds.

Aside from providing expected measurements, the feature map is also used to

indicate whether the state transition of a particle has caused it to run into a boundary.

A particle is considered to have crashed if the a straight line representing its change

in (x, y) position intersects with a building boundary feature on the map. Such a

particle will be removed and regenerated with a new random state.

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 99

Figure 6.1: The localization test track

6.2 The Importance Factor

The importance factor is a weighting for particles that influence the propagation of

the particles into the next iteration of the particle filter. This factor is based on the

measurement model described in equation 3.11, and it is proportional to the similarity

between the expected measurement (ζ) and the real measurement (z). The expected

measurement (ζ) is derived from the current state estimate x’, after accounting for

state transition due to control inputs, and also the feature map. The feature map

is created through image processing techniques which have already been presented.

The real measurements (z) are obtained from camera images. Using image processing

techniques and the vanishing point analysis presented in the previous chapter, infor-

mation regarding the orientation (vanishing point azimuth) of building boundaries

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 100

(ψ) and the bearings (azimuths) of their endpoints relative to the on board camera

(αstart, αend) have been extracted to serve as the real measurement. Equation 6.7 is

the mathematical representation of the real measurement. Here, index e is used to

identify a section of the field of view. Note again that the measurement for any view

section could contain multiple numbers (1 . . . r) of building orientations, and this was

illustrated in figure 5.14.

ze =




ψ1...r

αe,start

αe,end


 (6.7)

It is necessary to compute what each particle sees in its field of view according

to the feature map to obtain the expected measurement (ζ), as this has not yet been

computed. This calculation is performed by examining the orientation of each particle

(ϑ) and the orientation of boundaries in a global reference frame. The orientation

of a boundary (ϑb) can be determined by its endpoints (x1, x2), (y1, y2) according to

equation 6.8.

ϑb = arctan
y2 − y1

x2 − x1

(6.8)

The expected orientation of a building boundary with respect to a particle (ψ)

can then be determined using equation 6.9. This is also the azimuth of the corre-

sponding vanishing point if the boundary is seen from the onboard camera view. For

convenience, the calculated value should be expressed between 180o and −180o.

ψ = ϑb − ϑ (6.9)

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 101

The mathematical representation of the expected measurement shown in equa-

tion 6.10 is similar to that of the real measurement, which should be of no surprise

since the real and expected measurements are to be compared. Here, s is used to

index the observable vanishing point azimuths in a view section.

ζe =




ψ1...s

αe,start

αe,end


 (6.10)

The field of view for each particle (αmax − αmin) is equivalent to that of the on

board camera, which is 48 degrees. To compute the expected visible features, an

angular sweepline algorithm is used. The features on the map are first sorted by the

bearing (azimuth, α) of its endpoints in ascending order. Endpoints are used because

they represent a possible change in the observability of features. Features that are

outside the field of view are not included in this list. Starting with the endpoint with

the lowest relative bearing to a particle, the corresponding feature is checked to see

whether the particle has an unobstructed view of it. The entire length of a feature is

considered visible even if a portion of it is occluded by another feature. This is done

because information about building height is not available on an aerial map, and the

visibility of a tall building behind a shorter building needs to be considered. Features

that are fully occluded will not be entered to the list, otherwise the list is updated

and the process moves onto the next endpoint. Figure 6.2 is an illustration of this

process and the resulting feature list data structure. This data structure is almost

identical to the one used for organizing feature data extracted from on board camera

images.

The data structure containing visible features from the map and the data structure

containing visible features from the on board camera are merged together as shown

in figure 6.3. This is done for the convenience of interpreting the feature orientations

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 102

Figure 6.2: Data representation example for map features visible to a particle

in determining the importance factor for each particle. In this combined list, each

element still represents a section of the field of view (αe+1 − αe) and contains the

expected orientation and the perceived orientation of visible building boundaries in

that section. Note that since the objects visible to each particle is different, it follows

that the data list will be different for each particle.

Figure 6.3: A combined data representation of expected and real measurements

The importance factor for each particle Wm is evaluated by considering each el-

ement of the combined feature data list. For each element e (from 1 to emax), there

may be a number of expected orientation measurements ψs (expressed in degrees,

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 103

and indexed by s), and a number true orientation measurements ψr (also expressed

in degrees, but indexed by r). A matching factor η is determined by considering the

closest pair of expected orientation measurement and true orientation measurement.

This closeness is quantified using a sigmoid function, as expressed in equation 6.11. A

sigmoid function is used so that slight differences in expected and observed measure-

ments can still result in a high importance factor, but the penalty in the difference

will become increasingly severe if measurement differences increase.

ηe = max
r,s

[
1− 1

1 + exp (20−|ψs−ψr|
2

)

]
(6.11)

A weighting factor ρe is determined for each data list element. This factor is

proportional to the view span section (αe,end − αe,start) it represents in the complete

field of view (αmax − αmin), and is calculated according to equation 6.12. This factor

will ensure that the feature comparison result for a view section that spans across

a large proportion of the field of view will receive more weighting compared to the

feature comparison result of a section that covers a relatively smaller proportion of

the field of view.

