E190Q - Lecture 9 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2014

Control Structures Planning Based Control

Prior Knowledge

Outline - Localization

1. Localization Tools

- Belief representation
- Map representation

2. Overview of Algorithms
3. Markov Localization

Belief Representation

- Our belief representation refers to the method we describe our estimate of the robot state.
- So far we have been using a Continuous Belief representation.

Belief Representation

- We can provide a description of the level of confidence we have in our estimate.
- We typically use a Gaussian distribution to model the state of the robot.
- We need to know the variance of this Gaussian!

Belief Representation

- For example, consider modeling our robot's position with a 2D Gaussian:

Belief Representation

- Continuous (single hypothesis)

- Continuous (multiple hypothesis)

Belief Representation

- Or, we could assign a probability of being in some discrete locations:

Grid

Topological

Belief Representation

- Discretized (prob. Distribution)

- Discretized Topological (prob. dist.)

9

Belief Representation

- Discretized: Particles

Belief Representation

- Discretized: Particles

Belief Representation

- Discretized: Particles

Belief Representation

- Continuous
- Precision bound by sensor data
- Typically single hypothesis pose estimate
- Lost when diverging (for single hypothesis)
- Compact representation
- Reasonable in processing power

Belief Representation

- Discrete
- Precision bound by resolution of discretization
- Typically multiple hypothesis pose estimate
- Rarely lost (when diverges/converges to another cell).
- Memory and processing power needed (unless topological map used)
- Aids discrete planner implementation

Belief Representation

- Multi-Hypothesis Example

Belief states at positions 2, 3 and 4
15

Outline - Localization

1. Localization Tools

- Belief representation
- Map representation

2. Overview of Algorithms
3. Markov Localization

Map Representation

- Similar to belief representations, there are two main types:
- Continuous
- Discretized

Map Representation

- Continous line-based

18

Map Representation

- Exact cell decomposition

Map Representation

- Fixed cell decomposition

Map Representation

- Fixed cell decomposition

Map Representation

- Adaptive cell decomposition

22

Map Representation

- Topological decomposition

Map Representation

- Topological decomposition

Map Representation

- Topological decomposition 25

Outline - Localization

1. Localization Tools
2. Overview of Algorithms

- Typical Methods
- Basic Structure

3. Markov Localization

Methods

- Mapping Problem
- Determine the state of the environment given a known robot state.
- Localization Problem
- Determine the state of a robot given a known environment state.

27

Methods

- Strategy:
- It might start to move from a known location, and keep track of its position using odometry.
- However, the more it moves the greater the uncertainty in its position.
- Therefore, it will update its position estimate using observation of its environment

Methods

- Method:
- Fuse the odometric position estimate with the observation estimate to get best possible update of actual position
- This can be implemented with two main functions:

1. Act
2. See

Methods

- Action Update (Prediction)
- Define function to predict position estimate based on previous state x_{t-1} and encoder measurement o_{t} or control inputs u_{t}

$$
x_{t}^{\prime}=\operatorname{Act}\left(o_{t}, x_{t-1}\right)
$$

- Increases uncertainty

Methods

- Perception Update (Correction)
- Define function to correct position estimate $x^{\prime}{ }_{t}$ using exteroceptive sensor inputs z_{t}

$$
x_{t}=\operatorname{See}\left(z_{t}, x^{\prime}\right)
$$

- Decreases uncertainty

Methods

- Motion generally improves the position

Kalman Filtering vs. Markov

- Markov Localization
- Can localize from any unknown position in map
- Recovers from ambiguous situation
- However, to update the probability of all positions within the whole state space requires discrete representation of space. This can require large amounts of memory and processing power.
- Kalman Filter Localization
- Tracks the robot and is inherently precise and efficient
- However, if uncertainty grows too large, the KF will fail and the robot will get lost.

