

E190Q – Lecture 10 Autonomous Robot Navigation

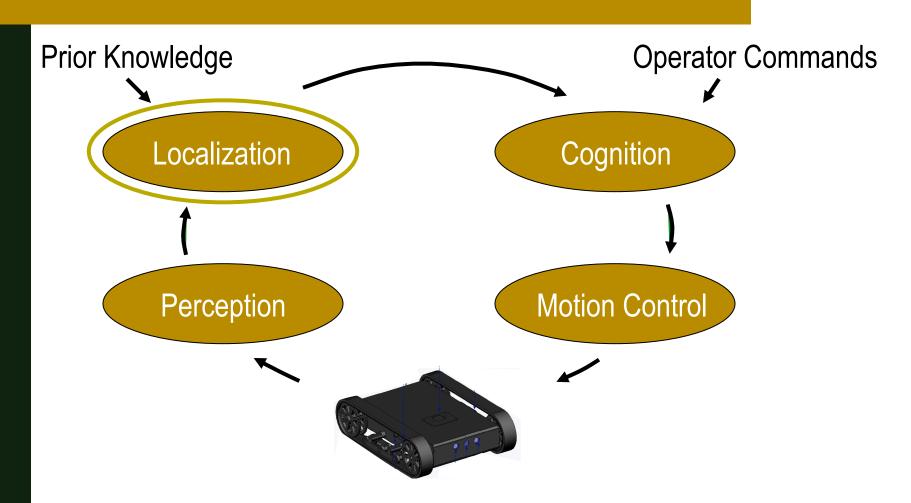
Instructor: Chris Clark

Semester: Spring 2015

Kilobots

 $\underline{https://www.youtube.com/watch?v=}2IAluwgAFD0$

Control Structures Planning Based Control



Particle Filter Localization: Outline

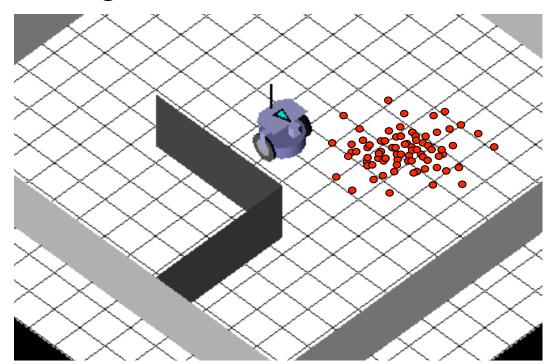
- 1. Particle Filters
 - 1. What are particles?
 - 2. Algorithm Overview
 - 3. Algorithm Example
 - 4. Using the particles
- 2. PFL Application Example

Like Markov localization, PFs represent the belief state with a set of **discrete** possible states, and assigning a **probability** of being in each of the possible states.

• Unlike Markov localization, the set of possible states are not constructed by discretizing the configuration space, they are a randomly generated set of "particles".

- A particle is an individual state estimate.
- A particle is defined by its:
 - 1. State values that determine its location in the configuration space, e.g. $\mathbf{x} = [x y \theta]$
 - 2. A probability that indicates it's likelihood.

 Particle filters use many particles to for representing the belief state.

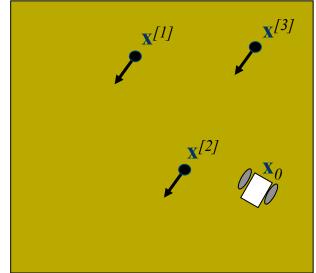


- Example:
 - A Particle filter uses 3 particles to represent the position of a (white) robot in a square room.
 - If the robot has a perfect compass, each particle is described as:

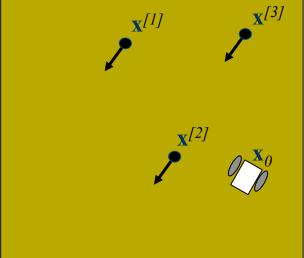
$$\mathbf{x}^{[1]} = [x^1 y^1]$$

$$\mathbf{x}^{[2]} = [x^2 y^2]$$

$$\mathbf{x}^{[3]} = [x^3 y^3]$$



- Example:
 - Each of the particles $\mathbf{x}^{[1]}$, $\mathbf{x}^{[2]}$, $\mathbf{x}^{[3]}$ also have associated weights $w^{[1]}$, $w^{[2]}$, $w^{[3]}$.
 - In the example below, $\mathbf{x}^{[2]}$ should have the highest weight if the filter is working.