ρe =
αe,end − αe,start

αmax − αmin

(6.12)

The importance factor for a particle is then calculated using equation 6.13

Wm =
emax∑
e=1

ρeηe (6.13)

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 104

6.3 Particle Resampling

In a particle filter, the sampling variance concerning the state of each particle com-

pared to the true state can increase during the resampling process, even though the

variance of the particle set itself appears to decrease. This occurs because of the

reduction in particle diversity during resampling, and the random nature of the re-

sampling process [1].

To reduce the sampling error, the low variance sampling method is used, where

each selection of particles in resampling is not an independent process [1]. This implies

that for M particles, selection is not based on generating M random numbers. An

illustration of how the low variance sampling method works is shown in figure 6.4. In

this figure, each cell represents a particle and the importance factor determines the

width of each cell. A random number R is generated between zero and M−1, upon

which the value M−1 is repeatedly added for (M-1) iterations. The value of the sum

during each iteration is used to select the particles that will make the next iteration

of the particle filter.

Figure 6.4: Low variance sampling [1]

The low variance sampling method is computationally more efficient compared

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 105

to generating M number of random numbers. Additionally, in the case where all

particles have the same importance factor, all particles will be resampled and used in

the next iteration of the particle filter. The same result is not achieved by generating

M independent random numbers.

6.4 Localization Results

The result of localization for an unknown initial state is greatly influenced by the

number of particles used. As discussed when the particle filter was first presented in

section 3.3, the particle deprivation problem can exist even when a large number of

particles is used because the random nature of the particle filter may not generate

a particle close enough to the true state. However, the problem is usually more

pronounced with a low number of particles. Therefore, the selection of the particle

set size should ensure that this problem does not occur frequently. Determining the

number of particles to use is also dependent on the size of the state space (which

in this case has three dimensions). Through numerous trials with different sizes of

particle sets, localization has been achieved with as little as 300 particles. However,

to assure a high likelihood of convergence, it is determined that 2000 particles should

be used for the workspace defined by the aerial feature map. It should be noted that

the variance of the control inputs also have an influence on the ability to localize, but

this will be discussed in the next section. For the results presented in this section, the

goal is to illustrate that localization can be achieved and to quantify the performance.

Over 100 test runs have been conducted on the particle filter to ensure that lo-

calization was not achieved by pure chance. However, since it is impractical to show

time frame by time frame results of every test run. The results of a typical test run

will be shown here in a series of figures depicting the result at various points along

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 106

the test run. Additional results can be found in appendix C to provide further proof

of the localization system’s validity.

Figure 6.5 illustrates the start of a test run for which the standard deviation of

the forward velocity is set at 10 cm
s

, and 5 degrees for yaw. Since the initial true state

is unknown, particles are spread randomly throughout the workspace. The direction

in which a particle is pointed is indicated by a short line protruding from the center

of each particle. The true state is also shown.

Figures 6.6 through figures 6.16 shows the evolution of particles as the test track is

traversed. At first, particles are seen to start converging at several locations although

there is only one true state. This is occuring because of sensor aliasing, where the

expected measurement at different states appear similar to the real measurement. As

state transitions occur, particles move into different areas of the workspace where

they can further determine if corresponding expected measurements match real mea-

surements. Hence the visible clusters where particles converge begin to reduce until

only one remains. As evident from figure 6.15, the particle cluster overlaps the true

state when localization is achieved.

In looking at the many test runs performed, the time at which particles converge

onto a single cluster near the true state is unpredictable due to the random nature of

the particle filter. Additionally, in some instances, particles are still found grouped

into several clusters at the end of a test run, while at other times, a single cluster is

formed at an incorrect location due to the particle deprivation problem. Although

both cases are infrequent with the number of particles used, it is believed that the

particles will eventually converge around the true state given enough time. The reason

for this is because a particle at an incorrect state will likely to eventually run across

a building boundary during state transition. When this occurs, the design of the

particle filter causes the particle to regenerate at a random state, which by chance

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 107

Figure 6.5: Particle filter localization result - sequence 1 of 12 - elapsed time: 0s

Figure 6.6: Particle filter localization result - sequence 2 of 12 - elapsed time: 15s

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 108

Figure 6.7: Particle filter localization result - sequence 3 of 12 - elapsed time: 30s

Figure 6.8: Particle filter localization result - sequence 4 of 12 - elapsed time: 45s

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 109

Figure 6.9: Particle filter localization result - sequence 5 of 12 - elapsed time: 60s

Figure 6.10: Particle filter localization result - sequence 6 of 12 - elapsed time: 75s

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 110

Figure 6.11: Particle filter localization result - sequence 7 of 12 - elapsed time: 90s

Figure 6.12: Particle filter localization result - sequence 8 of 12 - elapsed time: 105s

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 111

Figure 6.13: Particle filter localization result - sequence 9 of 12 - elapsed time: 120s

Figure 6.14: Particle filter localization result - sequence 10 of 12 - elapsed time: 135s

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 112

Figure 6.15: Particle filter localization result - sequence 11 of 12 - elapsed time: 150s

Figure 6.16: Particle filter localization result - sequence 12 of 12 - elapsed time: 175s

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 113

may be near the true state. This design can be considered as a counter measure for

the particle deprivation problem.