Kalman Filtering

Particle Filter Localization

35

Outline - Localization

1. Localization Tools
2. Overview of Algorithms
3. Markov Localization

- Overview
- Prediction Step
- Correction Step
- ML Example

Markov Localization

- Markov localization uses an explicit, discrete representation for the probability of all positions in the state space.
- Usually represent the environment by a finite number of (states) positions:
- Grid
- Topological Map

Markov Localization Grid Based Example

- Use a fixed decomposition grid by discretizing each dof:

$$
(x, y, \theta)
$$

- For each location $x_{i}=[x y \theta]$ in the configuration space:
- Determine probability $P\left(x_{i}\right)$ of robot being in that state.

Markov Localization

- We assume in localization the Markov Property holds true...
- Markov Property
- A stochastic Process satisfies the Markov Property if it is conditional only on the present state of the system, and its future and past are independent
- The robot state x_{t} only depends on previous state x_{t-1} and most recent actions u_{t} and measurements z_{t}

Markov Localization

- Algorithm PseudoCode to update all n states

$$
\begin{aligned}
& \text { for } i=1: n \\
& \quad P\left(x_{i}\right)=1 / n
\end{aligned}
$$

while (true)
$o=$ getOdometryMeasurements
$z=$ getRangeMeasurements
for $i=1$: n
$P\left(x_{i}^{\prime}\right)=\operatorname{predictionStep}\left(P\left(x_{j}\right), o\right)$
for $i=1: n$
$P\left(x_{i}\right)=$ correctionStep $\left(P\left(x_{i}{ }^{\prime}\right), z\right)$

Markov Localization Applying Probability Theory

1. PREDICTION Step: Updating the belief state

$$
\begin{aligned}
P\left(x_{i, t}^{\prime}\right) & =P\left(x_{i, t} \mid o_{t}\right) \\
& =\sum_{j=1}^{n} P\left(x_{i, t} \mid x_{j, t-1}, o_{t}\right) P\left(x_{j, t-1}\right)
\end{aligned}
$$

- Map from a belief state $P\left(x_{j, t-1}\right)$ and action o_{t} to a new predicted belief state $P\left(x_{i, t}{ }^{\prime}\right)$
- Sum over all possible ways (i.e. from all states $x_{j, t-1}$) in which the robot may have reached $x_{i, t}$,
- This assumes that update only depends on previous state and most recent actions/perception

Markov Localization Grid Based Example

- Example Problem:
- Consider a robot equipped with encoders and a perfect compass moving in a square room that is discretized into a map of 16 cells:

Markov Localization Grid Based Example

- Example Problem:
- What is the probability of being in position $(2,3)$ given odometry $o_{t}=(\Delta x, \Delta y)=(-1.0$ cells, 0.0 cells $)$, and starting from the following distribution?

.02	.05	.05	.05
.02	.05	.18	.05
.05	.05	.18	.05
.05	.05	.05	.05

Markov Localization Grid Based Example

- Example Solution:
- We must have a model of how well our odometry works. For example, we could use a model for $o_{t}=$ $(\Delta x, \Delta y)=(-1.0,0.0)$ that looks like:

.00	.00	.00
.00	.00	1.0
.00	.00	.00

$\xrightarrow{(\Delta x, \Delta y)}$| .00 | .20 | .00 |
| ---: | ---: | ---: |
| .00 | .50 | .10 |
| .00 | .20 | .00 |

Markov Localization Grid Based Example

- Example Solution:
- Now apply this model to the initial state. We must consider the following possible scenarios for getting to position (2,3):

$$
\begin{aligned}
(3,3) & \rightarrow(2,3) \\
(2,3) & \rightarrow(2,3) \\
(3,2) & \rightarrow(2,3) \\
(3,4) & \rightarrow(2,3)
\end{aligned}
$$

