

E190Q – Lecture 11 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2013

Figures courtesy of Siegwart & Nourbakhsh

Control Structures Planning Based Control

Kalman Filter Localization

- Introduction to Kalman Filters
 - 1. KF Representations
 - 2. Two Measurement Sensor Fusion
 - 3. Single Variable Kalman Filtering
 - 4. Multi-Variable KF Representations
- Kalman Filter Localization

What do Kalman Filters use to represent the states being estimated?

Gaussian Distributions!

- Single variable Gaussian Distribution
 - Symmetrical
 - Uni-modal
 - Characterized by
 - Mean µ
 - Variance σ^2
 - Properties
 - Propagation of errors
 - Product of Gaussians

- Single Var. Gaussian Characterization
 - Mean
 - Expected value of a random variable with a continuous Probability Density Function *p(x)*

$$\mu = \mathrm{E}[X] = \int x \, p(x) \, dx$$

• For a discrete set of *K* samples

$$\mu = \sum_{k=1}^{K} x_k / K$$

- Single Var. Gaussian Characterization
 - Variance
 - Expected value of the difference from the mean squared $\sigma^2 - E \Gamma (Y \mu)^2 1 - \int (Y \mu)^2 n(Y) dY$

$$\sigma^2 = \mathrm{E}[(X-\mu)^2] = \int (x-\mu)^2 p(x) \, dx$$

For a discrete set of K samples

$$\sigma^2 = \sum_{k=1}^{K} (x_k - \mu)^2 / K$$

- Single variable Gaussian Properties
 - Propagation of Errors

$$\left. \begin{array}{l} X \sim N(\mu, \sigma^2) \\ Y = aX + b \end{array} \right\} \quad \Rightarrow \quad Y \sim N(a\mu + b, a^2 \sigma^2)$$

- Single variable Gaussian Properties
 - Product of Gaussians

$$X_{1} \sim N(\mu_{1}, \sigma_{1}^{2}) \\X_{2} \sim N(\mu_{2}, \sigma_{2}^{2}) \end{cases} \Rightarrow$$

$$p(X_1) \cdot p(X_2) \sim N\left(\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \mu_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \mu_2, \frac{1}{\sigma_1^{-2} + \sigma_2^{-2}}\right)$$

- Single variable Gaussian Properties...
 - We stay in the "Gaussian world" as long as we start with Gaussians and perform only linear transformations.

Kalman Filter Localization

- Introduction to Kalman Filters
 - 1. KF Representations
 - 2. Two Measurement Sensor Fusion
 - 3. Single Variable Kalman Filtering
 - 4. Multi-Variable KF Representations
- Kalman Filter Localization

Example

• Given two measurements q_1 and q_2 , how do we fuse them to obtain an estimate \hat{q} ?

Assume measurements are modeled as random variables that follow a Gaussian distribution with variance σ_1^2 and σ_2^2 respectively

Example (cont'):

- Example (cont'):
 - Lets frame the problem as minimizing a weighted least squares cost function:

$$S = \sum_{i=1}^{n} w_{i} (\hat{q} - q_{i})^{2}$$

$$\frac{\partial S}{\partial \hat{q}} = \frac{\partial}{\partial \hat{q}} \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2 = 2 \sum_{i=1}^{n} w_i (\hat{q} - q_i) = 0$$

Example (cont'):

• If
$$n=2$$
 and $w_i = 1/\sigma_i^2$

$$\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$$

Kalman Filter Localization

- Introduction to Kalman Filters
 - 1. KF Representations
 - 2. Two Measurement Sensor Fusion
 - 3. Single Variable Kalman Filtering
 - 4. Multi-Variable KF Representations
- Kalman Filter Localization

Single Variable KF

- Example: Fusing two Measurements $\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$
 - We can reformulate this in KF notation

$$\hat{x}_{t} = \hat{x}_{t-1} + K_{t} (z_{t} - \hat{x}_{t-1})$$

$$K_{t} = \frac{\sigma_{t-1}^{2}}{\sigma_{t-1}^{2} + \sigma_{z}^{2}}$$

Single Variable KF

KF for a Discrete Time System

$$\hat{x}_{t} = \hat{x}_{t-1} + K_{t} (z_{t} - \hat{x}_{t-1})$$

$$K_{t} = \frac{\sigma_{t-1}^{2}}{\sigma_{t-1}^{2} + \sigma_{z}^{2}}$$

$$\sigma_{t}^{2} = \sigma_{t-1}^{2} - K_{t} \sigma_{t-1}^{2}$$

Where

 \hat{x}_t is the current state estimate σ_t^2 is the associated variance z_t^2 is the most recent measurement *K* is the Kalman Gain