To quantify the performance of the particle filter, the difference in (x, y) position

between the true state and the estimated state is measured. However, it is only fair

to apply this distance measure when the particles have converged at a single cluster,

signifying that that system thinks it has localized. Visually determining this point

may induce some degree of bias. Therefore, a measure of particle spread will be used

to indicate when the system thinks it has achieved convergence. The error is then

averaged over time, and also over randomly chosen test runs.

The measure of particle spread is performed by assuming a Gaussian distribution

and determining the covariance of particle locations. The covariance matrix is then

diagonalized by finding its eigenvalues [43], as in a principal axes analysis. When

the square root of the larger eigenvalues is below the threshold of 10m as shown in

figure 6.17, localization is considered to be achieved.

Error measurements averaged over 10 test runs indicate that the average posi-

tioning error of the localization system is 5.3m, with 95% of the error measurements

being below 9.3m. This result is comparible to that of SPS for GPS, the performance

of which was presented in section 2.3. It was stated that the positioning accuracy

of 22m can be achieved with SPS. But realistically, the accuracy is at about 8m

with the absence of SA. GPS positioning accuracy can also be increased due to the

availability of WAAS, but at the same time, multipath in urban environments bring

unpredictable effects. The DOP readings (used as an estimate of the effect of multi-

path) taken from a GPS receiver around the the area of the test course indicates an

average value of approximately 2.5. Using this multiplicative factor on the UERE, it

is estimated that on average, the GPS positioning error for the test site is within 20m

for 95% of the position readings. Therefore, strictly based on positioning accuracy,

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 114

Figure 6.17: Indication of particle convergence in a typical test run

the performance of the vision based localization system is slightly better than the

performance of GPS. Aside from positioning measures, another consideration is the

time required to achieve localization. With GPS receivers, if the unit has recently

been used, it is possible to obtain positioning measurements the instant the receiver

is activated. This is of course provided that the surrounding environment allows for a

positional fix. With the particle filter, localization requires some degree of movement

in the environment, and the time it takes to localize is not deterministic.

The results presented so far indicate that the particle filter is able to perform state

estimation with unknown initial state. Additional tests were performed to see how

the particle filter handles the robot tracking problem where the initial state is known.

This should be an easier problem and less particles should be required because it

is no longer required to cover the entire state space with particles in the beginning.

The purpose of performing this test is to ensure that once localization has been

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 115

achieved (indicated by the convergence of particles to one cluster), localization can

be maintained (or the single particle cluster does not dissipate into multiple clusters).

This test was performed in several trials with different sizes of particle sets, the lowest

of which is 10, the highest of which is 300. In all cases, localization was maintained

throughout the test course.

6.5 Sensitivity to Input Uncertainties

It is necessary to examine how the particle filter reacts to different settings of the

control input covariance to ensure that it can still perform with realistic amounts of

errors in state transition. Additionally, it is of interest to find the performance limits

of the particle filter design.

Since it was assumed that the two control inputs have Gaussian noise and are

independent, the control input covariance matrix is diagonal and therefore the only

concern is the two values representing the variance (the square root of which is the

standard deviation) for forward velocity and yaw. To interpret the magnitude of the

standard deviations in a statistical sense, it means that approximately 95% of the

time, one can expect the control input error to be within two standard deviations.

Furthermore, the errors will be within three standard deviations for approximately

99% of the time.

Different combinations of control input standard deviations (σv,σϑ) were tested

with the particle filter, and the resulting success rate of localization is summarized

in table 6.1. For the combinations that were tested, five tests for each case were

repeated and the number of successful localization attempts within the duration of

the test track are recorded. The same definition of when the system thinks it has

localized will be used as in the previous section.

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 116

σϑ = 2o σϑ = 5o σϑ = 7o

σv = 0.1m
s

5/5 5/5 2/5

σv = 0.2m
s

5/5 3/5 1/5

σv = 0.5m
s

4/5 3/5 2/5

σv = 0.7m
s

1/5 2/5 0/5

Table 6.1: The effects of control input variance on the localization performance (suc-

cess rate) of the particle filter

σϑ = 2o σϑ = 5o σϑ = 7o

σv = 0.1m
s

ε = 2.1m,σ = 5.7m ε = 3.2m,σ = 7.7m ε = 4.0m,σ = 12.1m

σv = 0.2m
s

ε = 2.8m,σ = 6.4m ε = 4.7m,σ = 11.3m ε = 6.5m,σ = 15.8m

σv = 0.5m
s

ε = 2.6m,σ = 9.3m ε = 3.0m,σ = 15.7m ε = 6.8m,σ = 17.3m

σv = 0.7m
s

ε = 1.8m,σ = 13.7m ε = 8.4m,σ = 15.0m ε = 8.5m,σ = 23.8m

Table 6.2: The effects of control input variance on the localization performance (po-

sitional error and particle spread) of the particle filter

It is important to note that in some of the cases described in the table above, such

as the case where σv = 0.7m
s

and σϑ = 2o, a single cluster of particles were observed

to have formed in all instances, but the spread of the clusters observed were too great

for the system to considered itself to be localized. This same observation can be said

for some of the test runs for the cases where σv = 0.1m
s
, σϑ = 7o. For this reason,

table 6.2 shows the average minimum position error ε (in meters) and the minimum

spread expressed as standard deviation σ (in meters) for each case. The minimum

values obtained in a trial are used in the table instead of a timed average to avoid

having to visually judge and determine when the system seems to have localized, so

that bias will not be introduced into the results.