Markov Localization Grid Based Example

- Example Solution:
- Consider the first possibility:

$$
(3,3) \rightarrow(2,3)
$$

- We can calculate the probability of this happening

$$
\begin{aligned}
& P\left(x_{i, t} \mid x_{j, t-1}, o_{t}\right) P\left(x_{j, t-1}\right) \\
& \quad=P\left(x_{t}=(2,3) \mid x_{t-1}=(3,3), o_{t}=(-1,0)\right) \quad P\left(x_{t-1}=(3,3)\right) \\
& \quad=(0.5)(0.18) \\
& \quad=0.09
\end{aligned}
$$

Markov Localization Grid Based Example

- Example Solution:
- Similarly, we can calculate the probability of all other possible ways to get to $(2,3)$.

$$
\begin{aligned}
& P\left(x_{t}=(2,3) \mid x_{t-1}=(2,3), o_{t}=(-1,0)\right) \quad P\left(x_{t-1}=(2,3)\right) \\
& \quad=0.005 \\
& P\left(x_{t}=(2,3) \mid x_{t-1}=(3,2), o_{t}=(-1,0)\right) \quad P\left(x_{t-1}=(3,2)\right) \\
& \quad=0.036 \\
& P\left(x_{t}=(2,3) \mid x_{t-1}=(3,4), o_{t}=(-1,0)\right) \quad P\left(x_{t-1}=(3,4)\right) \\
& \quad=0.01
\end{aligned}
$$

Markov Localization Grid Based Example

- Example Solution:
- So the probability of being at position $(2,3)$ given the odometry is the total probability of moving there from each possible position:

$$
\begin{aligned}
P\left(x_{i t}=(2,3) \mid o_{t}=(-1,0)\right) & =\sum P\left(x_{t}=(2,3) \mid x_{j, t-1}, o_{t}=(-1,0)\right) P\left(x_{j, t-1}\right) \\
& =0.09+0.005+0.036+0.01 \\
& =0.141
\end{aligned}
$$

Markov Localization Applying Probability Theory

2. CORRECTION Step: refine the belief state

$$
P\left(x_{i, t} \mid z_{t}\right)=\frac{P\left(z_{t} \mid x_{i, t}^{\prime}\right) P\left(x_{i, t}^{\prime}\right)}{P\left(z_{t}\right)}
$$

- $\quad P\left(x^{\prime}{ }_{i, t}\right)$: the belief state before the perceptual update i.e. $P\left(x_{i, t} \mid o_{t}\right)$
- $P\left(z_{t} \mid x_{i, t}\right.$ '): the probability of getting measurement z_{t} from state $x_{i, t}$,
- $\quad P\left(z_{t}\right)$: the probability of a sensor measurement z_{t}. Calculated so that the sum over all states $x_{i, t}$ from equals 1 .

Markov Localization

- Critical challenge is calculation of $P(z \mid x)$
- The number of possible sensor readings and geometric contexts is extremely large
- $P(z \mid x)$ is computed using a model of the robot's sensor behavior, its position x, and the local environment metric map around x.
- Assumptions
- Measurement error can be described by a distribution with a mean
- Non-zero chance for any measurement
- Sensor is located at center of robot

Markov Localization Grid Based Example

- Example Problem:
- What is the probability of being in state $x=(2,3)$ given we have range measurement $z=0.8 m$?

$$
\left.P\left(x_{t}=(2,3)\right) \mid z_{t}=0.8\right)=\frac{P\left(z_{t}=0.8 \mid x_{t}^{\prime}=(2,3)\right) P\left(x_{t}^{\prime}=(2,3)\right)}{P\left(z_{t}=0.8\right)}
$$

Markov Localization Grid Based Example

- Example Solution:
- We can use the probability $P\left(x_{t}{ }^{\prime}=(2,3)\right)=0.141$ from the previous example.
- The interesting term is $P\left(z_{t}=0.8 \mid x_{t}{ }^{\prime}=(2,3)\right)$.
- Using the map, we can calculate the expected value of the range sensor measurement.
- If the robot is at $(2,3)$ and facing to the left, it should get a range measurement between $1 m$ and $2 m$.
- Recall that we can use the probability density function representing the sensor characteristics, and that the expected value is between 1 and 2.