- The user can choose how many particles to use:
 - More particles ensures a higher likelihood of converging to the correct belief state
 - Fewer particles may be necessary to ensure realtime implementation

Particle Filter Localization: Outline

- 1. Particle Filters
 - 1. What are particles?
 - 2. Algorithm Overview
 - 3. Algorithm Example
 - 4. Using the particles
- 2. PFL Application Example

Markov Localization Particle Filter

- Algorithm (Initialize at t = 0):
 - Randomly draw N states in the work space and add them to the set \mathbf{X}_{o} .

$$\mathbf{X}_0 = \{\mathbf{x}_0^{[1]}, \mathbf{x}_0^{[2]}, ..., \mathbf{x}_0^{[N]}\}$$

■ Iterate on these *N* states over time (see next slide).

Markov Localization Particle Filter

Algorithm (Loop over time step t):

- 1. For i = 1 ... N
- 2. Pick $\mathbf{x}_{t-1}^{[i]}$ from \mathbf{X}_{t-1}
- 3. Draw $\mathbf{x}_{t}^{[i]}$ with probability $P(\mathbf{x}_{t}^{[i]} | \mathbf{x}_{t-1}^{[i]}, o_{t})$
- 4. Calculate $w_t^{[i]} = P(z_t | \mathbf{x}_t^{[i]})$
- 5. Add $\mathbf{x}_{t}^{[i]}$ to $\mathbf{X}_{t}^{Predict}$
- 6. For j = 1 ... N
- 7. Draw $\mathbf{x}_t^{[j]}$ from $\mathbf{X}_t^{Predict}$ with probability $w_t^{[j]}$
- 8. Add $\mathbf{x}_t^{[j]}$ to \mathbf{X}_t

Prediction

Correction

Particle Filter Localization: Outline

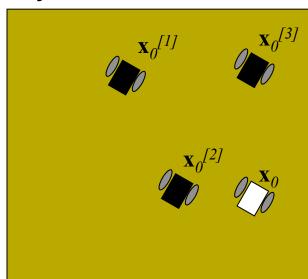
- 1. Particle Filters
 - 1. What are particles?
 - 2. Algorithm Overview
 - 3. Algorithm Example
 - 4. Using the particles
- 2. PFL Application Example

 Provided is an example where a robot (depicted below), starts at some unknown location in the bounded workspace.

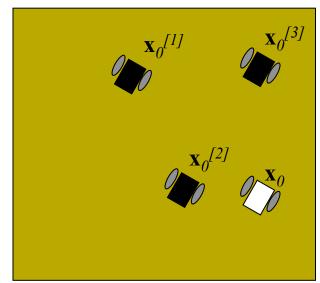
- At time step t_0 :
 - We randomly pick N=3 states represented as

$$\mathbf{X}_{0} = \{\mathbf{x}_{0}^{[1]}, \ \mathbf{x}_{0}^{[2]}, \ \mathbf{x}_{0}^{[3]}\}$$

For simplicity, assume known heading

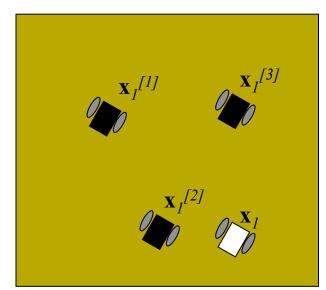


- The next few slides provide an example of one iteration of the algorithm, given X_0 .
 - This iteration is for time step t_I .
 - The inputs are the measurement z_I , odometry o_I



- For Time step t_i :
 - Randomly generate new states by propagating previous states X₀ with o₁

$$\mathbf{X}_{1}^{Predict} = \{\mathbf{X}_{1}^{[1]}, \mathbf{X}_{1}^{[2]}, \mathbf{X}_{1}^{[3]}\}$$



- For Time step t_i :
 - To get new states, use the motion model from lecture 3 to randomly generate new state $\mathbf{x}_{1}^{[i]}$.
 - Recall that given some Δs_r and Δs_l we can calculate the robot state in global coordinates:

$$\Delta x = \Delta s \cos(\theta + \Delta \theta/2)$$

$$\Delta y = \Delta s \sin(\theta + \Delta \theta/2)$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{b}$$

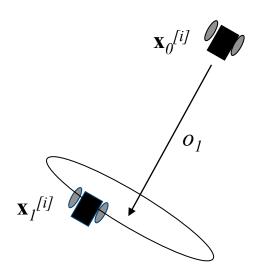
$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

- For Time step t_i :
 - If you add some random errors ε_r and ε_l to Δs_r and Δs_l , you can generate a new random state that follows the probability distribution dictated by the motion model.
 - So, in the prediction step of the PF, the i^{th} particle can be randomly propagated forward using measured odometry $o_1 = [\Delta s_r \Delta s_t]$ according to:

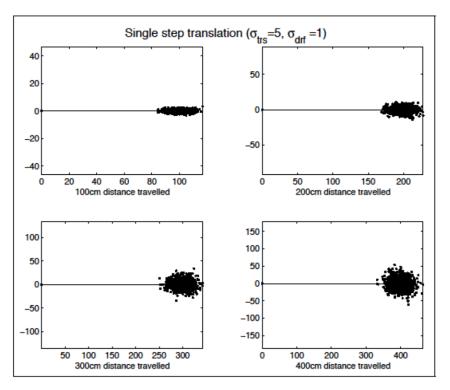
$$\Delta s_r^{[i]} = \Delta s_r + \text{rand('norm', 0, } \sigma_s)$$

 $\Delta s_r^{[i]} = \Delta s_l + \text{rand('norm', 0, } \sigma_s)$

- For Time step t_I :
 - For example:

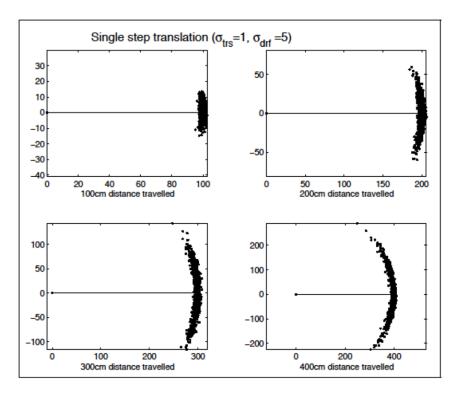


Example Prediction Steps



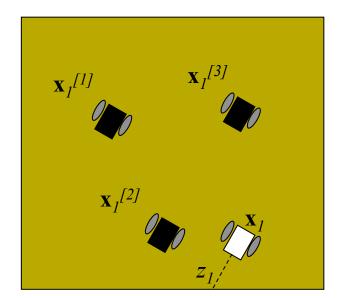
Yiannis, McGill University, PF Tutorial

Example Prediction Steps

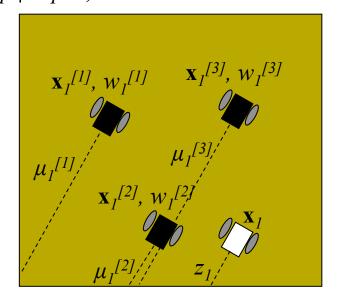


Yiannis, McGill University, PF Tutorial

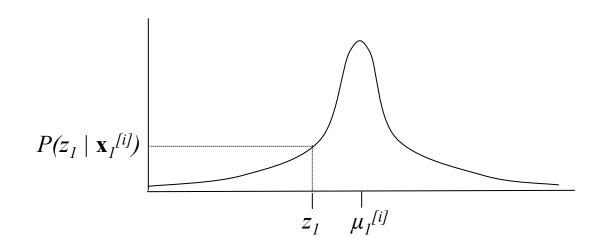
- For Time step t_i :
 - We get a new measurement z_I , e.g. a forward facing range measurement.



- For Time step t_i :
 - Using the measurement z_l , and expected measurements $\mu_l^{[i]}$, calculate the weights $w^{[i]} = P(z_l \mid \mathbf{x}_l^{[i]})$ for each state.

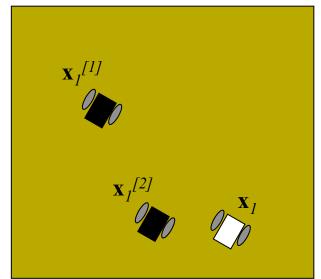


- For Time step t_i :
 - To calculate $P(z_I | \mathbf{x}_I^{[i]})$ we use the sensor probability distribution of a single Gaussian of mean $\mu_I^{[i]}$ that is the expected range for the particle
 - The Gaussian variance is obtained from experiment.



- For Time step t_i :
 - Resample from the temporary state distribution based on the weights $w_I^{[2]} > w_I^{[1]} > w_I^{[3]}$

$$\mathbf{X}_{1} = \{\mathbf{x}_{1}^{[2]}, \mathbf{x}_{1}^{[2]}, \mathbf{x}_{1}^{[1]}\}$$



- For Time step t_i :
 - How do we resample?
 - Exact Method
 - Approximate Method
 - Others...

An Exact Method

$$\begin{aligned} w_{tot} &= \sum_{j} w_{j} \\ \text{for } i = 1..N \\ r &= rand(\text{`uniform'}) * w_{tot} \\ j &= 1 \\ w_{sum} &= w_{1} \\ while &(w_{sum} < r) \\ j &= j + 1 \\ w_{sum} &= w_{sum} + w_{j} \\ \mathbf{x}_{i} &= \mathbf{x}_{j}^{Predict} \end{aligned}$$