Overall, it can be seen how performance is degraded with increasing control in-

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 117

put variances. With greater variances, particles that find themselves near the true

state are more likely to move away from the intended course, which results in lower

importance value, and the greater cluster spread observed.

Another interesting point to note from the table is that changes in the variance for

yaw seem to have more effects than that of forward velocity. This can be explained

from the design of the particle filter. In the particle filter, the measurement being

used to evaluate the importance factor for particles is based on the orientation of

building walls and their relative bearing to the particles. When a particle moves in a

straight line, the expected orientation of the building wall will not change, but there

might be slight changes in the bearings of feature endpoints. On the other hand when

a particle rotates, both the apparent orientation of building walls and their bearings

change. Therefore, this has a more pronounced effect on the expected measurements

and the calculation of importance factor.

Overall, it is concluded that the performance of the particle filter can be main-

tained when the standard deviation for forward velocity is below 0.1m
s

and when that

of yaw is below 5o.

6.6 Timing analysis

The testing of the particle filter was performed on a computer with an Intel Pen-

tium M processor rated at 1.60GHz. Process timing information for an iteration of

the particle filter has been gathered over many test runs (using 2000 particles) and

statistically summarized in table 6.3. Since images are acquired from the on board

camera every one second, it implies that an equivalent cycle processing time required

for real time implementation. In the table, the localization process has been broken

down into several key steps to give an indication of which sub-processes are more

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 118

Average time [s] Standard deviation [s]

State transition 0.165 0.070

Camera image processing 1.236 1.736

Importance factor calculation 7.751 5.865

Particle resampling 0.001 0.004

Table 6.3: Particle filter localization process timing summary

computationally demanding, and a graphical representation on the average timing

information is also presented in figure 6.18.

Figure 6.18: A comparison of computational demand for sub-processes of the particle

filter based on mean timing information

The computation for state transition takes a relatively small share in an iteration

CHAPTER 6. PARTICLE FILTER IMPLEMENTATION 119

of the particle filter. Within this sub-process, the majority of the time is spent on

determining if particles have collided with a boundary, while the time required to

compute state transitions alone is almost negligible.

Processing of camera images take up a noticeable portion of time in the particle

filter algorithm. The actual time spent is dependent on the complexity of a scene and

the number of features extracted. It is expected that the image processing processes

steps of edge detection, filtering, and Hough transform require little computation time

in comparison with the pattern recognition process of finding line segment feature

intersections as well as clustering.

The step that takes the most time is the calculation of importance factor. This

is due to the need for each particle to determine which features are within its field

of view. Therefore, the time required in this step is dependent on the complexity of

the feature map, and also the number of particles used, both of which have a linear

relationship with the computation time.

The time required to resample particles takes the least amount of time and is

almost negligible compared to the three other steps.

Overall, the results show that a faster processing unit, or improvements in the

efficiency in the processing of aerial images as well as determination of the importance

factor is required to achieve real time implementation.

Chapter 7

Conclusions

In this thesis, a design for an urban environment autonomous localization system has

been proposed. This system is unique in that it uses monocular vision as the only

form of sensing, which makes the system simpler in terms of hardware management

and thus less costly. An aerial orthoimage is used as a map of the localization system

to increase the degree of autonomy.

One of the main challenges was extracting accurate information from limited visual

cues. Environmental information was extracted from aerial images through the use

of image processing and computer vision techniques. While a feature map defined by

a human user may be more accurate, the proposed design introduces automation to

the process, which can drastically reduce the time involved in building a map that

is comprehensible by a computer. Overall, this makes the localization system more

flexible, as it can be implemented quickly in many places as long as an aerial map is

available.

Image processing and computer vision techniques were once again utilized to ex-

tract information from on board camera images, with an additional process of vanish-

120

CHAPTER 7. CONCLUSIONS 121

ing point analysis. This enabled the orientation of building boundaries in the field of

view to be estimated. Using the vanishing point analysis also helped reduce potential

problems due to camera movement (tilting and rolling).

Another challenge of this localization system design was in placing the information

from the aerial image and on board camera images to good use. The particle filter

was implemented to update state estimates by comparing observed building boundary

orientations to expected values, while using a velocity motion model to calculate state

transitions. Testing of this system was performed off line with a set of previously saved

on board camera images.

The numerous test results show that localization can be achieved using the pro-

posed design for the problem where the initial state is unknown. The state space in

which localization was performed corresponded to an actual large area. Furthermore,

besides estimating the two coordinates for position, the localization system was re-

quired to estimate heading, a third dimension in the state space. All this was achieved

using only 2000 particles and with the incorporation of realistic control input noise.

Furthermore, the particle filter also works for the robot tracking problem. Perfor-

mance analysis revealed that the designed system is comparable to GPS in terms of

estimation error and can outperform it when multipath becomes a problem. How-

ever, the particle filter has the drawback of taking a longer time to localize, and the

biggest drawback is the currently achievable computational time using an inexpensive

portable computer.