Markov Localization Grid Based Example

- Example Solution:
- For Ultrasound, $P(z \mid x)$ can be taken from the following distribution:

Markov Localization Grid Based Example

- Example Solution:
- Often, we approximate

Markov Localization Grid Based Example

- Example Solution:
- Now we can calculate the numerator for

$$
\left.p\left(x_{t}=(2,3)\right) \mid z_{t}=0.8\right)
$$

$$
\begin{aligned}
& =\frac{p\left(z_{t}=0.8 \mid x_{t}^{\prime}=(2,3)\right) p\left(x_{t}^{\prime}=(2,3)\right)}{p\left(z_{t}=0.8\right)} \\
& =\frac{(0.01)(0.141)}{p\left(z_{t}=0.8\right)}
\end{aligned}
$$

Markov Localization Grid Based Example

- Example Solution:
- Finally, we can calculate the denominator by ensuring the sum of all probabilities is 1.

$$
\begin{aligned}
1 & =\sum_{i=1}^{n} P\left(x_{i, t} \mid z_{t}=0.8\right) \\
& =\frac{\sum^{i} P\left(z_{t}=0.8 \mid x_{i, t}^{\prime}\right) P\left(x_{i, t}^{\prime}\right)}{P\left(z_{t}=0.8\right)}
\end{aligned}
$$

Therefore:

$$
P\left(z_{t}=0.8\right)=\sum P\left(z_{t}=0.8 \mid x_{i, t}{ }^{\prime}\right) P\left(x_{i, t}{ }^{\prime}\right)
$$

Markov Localization Grid Based Example

- Here are some typical sensor distributions:

Ultrasound.

Laser range-finder.

Outline - Localization

1. Localization Tools
2. Overview of Algorithms
3. Markov Localization

- Overview
- Prediction Step
- Correction Step
- ML Example

ML Example 1

- Smithsonian Navigation
- Time steps taken from ML example of the robot Minerva navigating around the Smithsonian.
- In the following figures:
- Left side shows belief state. Darker means higher probability.
- Right side shows actual robot position and sensor measurements.

ML Example 1

- Laser Scan 1 of Museum

Figures courtesy of W. Burgard

ML Example 1

- Laser Scan 2 of Museum

Figures courtesy of W. Burgard

ML Example 1

- Laser Scan 3 of Museum

Figures courtesy of W. Burgard

ML Example 1

- Laser Scan 13 of Museum

Figures courtesy of W. Burgard
64

ML Example 1

- Laser Scan 21 of Museum

Figures courtesy of W. Burgard

ML Example 2

- Lane State

Estimation

- (Semi) Autonomous Highway Systems will benefit from lane position optimization
- Vehicles must need to know what lane they are in.

ML Example 2

- Multiple vehicles driving down a highway.
- Can we estimate what lane they are in?

ML Example 2

- Assume vehicles have

- Inter-Vehicle Communication (IVC)
- GPS

ML Example 2

- Baye's Filter - Prediction Step

$$
P\left(v_{i, t}=l_{a}\right) \leftarrow \sum_{j=1}^{2} P\left(v_{i, t}=l_{a} \mid v_{i, t-1}=l_{j}\right) P\left(v_{i, t-1}=l_{j}\right)
$$

ML Example 2

- Baye's Filter - Correction Step

$$
\begin{aligned}
& P\left(v_{1, t}=l_{a}, v_{2, t}=l_{b} \mid z_{t}\right) \\
& \\
& \leftarrow \frac{P\left(z_{t} \mid v_{1, t}=l_{a}, v_{2, t}=l_{b}\right) P\left(v_{1, t}=l_{a}, v_{2, t}=l_{b}\right)}{P\left(z_{t}\right)}
\end{aligned}
$$

Vehicle 1

ML Example 2

- Results

(a)

- P(computer2=11) - P(computer2=12)

(b)

ML Example 2

- Results

72