Kalman Filter Localization

- Introduction to Kalman Filters
 - 1. KF Representations
 - 2. Two Measurement Sensor Fusion
 - 3. Single Variable Kalman Filtering
 - 4. Multi-Variable KF Representations
- Kalman Filter Localization

- Multi-variable Gaussian Distribution
 - Symmetrical
 - Uni-modal
 - Characterized by
 - Mean Vector µ
 - Covariance Matrix Σ
 - Properties
 - Propagation of errors
 - Product of Gaussians

- Multi-Var. Gaussian Characterization
 - Mean Vector
 - Vector of expected values of n random variables

$$\mu = E[X] = [\mu_0 \ \mu_1 \ \mu_2 \ \dots \ \mu_n \]^T$$

$$\mu_i = \int x_i p(x_i) \, dx_i$$

- Multi-Var. Gaussian Characterization
 - Covariance
 - Expected value of the difference from the means squared

 $\sigma_{ij} = \operatorname{Cov}[X_i, X_j] = \operatorname{E}[(X_i - \mu_i) (X_j - \mu_j)]$

- Covariance is a measure of how much two random variables change together.
- Positive σ_{ij} when variable *i* is above its expected value, then the other variable *j* tends to also be above its μ_j
- Negative σ_{ij} when variable *i* is above its expected value, then the other variable *j* tends to be below its μ_j

- Multi-Var. Gaussian Characterization
 - Covariance
 - For continuous random variables

$$\sigma_{ij} = \iint (x_i - \mu_i) (x_j - \mu_j) p(x_i, x_j) dx_i dx_j$$

• For discrete set of *K* samples

$$\sigma_{ij} = \sum_{k=1}^{K} (x_{i,k} - \mu_i) (x_{j,k} - \mu_j) / K$$

- Multi-Var. Gaussian Characterization
 - Covariance Matrix
 - Covariance between each pair of random variables

$$\Sigma = \begin{bmatrix} \sigma_{00} \sigma_{01} & \dots & \sigma_{0n} \\ \sigma_{10} \sigma_{11} & \dots & \sigma_{1n} \\ \vdots \\ \sigma_{n0} \sigma_{n1} & \dots & \sigma_{nn} \end{bmatrix}$$

Note:
$$\sigma_{ii} = \sigma_i^2$$

- Multi variable Gaussian Properties
 - Propagation of Errors

$$\left. \begin{array}{c} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \right\} \qquad \Rightarrow \quad Y \sim N(A\mu + B, A\Sigma A^T)$$

- Multi variable Gaussian Properties
 - Product of Gaussians

$$X_1 \sim N(\mu_1, \Sigma_1) \\ X_2 \sim N(\mu_2, \Sigma_2)$$

$$\Rightarrow p(X_1) \cdot p(X_2) \sim N\left(\frac{\Sigma_2}{\Sigma_1 + \Sigma_2}\mu_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2}\mu_2, \frac{1}{\Sigma_1^{-1} + \Sigma_2^{-1}}\right)$$

Next...

Apply the Kalman Filter to multiple variables in the form of a KF.

Kalman Filter Localization

- Introduction to Kalman Filters
- Kalman Filter Localization
 - 1. EKF Localization Overview
 - 2. EKF Prediction
 - 3. EKF Correction
 - 4. Algorithm Summary

Extended Kalman Filter Localization

- Robot State Representation
 - State vector to be estimated, \mathbf{x} e.g. $\begin{bmatrix} x \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

Associated Covariance, P

$$\mathbf{P} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{y\theta} \\ \sigma_{\theta x} & \sigma_{\theta y} & \sigma_{\theta \theta} \end{bmatrix}$$

Extended Kalman Filter Localization

1. Robot State Representation

Extended Kalman Filter Localization

Iterative algorithm

 Prediction – Use a motion model and odometry to predict the state of the robot and its covariance

$$\mathbf{x}'_t \mathbf{P}'_t$$

 Correction - Use a sensor model and measurement to predict the state of the robot and its covariance

$$\mathbf{x}_t \quad \mathbf{P}_t$$

Kalman Filter Localization

- Introduction to Kalman Filters
- Kalman Filter Localization
 - 1. EKF Localization Overview
 - 2. EKF Prediction
 - 3. EKF Correction
 - 4. Algorithm Summary

Motion Model

 Lets use a general form of a motion model as a discrete time equation that predicts the current state of the robot given the previous state x_{t-1} and the odometry u_t

$$\mathbf{x'}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_t)$$

Motion model

• For our differential drive robot...

$$\mathbf{x_{t-1}} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix}$$

$$\mathbf{u}_{t} = \begin{bmatrix} \varDelta s_{r,t} \\ \varDelta s_{l,t} \end{bmatrix}$$