With the successful implementation of the particle filter, it is confirmed that

localization can be achieved with an imperfect map, which reconfirms that a Bayes

filter approach is robust. Also, it is confirmed that localization is possible using purely

monocular vision. In addition, the results of the particle filter indicate that the design

is able to tolerate the uncertainties of working in an outdoor environment and can be

CHAPTER 7. CONCLUSIONS 122

used as a bench mark for future vision based localization systems.

7.1 Future Work

Using a single camera as the only sensor brings the benefit of simplicity in hardware

management. This can be further extended by using vision to estimate the control

inputs for state transition. This is known as the vision based ego-motion estimation

problem, and may have the potential to eliminate the need for proprioceptive sensors.

Many vision based ego-motion estimation system will first compare two images by

calculating the optical flow, or the distribution of apparent displacement of intensity

patterns between two images [70]. Based on the vectors of optical flow, an ego-motion

estimator will try to determine the motion that has caused the displacements between

two scenes. For additional information and algorithms, refer to [71, 72, 73, 74, 75].

The performance of GPS was briefly discussed in this thesis. GPS remains a

popular tool in localization, regardless of the problems which it might encounter in

urban settings. For instance, the degrading of GPS performance in urban canyons

has not discouraged their use in automobiles. With decreased accuracy, it may still

be possible to incorporate GPS readings to reduce the size of the state space where

particles should be seeded. To elaborate on this idea, a GPS position reading can be

used to increase the importance factor of particles near the perceived position fix. The

amount of increase will depend on the confidence of the GPS measurement. A high

confidence will only retain particles close to the position fix, while a low confidence

will have less influence on the particles. From this, the implication is that fewer

particles will have to be used even for a large workspace, and the approach should

become increasingly beneficial as the size of workspace increases.

Although the particle filter implementation was successful, there is room for fur-

CHAPTER 7. CONCLUSIONS 123

ther improvements. One way to increase the robustness of the particle filter is to

allow the importance factor to accumulate for several iterations before resampling.

This approach is effective against random noise that may appear in measurements [1].

In terms of the designed localization system, this noise may come from errors in the

vanishing point analysis and from errors on the feature map.

The localization timing analysis revealed that real time implementation is not pos-

sible without a faster computer processor. Besides better hardware, perhaps changes

can be made to increase the efficiency of the particle filter algorithm.

Depending on the application, it may be possible to reduce the measurement up-

date frequency, or in other words, reduce the frequency at which on board camera

images are captured. Another possibility is to first evaluate the usefulness of a cap-

tured image before using it to update state estimates. For instance, in a previously

captured camera image, a building wall feature may be indicated as being perpen-

dicular to the camera heading. The same information may be present in the current

camera frame, which is unlikely to cause any large changes in the distribution of par-

ticles. Therefore, to save computational time, the image may be disregarded. A scene

may also be considered to be discarded if it contains too little information. The time

saved from not updating particles will mainly come from not having to reference the

feature map to determine expected measurements.

Since the size of the particle set heavily influences the efficiency of a particle filter,

it may be a good idea to use an adaptive particle set size. The idea behind an adaptive

particle set size is to reduce the number of particles once they begin to converge upon

a certain state since the particles are no longer required to cover a large area in state

space. One implementation of this is known as KLD (Kullback-Leibler Divergence)

sampling [1].

Appendix A

Feature Map Processing Examples

This Appendix section contains additional figures showing the results of corner re-

sponse masking process and the modified PPHT process. Its intent is to indicate that

the process described for feature map generation will work on other aerial images other

than the one of the localization testing area.

124

APPENDIX A. FEATURE MAP PROCESSING EXAMPLES 125

(a) Original image

(b) Masked image

Figure A.1: An additional example on corner response / distraction / vegetation

masking

APPENDIX A. FEATURE MAP PROCESSING EXAMPLES 126

(a) Original image

(b) Masked image

Figure A.2: An additional example on corner response / distraction / vegetation

masking

APPENDIX A. FEATURE MAP PROCESSING EXAMPLES 127

(a) Original image

(b) Processed image

Figure A.3: An additional example on the modified PPHT process

Appendix B

Camera Image Processing

Examples

Additional examples and figures are presented here to supplement the results shown

in the Camera Measurements chapter. For each of the original camera image, several

corresponding figures will be shown including: the edge map, the density measure, the

edge map distraction mask, the filtered edge map, and the vanishing point analysis

results. In the vanishing point analysis results, the features on the image associated

with a particular vanishing point is colour coded. The first is in red, the second is in

green, and the third is in blue. Furthermore, the azimuth and the elevation of these

vanishing points are also shown in the figures. Features that are coloured black are

ones that failed to be associated with any vanishing point.

