

#### Research Topics in Underwater Robotics



Christopher M. Clark

#### Welcome!

- 1. Overview
- 2. Example Project
- 3. Exercise B



#### Welcome!

- 1. Overview
- 2. Example Project
- 3. Exercise B



## 1. Overview

- Platform Hardware
- Software
   Architecture
- Vehicle Modeling
- Control Theory
- State Estimation
- Mapping
- Planning
- Multi-Robot Systems
- Driven by Applications



## 1. Overview

- Platform Hardware
- Software
   Architecture
- Vehicle Modeling
- Control Theory
- State Estimation
- Mapping
- Planning
- Multi-Robot Systems
- Driven by Applications



#### Welcome!

- 1. Overview
- 2. Example Project
- 3. Exercise B





#### Related Work

- [11] T. Grothues, J. Dobarro, and J. Eiler, "Collecting, interpreting, and merging fish telemetry data from an auv: Remote sensing from an already remote platform," in Autonomous Underwater Vehicles (AUV), 2010 IEEE/OES, Monterey, CA, 2010, pp. 1–9.
- [12] J. Rife and S. M. Rock, "Segmentation Methods for Visual Tracking of Deep-Ocean Jellyfish using a Conventional Camera," IEEE Journal of Oceanic Engineering, vol. 28, no. 4, pp. 595–608, 2003.
- [13] J. Zhou and C. M. Clark, "Autonomous fish tracking by ROV using monocular camera," Computer and Robot Vision, Canadian Conference, vol. 0, p. 68, 2006.
- [16] M. J. Oliver, M. W. Breece, D. A. Fox, D. E. Haulsee, J. T. Kohut, J. Manderson, and T. Savoy, "Shrinking the haystack: using and auv in an integrated ocean observatory to map Atlantic sturgeon in the coastal ocean," Fisheries, vol. 38, 2013.
- [17] Gwyneth E. Packard, Amy Kukulya, Tom Austin, Mark Dennett, Robin Littlefield, Gregory Packard, Mike Purcell, & Roger Stokey, Continuous Autonomous Tracking and Imaging of White Sharks and Basking Sharks Using a REMUS-100 AUV, Oceans, 2013











- What is a Particle this time?
  - A particle is an individual state estimate.
  - In our shark Tracking, a particle i has two components

$$\{ \underbrace{X_{shark}}^{i} \quad \underbrace{W^{i}}_{\downarrow \downarrow} \}$$
State Weight

- 1. The state is  $X_{shark} = [x \ y \ \theta \ v \ w]$
- 2. The weight w that indicates it's likelihood of being the correct state.

























## Multi-Robot Controller

- Problem Definition
  - The Robots should not affect the shark's behavior
  - The Robots should position themselves to optimize information gain



Robot state

$$\mathbf{X}_{i,t}^{robot} = [x_{i,t} \ y_{i,t} \ \theta_{i,t}]^T$$

Robot kinematics

$$x_{i,t+1} = x_{i,t} + v_{i,t} \cos(\theta_{i,t}) \Delta t$$
$$y_{i,t+1} = y_{i,t} + v_{i,t} \sin(\theta_{i,t}) \Delta t$$
$$\theta_{i,t+1} = \theta_{i,t} + \omega_{i,t} \Delta t$$

Robot relative to target

$$r_{i,t} = \sqrt{(x_{i,t} - x_{target,t})^2 + (y_{i,t} - y_{target,t})^2}$$
$$\gamma_{i,t} = \tan^{-1} \left( (y_{i,t} - y_{target,t}) / (x_{i,t} - x_{target,t}) \right)$$
$$\theta_{des_i,t} = \gamma_{i,t} - \frac{\pi}{2}$$



Error variables

$$\rho_{i,t} = \mathbf{R}_{des} - r_{i,t}$$
  

$$\beta_{i,t} = \theta_{des_i,t} - \theta_{i,t}$$
  

$$e_{i,t} = \Delta \gamma_{des} - (\gamma_{i,t} - \gamma_{i-1,t})$$



Error states

$$\chi_{i,t} = [\rho_{i,t} \ \beta_{i,t} \ e_{i,t}]^T$$

Control vector

$$\mathbf{U}_{\mathbf{i},\mathbf{t}} = [v_{i,t} \; \omega_{i,t}]^T$$

#### 1. Single Robot, Single Target

Control law

$$\omega_{i,t} = -\frac{v_{i,t}\cos(\beta_{i,t})}{R_{des} - \rho_{i,t}} + \frac{K_{\beta}}{\Delta t}\beta_{i,t} + \frac{K_{\rho}}{\Delta t}\rho_{i,t}$$

Stability bounds

$$K_{\rho} > 0$$
  
$$0 < K_{\beta} < 4$$
  
$$\frac{2(K_{\beta} - 2)}{K_{\rho}\Delta t} < v_{i,t} \le \frac{K_{\beta}^2}{4K_{\rho}\Delta t}$$



#### 2. Multi-Robot, Single Target

Control law

$$v_{i,t} = \frac{R_{des} - \rho_{i,t}}{R_{des}\cos(\beta_{i,t})} \left( v_{nom} + \frac{R_{des}K_{\gamma}}{\Delta t} (e_{i+1,t} - e_{i,t}) \right)$$

Stability example (3 robots)

$$0 < K_{\gamma} < \frac{2}{3}$$



#### Multi-Robot Controller

- Simulation Results
  - B Robots
  - I Particle







y (meters)

×(meters)



#### <u>Shark Trials</u>





#### **Boat Trial Results**

#### STATE ESTIMATION ERRORS OF STATIC AND BOAT TRIALS.

| Trial | Mean Err. (m) |      | Median Err. (m) |      | SD Err. (m) |      |
|-------|---------------|------|-----------------|------|-------------|------|
|       | Static        | Boat | Static          | Boat | Static      | Boat |
| 1     | 8.1           | 8.0  | 7.2             | 5.0  | 4.3         | 10.5 |
| 2     | 4.8           | 6.8  | 4.6             | 5.3  | 1.6         | 4.8  |
| 3     | 3.7           | 13.7 | 3.6             | 8.4  | 1.1         | 13.2 |
| 4     | 2.8           | 8.8  | 2.0             | 6.5  | 3.4         | 8.4  |



#### Shark Trial Results











Figure 7: Left) Tracking without IMU data Right) Tracking with IMU data.



Depth (m)



#### Tracking >1 Target

Stochastic Control





#### 3. Exercise B

- Find a partner
- Find one underwater robot research publication. Select based on novelty or research interest as desired.
  - Journal Field Robotics
  - IROS, ICRA
  - OCEANS
  - MTS Journal
- Present a summary of the platform in 1-3 slides.

#### Welcome!

- 1. Overview
- 2. Example Project
- 3. Exercise B