An Approximate Method

```
\begin{aligned} w_{tot} &= \max_{j} \ w_{j} \\ \text{for } i = 1..N \\ w_{i} &= w_{i} / w_{tot} \\ \text{if } w_{i} < 0.25 \\ &\qquad \text{add 1 copy of } \mathbf{x}_{i}^{Predict} \text{ to } \mathbf{X}^{TEMP} \\ \text{else if } w_{i} < 0.50 \\ &\qquad \text{add 2 copies of } \mathbf{x}_{i}^{Predict} \text{ to } \mathbf{X}^{TEMP} \\ \text{else if } w_{i} < 0.75 \\ &\qquad \text{add 3 copies of } \mathbf{x}_{i}^{Predict} \text{ to } \mathbf{X}^{TEMP} \\ \text{else if } w_{i} < 1.00 \\ &\qquad \text{add 4 copies of } \mathbf{x}_{i}^{Predict} \text{ to } \mathbf{X}^{TEMP} \end{aligned}
```


An Approximate Method (cont')

```
for i = 1..N

r = (int) \ rand( 'uniform') *size(X^{TEMP})
\mathbf{x}_i = \mathbf{x}_r^{TEMP}
```


NOTE:

We should only resample when we get NEW measurements.

- For Time step t_2 :
 - Iterate on previous steps to update state belief at time step t_2 given (\mathbf{X}_1, o_2, z_2) .

Particle Filter Localization: Outline

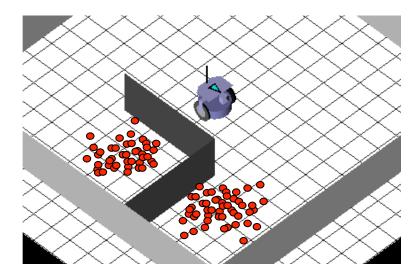
- 1. Particle Filters
 - 1. What are particles?
 - 2. Algorithm Overview
 - 3. Algorithm Example
 - 4. Using the particles
- 2. PFL Application Example

- How do we use the belief?
 - To control the robot, we often distill the belief into a lower dimension representation.
 - Examples:

$$\widehat{\mathbf{x}}_{I} = \underbrace{\sum_{i} w_{I}^{[i]} \mathbf{x}_{I}^{[i]}}_{\sum_{i} w_{I}^{[i]}}$$

$$\widehat{\mathbf{x}}_{l} = \{ \mathbf{x}_{l}^{[i]} \mid w_{l}^{[i]} > w_{l}^{[j]} \forall j \neq i \}$$

- How do we use the belief?
 - Sometimes we have several clusters
 - Lets introduce a new algorithm...

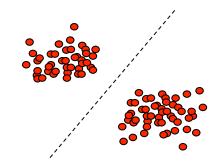


- K-means Clustering
 - Given:

A set of N data points $\mathbf{X} = \{ \mathbf{x}^{[1]}, \mathbf{x}^{[2]}, ... \mathbf{x}^{[N]} \}$ The number of clusters $k \leq N$

Find:

The k hyperplanes which best divide the data points into k clusters

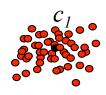


- Subtractive Clustering
 - Given:

A set of N data points $\mathbf{X} = \{ \mathbf{x}^{[1]}, \mathbf{x}^{[2]}, ... \mathbf{x}^{[N]} \}$ Neighborhood Radius r_A

Find:

The k data points which best divide the data points into k clusters



Subtractive Clustering Algorithm (initialization)

// Calculate Potential Values P_i for i = 1..N $P_i = \sum_j exp(-||\mathbf{x}^{[i]} - \mathbf{x}_I^{[j]}||^2 / (0.5 \, r_A)^2)$ // Define first centroid center \mathbf{c}_I $\mathbf{c}_I = \{ \mathbf{x}_I^{[m]} \mid P_m > P_j \ \forall \ j \neq m \}$ PotVal $(\mathbf{c}_I) = P_m$

Subtractive Clustering Algorithm (iterations)

```
k = 1 while (! stoppingCriteria)
```

// Update Potential Values

for
$$i = 1..N$$

$$P_i = P_i - \text{PotVal}(\mathbf{c_k}) \exp(-||\mathbf{x}^{[i]} - \mathbf{c_k}||^2 / (0.75 r_A)^2)$$

// Calculate kth centroid

$$\mathbf{c}_{k} = \{ \mathbf{x}_{I}^{[m]} \mid \mathbf{P}_{m} > \mathbf{P}_{j} \ \forall j \neq m \}$$

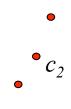
$$PotVal(\mathbf{c}_{k}) = \mathbf{P}_{m}$$

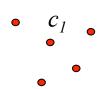
$$k = k+1$$

- Subtractive Clustering Algorithm (iterations)
 - The *stoppingCriteria* can take on many forms:

$$max_i(P_i) \le threshold$$

• Subtractive Clustering Algorithm Example for N=7





Particle Filter Localization: Outline

- 1. Particle Filters
 - 1. What are particles?
 - 2. Algorithm Overview
 - 3. Algorithm Example
 - 4. Using the particles
- 2. PFL Application Example