128

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 129

Figure B.1: An image captured by the camera for localization

Figure B.2: The edge map of figure B.1

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 130

Figure B.3: The edge map density measure for figure B.1

Figure B.4: The edge response mask for figure B.1

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 131

Figure B.5: The resulting edge map of figure B.1 after masking

Figure B.6: An image captured by the camera for localization

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 132

Figure B.7: The edge map of figure B.6

Figure B.8: The edge map density measure for figure B.6

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 133

Figure B.9: The edge response mask for figure B.6

Figure B.10: The resulting edge map of figure B.6 after masking

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 134

Figure B.11: The vanishing point analysis results for figure B.6

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 135

Figure B.12: An image captured by the camera for localization

Figure B.13: The edge map of figure B.12

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 136

Figure B.14: The edge map density measure for figure B.12

Figure B.15: The edge response mask for figure B.12

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 137

Figure B.16: The resulting edge map of figure B.12 after masking

Figure B.17: The vanishing point analysis results for figure B.12

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 138

Figure B.18: An image captured by the camera for localization

Figure B.19: The edge map of figure B.18

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 139

Figure B.20: The edge map density measure for figure B.18

Figure B.21: The edge response mask for figure B.18

APPENDIX B. CAMERA IMAGE PROCESSING EXAMPLES 140

Figure B.22: The resulting edge map of figure B.18 after masking

Figure B.23: The vanishing point analysis results for figure B.18

Appendix C

Additional Localization Results

The figures presented in this appendix section are additional results of the particle

filter localization algorithm. State estimates for two test runs are shown, where 2000

particles are used in both cases. The control input has a standard deviation of 10 cm
s

for forward velocity and 5 degrees for yaw. Smaller circles in each figure show the

location of the particles. A larger circle show the true state, which is also uniquely

labeled. The line protruding from each particle indicates its heading.

141

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 142

Figure C.1: particle filter localization result, set 1 - sequence 1 of 12

Figure C.2: particle filter localization result, set 1 - sequence 2 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 143

Figure C.3: particle filter localization result, set 1 - sequence 3 of 12

Figure C.4: particle filter localization result, set 1 - sequence 4 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 144

Figure C.5: particle filter localization result, set 1 - sequence 5 of 12

Figure C.6: particle filter localization result, set 1 - sequence 6 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 145

Figure C.7: particle filter localization result, set 1 - sequence 7 of 12

Figure C.8: particle filter localization result, set 1 - sequence 8 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 146

Figure C.9: particle filter localization result, set 1 - sequence 9 of 12

Figure C.10: particle filter localization result, set 1 - sequence 10 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 147

Figure C.11: particle filter localization result, set 1 - sequence 11 of 12

Figure C.12: particle filter localization result, set 1 - sequence 12 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 148

Figure C.13: particle filter localization result, set 2 - sequence 1 of 12

Figure C.14: particle filter localization result, set 2 - sequence 2 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 149

Figure C.15: particle filter localization result, set 2 - sequence 3 of 12

Figure C.16: particle filter localization result, set 2 - sequence 4 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 150

Figure C.17: particle filter localization result, set 2 - sequence 5 of 12

Figure C.18: particle filter localization result, set 2 - sequence 6 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 151

Figure C.19: particle filter localization result, set 2 - sequence 7 of 12

Figure C.20: particle filter localization result, set 2 - sequence 8 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 152

Figure C.21: particle filter localization result, set 2 - sequence 9 of 12

Figure C.22: particle filter localization result, set 2 - sequence 10 of 12

APPENDIX C. ADDITIONAL LOCALIZATION RESULTS 153

Figure C.23: particle filter localization result, set 2 - sequence 11 of 12

Figure C.24: particle filter localization result, set 2 - sequence 12 of 12

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotcs. USA: The MIT Press,

2005.

[2] P. Debenest, E. Fukushima, and S. Hirose, “Proposal for automation of human-

itarian demining with buggy robots,” in Proceedings of IEEE Intelligent Robots

and Systems, 2003.

[3] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,

W. Steiner, and S. Thrun, “The interactive museum tour-guide robot,” in Pro-

ceedings of AAAI Artificial intelligence/Innovative applications of artificial in-

telligence, 1998.

[4] I. Ulrich, F. Mondada, and J. Nicoud, “Autonomous vacuum cleaner,” Robotics

and autonomous systems, vol. 19, no. 3-4, pp. 233–245, 1997.

[5] T. Thurston and H. Hu, “Distributed agent architecture for port automation,”

in Proceedings of Computer Software and Applications Conference, 2002.

[6] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and C. Laugier,

“The cycab: a car-like robot navigating autonomously and safely among pedes-

trians,” Robotics and Autonomous Systems, vol. 50, no. 1, pp. 51–67, 2005.

154

BIBLIOGRAPHY 155

[7] M. Whalley, M. Freed, M. Takahashi, D. Christian, A. Petterson-Hine,

G. Schulein, and R. Harris, “The nasa / army autonomous rotorcraft project,”

in 59th Annual Forum of the American Helicopter Society, 2003.

[8] J. Yuh, “Design and control of autonomous underwater robots: A survey,” Au-

tonomous Robots, vol. 8, no. 1, pp. 7–24, 2000.

[9] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots.

USA: The MIT Press, 2004.

[10] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,

and S. Thrun, Principles of Robot Motion. USA: The MIT Press, 2005.

[11] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest, “Monocular vision for

mobile robot localization and autonomous navigation,” Internation Journal of

Computer Vision, vol. 74, no. 3, pp. 237–260, 2007.

[12] L. Matthies et al., “A portable, autonomous, urban reconnaissance robot,”

Robotics and Autonomous Systems, vol. 40, no. 2-3, pp. 163–172, 2002.