Motion model

And the model we derived...

$$\mathbf{x'}_{t} = f(\mathbf{x}_{t-1}, \mathbf{u}_{t}) = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} \Delta s_{t} \cos(\theta_{t-1} + \Delta \theta_{t}/2) \\ \Delta s_{t} \sin(\theta_{t-1} + \Delta \theta_{t}/2) \\ \Delta \theta_{t} \end{bmatrix}$$

 $\Delta s_t = (\Delta s_{r,t} + \Delta s_{l,t})/2$ $\Delta \theta_t = (\Delta s_{r,t} - \Delta s_{l,t})/b$

- Covariance
 - Recall, the propagation of error equation...

$$\left. \begin{array}{l} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \right\} \quad \Rightarrow \quad Y \sim N(A\mu + B, A\Sigma A^T)$$

Covariance

 Our equation *f()* is not linear, so to use the property we will linearize with first order approximation

$$\mathbf{x'}_{t} = f(\mathbf{x}_{t-1}, \mathbf{u}_{t})$$

$$\approx \mathbf{F}_{x,t} \mathbf{x}_{t-1} + \mathbf{F}_{u,t} \mathbf{u}_{t}$$

where

 $\mathbf{F}_{x,t} = Derivative of f with respect to state \mathbf{x}_{t-1}$ $\mathbf{F}_{u,t} = Derivative of f with respect to control \mathbf{u}_t$

- Covariance
 - Here, we linearize the motion model f to obtain

$$\mathbf{P'}_{t} = \mathbf{F}_{x,t} \mathbf{P}_{t-1} \mathbf{F}_{x,t}^{T} + \mathbf{F}_{u,t} \mathbf{Q}_{t} \mathbf{F}_{u,t}^{T}$$

where

 $\begin{aligned} \mathbf{Q}_{t} &= Motion \; Error \; Covariance \; Matrix \\ \mathbf{F}_{x,t} &= Derivative \; of f \; with \; respect \; to \; state \; \mathbf{x}_{t-1} \\ \mathbf{F}_{u,t} &= Derivative \; of f \; with \; respect \; to \; control \; \mathbf{u}_{t} \end{aligned}$

Covariance

$$\mathbf{Q}_{t} = \begin{bmatrix} k | \Delta s_{r,t} | & 0 \\ 0 & k | \Delta s_{l,t} | \end{bmatrix}$$

$$\mathbf{F}_{\boldsymbol{x},\boldsymbol{t}} = \begin{bmatrix} df/dx_t & df/dy_t & df/d\theta_t \end{bmatrix}$$
$$\mathbf{F}_{\boldsymbol{u},\boldsymbol{t}} = \begin{bmatrix} df/d\Delta s_{r,t} & df/d\Delta s_{l,t} \end{bmatrix}$$

1. Motion Model

Kalman Filter Localization

- Introduction to Kalman Filters
- Kalman Filter Localization
 - 1. EKF Localization Overview
 - 2. EKF Prediction
 - 3. EKF Correction
 - 4. Algorithm Summary

- Innovation
 - We correct by comparing current measurements z_t with what we expect to observe z_{exp,t} given our predicted location in the map M.

 The amount we correct our state is proportional to the innovation v_t

$$\mathbf{v}_t = \mathbf{z}_t - \mathbf{z}_{exp,t}$$

The Measurement

 Assume our robot measures the relative location of a wall *i* extracted as line

$$\mathbf{z}_{t}^{i} = \begin{bmatrix} \alpha_{t}^{i} \\ r_{t}^{i} \end{bmatrix} \qquad \mathbf{R}_{t}^{i} = \begin{bmatrix} \sigma_{\alpha\alpha,t}^{i} & \sigma_{\alpha r,t}^{i} \\ \sigma_{r\alpha,t}^{i} & \sigma_{r r,t}^{i} \end{bmatrix}$$

The Measurement

r

 Assume our robot measures the relative location of a wall *i* extracted as line

$$\mathbf{z}_{t}^{i} = \begin{bmatrix} \alpha_{t}^{i} \\ r_{t}^{i} \end{bmatrix} = g(\rho_{1}, \rho_{2}, \dots, \rho_{n}, \beta_{1}, \beta_{2}, \dots, \beta_{n})$$

$$\alpha = \frac{1}{2} \operatorname{atan} \left(\frac{\sum w_{i} \rho_{i}^{2} \sin 2\beta_{i} - \frac{2}{\Sigma w_{i}} \sum w_{i} w_{j} \rho_{i} \rho_{j} \cos\beta_{i} \sin\beta_{j}}{\sum w_{i} \rho_{i}^{2} \cos 2\beta_{i} - \frac{1}{\Sigma w_{i}} \sum w_{i} w_{j} \rho_{i} \rho_{j} \cos(\beta_{i} + \beta_{j})} \right)$$

