

# E190Q – Lecture 8 Autonomous Robot Navigation

Instructor: Chris Clark

Semester: Spring 2014



# **Control Structures Planning Based Control**





# **Outline – Mapping**

- 1. Wall as Lines
  - 1. Segmentation
  - 2. Line Extraction
- 2. Walls as Grid Cells
  - 1. Evidence Grid
  - 2. Log Likelihood



# **Line Extraction Problem**

- Given range data, how do we extract line segments (or planes) to create?
  - These features (line segments) can be used to build maps or be compared with an existing map.





# **Line Extraction Problem**

- From raw data, create features
  - Features are much more compact than raw data
  - Can reflect physical or abstract objects
  - Rich in information
  - Can assess accuracy of feature





# **Line Extraction Problem**

- Three Questions
  - 1. How many lines are there?
  - 2. Which data points belong to which lines?

3. Given which points belong to which lines, how do we estimate - Line Extraction line parameters?

Segmentation



# **Outline – Mapping**

- 1. Wall as Lines
  - 1. Line Extraction
  - 2. Segmentation
- 2. Walls as Grid Cells
  - 1. Evidence Grid
  - 2. Log Likelihood



### Problem:

 Given a measurement vector of range and bearing tuples, what are the parameters that define a line feature for these measurements.





- Problem (restated):
  - Given a measurement vector of N range and bearing tuples,  $x_i = (\rho_i, \theta_i)$  for i=1..N, what are the parameters  $r,\alpha$  that define a line feature for these measurements.





- Solution: Minimize Sum of Squared Errors
  - All measurements should satisfy the linear equation:

$$\rho_i \cos(\theta_i - \alpha) = r$$

But measurements are noisy, and points will be some distance d<sub>i</sub> from the line.

$$\rho_i \cos(\theta_i - \alpha) - r = d_i$$





- Solution: Minimize Sum of Squared Errors
  - Our solution tries to minimize the error

$$S = \sum_{i} d_i^2 = \sum_{i} (\rho_i \cos(\theta_i - \alpha) - r)^2$$

We do this by solving the system of equations

$$\frac{\partial S}{\partial \alpha} = 0$$
  $\frac{\partial S}{\partial r} = 0$ 





- Solution: Minimize Sum of Squared Errors
  - This is known as an Unweighted Least Squares Solution
  - We can do better by using our confidence in each measurement
  - Recall there is a error variance associated with each measurement
  - This leads to a Weighted Least Square Solution





- Solution: Minimize Sum of Squared Errors
  - The Weighted Least Squares Solution reformulates the error to minimize:

$$w_i = 1/\sigma_i^2$$
$$S = \sum w_i d_i^2$$





- Solution: Minimize Sum of Squared Errors
  - The solution to

$$\frac{\partial S}{\partial \alpha} = 0 \qquad \frac{\partial S}{\partial r} = 0$$

Results in

$$r = \frac{\sum w_i \rho_i \cos(\theta_i - \alpha)}{\sum w_i}$$

$$\alpha = \frac{1}{2} \operatorname{atan} \left( \frac{\sum w_i \rho_i^2 \sin 2\theta_i - \frac{2}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos \theta_i \sin \theta_j}{\sum w_i \rho_i^2 \cos 2\theta_i - \frac{1}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos (\theta_i + \theta_j)} \right)$$











































# **Outline – Mapping**

- 1. Wall as Lines
  - 1. Line Extraction
  - 2. Segmentation
    - Split and Merge
    - Split and Merge Fixed Endpoint
    - RANSAC
- 2. Walls as Grid Cells
  - 1. Evidence Grid
  - 2. Log Likelihood



- Split and Merge
  - Recursive procedure of fitting and splitting

#### Initialise set S to contain all points

#### Split

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- · If distance <= threshold, merge both segments





- Split and Merge
  - Recursive procedure of fitting and splitting

Initialise set S to contain all points

#### **Split**

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments</li>





- Split and Merge
  - Recursive procedure of fitting and splitting

Initialise set S to contain all points

#### Split

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments</li>





- Split and Merge
  - Recursive procedure of fitting and splitting

Initialise set **S** to contain all points

#### **Split**

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments</li>





# **Outline – Mapping**

- 1. Wall as Lines
  - 1. Line Extraction
  - 2. Segmentation
    - Split and Merge
    - Split and Merge Fixed Endpoint
    - RANSAC
- 2. Walls as Grid Cells
  - 1. Evidence Grid
  - 2. Log Likelihood



- Split and Merge Iterative End Point
  - Recursive splitting, but simply connects end points for fitting





# **Outline – Mapping**

- 1. Wall as Lines
  - 1. Line Extraction
  - 2. Segmentation
    - Split and Merge
    - Split and Merge Fixed Endpoint
    - RANSAC
- 2. Walls as Grid Cells
  - 1. Evidence Grid
  - 2. Log Likelihood



- RANSAC = RANdomSAmpleConsensus.
  - A generic and robust fitting algorithm of models in the presence of outliers (i.e. points which do not satisfy a model)
  - Generally applicable algorithm to any problem where the goal is to identify the inliers which satisfy a predefined model.
  - Typical applications in robotics are: line extraction from 2D range data, plane extraction from 3D range data, feature matching...