[13] W. Zhang and J. Kosecka, “Image based localization in urban environemnts,” in

Proceedings of the International Symposium on 3D Data Processing, Visualiza-

tion, and Transmission, 2006.

[14] D. Johns and G. Dudek, “Urban position estimation from one dimensional visual

cues,” in Proceedings of the Canadian Conference on Computer and Robot Vision,

2006.

[15] M. Adams, “Lidar design, use, and calibration concepts for correct environmental

detection,” IEEE Transactions on Robotics and Automation, vol. 16, no. 6, pp.

753–761, 2000.

[16] S. Thrun et al., “Stanley: The robot that won the darpa grand challenge,”

Journal of Robotic Systems, vol. 23, no. 9, pp. 661–692, 2006.

BIBLIOGRAPHY 156

[17] U. Özgüner, K. Redmill, and A. Broggi, “Team terramax and the darpa grand

challenge: a general overview,” in IEEE Intelligent Vehicles Symposium, 2004.

[18] C. Q, U. Özgüner, and K. Redmill, “Ohio state university at the 2004 darpa

grand challenge: developing a completely autonomous vehicle,” IEEE Intelligent

Systems, vol. 19, no. 5, pp. 8–11, 2004.

[19] SICK AG, 2007. [Online]. Available: http://www.sick.com

[20] E. Kaplan, Understanding GPS: principles and applications. USA: Atech House

Inc., 1996.

[21] J. Tsui, Fundamentals of Global Positioning System Receivers: A Software Ap-

proach. Canada: John Wiley and Sons, Inc., 2000.

[22] G. Xu, GPS Theory, Algorithms and Applications. Germany: Springer Verlag,

2003.

[23] T. Acharya and A. K. Ray, Image Processing Principles and Applications. USA:

John Wiley and Sons, Inc., 2005.

[24] K. Deguchi and T. Nakagawa, “Active and direct acquisition of 3d map in robot

by combining motion and perceived images,” in Proceedings of IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 2004.

[25] Y. Kim and H. Kim, “Dense 3d map building for autonomous mobile robots,”

in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2003.

[26] H. Chen and Z. Xu, “Local 3d map building and error analysis based on stereo

vision,” in Proceedings of IEEE Industrial Electronics Society Conference, 2005.

[27] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.

BIBLIOGRAPHY 157

[28] G. Welch and G. Bishop, “An introduction to the kalman filter,” in Special

Interest Group for Computer Graphics Conference, 2001.

[29] M. Arulampalam, S. Maskell, N. Gordon, and T.Clapp, “A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions

on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.

[30] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson,

and P.-J. Nordlund, “Particle filters for positioning, navigation, and tracking,”

IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 425–437, 2002.

[31] D. Crisan and A. Doucet, “A survey of convergence results on particle filtering

methods for practitioners,” IEEE Transactions on Signal Processing, vol. 50,

no. 3, pp. 736–746, 2002.

[32] C. Lin and R. Nevatia, “Building detection and description from a single intensity

image,” Computer Vision and Understanding, vol. 72, no. 2, pp. 101–121, 1998.

[33] J. Shufelt and J. D.M. McKeown, “Fusion of monocular cues to detect man-made

structures in aerial imagery,” CVGIP: Image Understanding, vol. 57, no. 3, pp.

307–330, 1993.

[34] A. Croitoru and Y. Doytsher, “Right-angle rooftop polygon extraction in regu-

larised urban areas: Cutting the corners,” The Photogrammetric Record, vol. 19,

no. 118, pp. 311–341, 2004.

[35] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986.

[36] T.-Y. Liow, “Use of shadows for extracting buildings in aerial images,” Computer

Vision, Graphics, and Image Processing, vol. 49, pp. 242–277, 1990.

[37] I. Fogel and D. Sagi, “Gabor filters as texture discriminator,” Biological Cyber-

netics, vol. 61, pp. 103–113, 1989.

BIBLIOGRAPHY 158

[38] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using gabor

filters,” in IEEE Systems, Man, and Cybernetics Conference, 1990.

[39] T. P. W. amd W. E. Higgins and D. Dunn, “Efficient gabor filter design for

texture segmentation,” Pattern Recognition, vol. 29, no. 12, pp. 2005–2015, 1996.

[40] D. Dunn and W. E. Higgins, “Optimal gabor filters for texture segmentation,”

IEEE Transactions on Image Processing, vol. 4, no. 7, pp. 947–964, 1995.

[41] M. Tuceryan and A. Jain, “Texture analysis,” in The Handbook of Pattern Recog-

nition and Computer Vision 2nd Edition. World Scientific Publishing, 1998,

ch. 2, pp. 207–248.

[42] C. Harris and M. Stephens, “A combined edge and corner detector,” in 4th Alvey

Vision Conference, 1998.

[43] S. Grossman, Elementary Linear Algebra 5th Edition. USA: Saunders College

Publishing, 1994.

[44] W. K. Pratt, Digital Image Processing. USA: John Wiley and Sons, Inc., 1978.

[45] V. F. Leavers, Shape Detection in Computer Vision Using the Hough Transform.

Germany: Springer-Verlag London Limited, 1992.

[46] J. Illingworth and J. Kittler, “A survey of the hough transform,” CVGIP, vol. 44,

pp. 87–116, 1988.