$$=\frac{\sum w_i \rho_i \cos(\beta_i - \alpha)}{\sum w_i}$$

The Measurement

$$\mathbf{R}^{i}_{t} = \begin{bmatrix} \sigma^{i}_{aa,t} & \sigma^{i}_{ar,t} \\ \sigma^{i}_{ra,t} & \sigma^{i}_{rr,t} \end{bmatrix}$$

$$= \mathbf{G}_{\rho\beta,t} \, \boldsymbol{\Sigma}_{z,t} \, \mathbf{G}_{\rho\beta,t}^{T}$$

where

$$\begin{split} \boldsymbol{\Sigma}_{z,t} &= Sensor \ Error \ Covariance \ Matrix \\ \boldsymbol{G}_{\boldsymbol{\rho}\boldsymbol{\beta},t} &= Derivative \ of \ g() \ wrt \ measurements \ \boldsymbol{\rho}_t, \ \boldsymbol{\beta}_t \end{split}$$

The covariance associate with the innovation is

$$\Sigma_{IN,t} = \mathbf{H}^{i}_{x,t} \mathbf{P}^{\prime}_{t} \mathbf{H}^{i}_{x,t} \mathbf{T} + \mathbf{R}^{i}_{t}$$

where

 \mathbf{R}_{t}^{i} = Line Measurement Error Covariance Matrix $\mathbf{H}_{x,t}^{i}$ = Derivative of h with respect to state \mathbf{x}_{t}

Final updates

Update the state estimate

$$\mathbf{x}_t = \mathbf{x'}_t + \mathbf{K}_t \mathbf{v}_t$$

- Update the associated covariance matrix $\mathbf{P}_{t} = \mathbf{P}_{t}^{*} - \mathbf{K}_{t} \boldsymbol{\Sigma}_{IN,t} \mathbf{K}_{t}^{T}$
- Both use the Kalman gain Matrix $\mathbf{K}_{t} = \mathbf{P}'_{t} \mathbf{H}_{x',t}^{T} (\Sigma_{IN,t})^{-1}$

- Compare with single var. KF
 - Update the state estimate

$$\widehat{x}_t = \widehat{x}_{t-1} + K_t (z_t - \widehat{x}_{t-1})$$

Update the associated covariance matrix

$$\sigma_t^2 = \sigma_{t-1}^2 - K_t \sigma_{t-1}^2$$

Both use the Kalman gain Matrix

$$K_t = \frac{\sigma_{t-1}^2}{\sigma_{t-1}^2 + \sigma_z^2}$$

Final updates

By fusing the prediction of robot position (magenta) with the innovation gained by the measurements (green) we get the updated estimate of the robot position (red)

Kalman Filter Localization

- Introduction to Kalman Filters
- Kalman Filter Localization
 - 1. EKF Localization Overview
 - 2. EKF Prediction
 - 3. EKF Correction
 - 4. Algorithm Summary

EKFL Summary

Prediction

1.
$$\mathbf{x'}_{t} = f(\mathbf{x}_{t-1}, \mathbf{u}_{t})$$

2.
$$\mathbf{P'}_{t} = \mathbf{F}_{x,t} \mathbf{P}_{t-1} \mathbf{F}_{x,t}^{T} + \mathbf{F}_{u,t} \mathbf{Q}_{t} \mathbf{F}_{u,t}^{T}$$

Correction

3.
$$\mathbf{z}_{exp,t}^{i} = h^{i}(\mathbf{x}_{t}^{\prime}, \mathbf{M})$$

4. $\mathbf{v}_{t} = \mathbf{z}_{t} - \mathbf{z}_{exp,t}$
5. $\boldsymbol{\Sigma}_{IN,t} = \mathbf{H}_{x',t}^{i} \mathbf{P}_{t}^{\prime} \mathbf{H}_{x',t}^{i}^{T} + \mathbf{R}_{t}^{i}$
6. $\mathbf{x}_{t} = \mathbf{x}_{t}^{\prime} + \mathbf{K}_{t} \mathbf{v}_{t}$
7. $\mathbf{P}_{t} = \mathbf{P}_{t}^{\prime} - \mathbf{K}_{t} \boldsymbol{\Sigma}_{IN,t} \mathbf{K}_{t}^{T}$
8. $\mathbf{K}_{t} = \mathbf{P}_{t}^{\prime} \mathbf{H}_{x',t}^{T} (\boldsymbol{\Sigma}_{IN,t})^{-1}$

EKFL Example

http://www.youtube.com/watch?v=8mYWutaCaL4