[47] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using the

progressive probabilistic hough transform,” Computer Vision and Image Under-

standing, vol. 78, pp. 119–137, 2000.

[48] C. Galambos, J. Matas, and J. Kittler, “Progressive probabilistic hough trans-

form for line detection,” in IEEE Computer Vision and Pattern Recognition

Conference, 1999.

BIBLIOGRAPHY 159

[49] H. Kälviäinen, P. Hirvonen, L. Xut, and E. Oja, “Probabilistic and non-

probabilistic hough tranform: overview and comparisons,” Image and Vision

Computing, vol. 13, no. 4, pp. 239–252, 1999.

[50] N. Kiryati, H. Kälviäinen, and S. Alaoutinen, “Randomized or probabilistic

hough transform: unified performance evaluation,” Pattern Recognition Letters,

vol. 21, pp. 1157–1164, 2000.

[51] F. van den Heuvel, “Vanishing point detection for architectural photogramme-

try,” International Archives of Photogrammetry and Remote Sensing, vol. 32,

no. 5, pp. 652–659, 1998.

[52] V. Vantoni, L. Lombardi, M. Porta, and N. Sicard, “Vanishing point detection:

Representation analysis and new approaches,” in Proceedings of the Internation

Conference on Image Analysis and Processing, 2001.

[53] S. Barnard, “Interpreting perspective images,” Artificial Intelligence, vol. 21,

no. 4, pp. 435–462, 1983.

[54] J. Shufelt, “Performance evaluation and analysis of vanishing point detection

techniques,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 21, no. 3, pp. 282–288, 1999.

[55] A. Tai, J. Kittler, M. Petrou, and T. Windeatt, “Vanishing point detection,”

Image and Vision Computing, vol. 11, no. 4, pp. 240–245, 1993.

[56] A. Gallagher, “A ground truth based vanishing point detection algorithm,” Pat-

tern Recognition, vol. 35, no. 7, pp. 1527–1543, 2002.

[57] E. Lutton, H. Maitre, and J. Lopez-Krahe, “Contribution to the determina-

tion of vanishing points using hough transform,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 16, no. 4, pp. 430–438, 1994.

BIBLIOGRAPHY 160

[58] C. Bräuer-Burchardt and K. Voss, “Robust vanishing point determination in

noisy images,” in IEEE International Conference on Pattern Recognition.

[59] R. Collins and R. Weiss, “Vanishing point calculation as a statistical inference

on the unitsphere,” in Proceedings of the Internation Conference on Computer

Vision, 1990.

[60] M. Magee and J. Aggarwal, “Determining vanishing points from perspective

images,” Computer Vision, Graphics, and Image Processing, vol. 26, pp. 256–

267, 1984.

[61] C. Rother, “A new approach to vanishing point detection in architectural envi-

ronemnts,” Image and Vision Computing, vol. 20, no. 9-10, pp. 647–655, 2002.

[62] K.-S. Seo, J.-H. Lee, and H.-M. Choi, “An efficient detection of vanishing points

using inverted coordinates image space,” Pattern Recognition Letters, vol. 27,

no. 2, pp. 102–108, 2005.

[63] B. O’Mahony, “New method for vanishing point detection,” CVGIP: Image Un-

derstanding, vol. 54, no. 2, pp. 289–300, 1991.

[64] A. Almansa, “Vanishing point detection without any a priori information,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp.

502–507, 2003.

[65] R. Schuster, “Steering a robot with vanishing points,” IEEE Transactions on

Robotics and Automation, vol. 9, no. 4, pp. 491–498, 1993.

[66] A. Webb, Statistical Pattern Recognition. USA: Oxford University Press Inc.,

1999.

[67] R. Yager and D. Filev, “Generation of fuzzy rules by mountain clustering,”

Journal of Intelligent and Fuzzy Systems, vol. 2, no. 3, pp. 209–219, 1994.

BIBLIOGRAPHY 161

[68] S. Chiu, “Fuzzy model identification based on cluster estimation,” Journal of

Intelligent and Fuzzy Systems, vol. 2, no. 3, pp. 267–278, 1994.

[69] G. Box and M.E.Muller, “A note on the generation of random normal deviates,”

The Annuals of Mathematical Statistics, vol. 29, no. 2, pp. 610–611, 1958.

[70] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence,

vol. 17, pp. 185–203, 1981.

[71] J. Campbell, R. Sukthankar, and I. Nourbakhsh, “Techniques for evaluating opti-

cal flow for visual odometry in extreme terrain,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2004.

[72] F. Shafait, M. Grimm, and R.-R. Grigat, “Low-complexity camera ego-motion

estimation algorithm for real time applications,” in Proceedings of IEEE INMIC,

2004.

[73] Z. Zhang, P. Cui, and H. Cui, “Recovery of egomotion from optical flow with

large motion based on subspace method,” in Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, 2006.

[74] A. Branca, G. Cicirelli, E. Stella, and D. A, “Mobile vehicle’s egomotion estima-

tion from time varying image sequences,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, 1997.

[75] W. Burger and B. Bhanu, “Estimating 3-d egomotion from perspective image

sequences,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 12, no. 11, pp. 1040–1058, 1990.