### RANSAC

- RANSAC is an iterative method and is nondeterministic in that the probability to find a set free of outliers increases as more iterations are used
- Drawback: A nondeterministic method, results are different between runs.







- Select sample of 2 points at random
- Calculate model
   parameters that fit the data
   in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat





- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat





- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat





- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat





- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat





- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat





- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat



RANSAC Example



 Stop after k iterations and select model with the max number of inliers.



## **Outline – Mapping**

- 1. Wall as Lines
  - 1. Line Extraction
  - 2. Segmentation
    - Split and Merge
    - Split and Merge Fixed Endpoint
    - RANSAC
- 2. Walls as Grid Cells
  - 1. Evidence Grid
  - 2. Log Likelihood



- Evidence Grids
  - AKA Occupancy Grids
  - Workspace is discritized into grid cells
  - Each grid cell is assigned a likelihood of occupation  $p_{ij} \in [0,1]$











www.frc.ri.cum/~hpm/talks/cevo.slides/seeqrid.html



- Updating with a Sensor Model (example)
  - For a maximum range R, there are B range values each with a corresponding signal strength  $s^i$





- Updating the Grid
  - Using geometry, the corresponding grid cell for each each sonar sensor bin must be determined.
  - Several bins could correspond with a single grid cell
     OR
  - Several grid cells could correspond with a single bin





- Using a Sensor Model
  - Each signal strength s<sup>i</sup>
    must correspond to a
    likelihood of a
    occupancy P(c<sub>ij</sub> |z) in the
    map
  - We use a function  $P(z|c_{ij})$  that must be determined experimentally.





- Updating the Grid
  - How do we get  $P(z_t|c_{ij})$  ?
  - Experiments...





- Using a Sensor Model
  - More sophisticated models are available for  $P(z | c_{ij})$





- Updating the Grid
  - Use Baye's rule to update each cell  $c_{ij}$ 's likelihood of occupancy for measurement z at time step t

$$P(c_{ij,t}) = P(c_{ij,t}|z_t) = \frac{P(z_t|c_{ij,t-1})P(c_{ij,t-1})}{P(z_t)}$$

 $P(c_{ij,t})$  =probability cell ij is occupied at time t  $P(z_t)$  =probability of obtaining measurement Z at time t $P(z_t|c_{ij,t-1})$ =probability of Z given  $o_{ij}$  from the sensor model



- Updating the Grid
  - Similarly

$$P(-c_{ij,t}|z_t) = \frac{P(z_t|-c_{ij,t-1})P(-c_{ij,t-1})}{P(z_t)}$$



- Updating the Grid
  - Now, the odds o of some fact A being true can be written as

$$o(A) = P(A)/P(-A)$$

In our case

$$o(c_{ij,t}|z_{t}) = P((c_{ij,t}|z_{t})/P(-c_{ij,t}|z_{t}))$$

$$= P(z_{t}|c_{ij,t-1})P(c_{ij,t-1})$$

$$= O(z_{t}|c_{ij,t-1})O(c_{ij,t-1})$$

$$= o(z_{t}|c_{ij,t-1})o(c_{ij,t-1})$$



- Updating the Grid
  - What if we take the log odds

$$log \ o(c_{ij,t}|z_t) = log \ o(z_t|c_{ij,t-1}) + log \ o(c_{ij,t-1})$$

- Characteristics
  - The last term is equated to previous log odds of  $log \ o(c_{ij,t-1}|z_{t-1})$
  - No need for knowledge of P(z)
  - Updates can be done with addition, not multiplication



- Updating the Grid
  - Properties of log odds

$$\gamma(p) = logit(p)$$

$$= log (p/(1-p))$$

$$= log(p) - log(1-p)$$

Most often the natural logarithm is used

$$\gamma(p) = ln(p) - ln(1-p)$$



- Updating the Grid
  - The *logit()* function





- Updating the Grid
  - The *logit -1()* function

$$p(\gamma) = logit^{-1}(\gamma)$$
$$= exp(\gamma) / (1 + exp(\gamma))$$



Application Example



(a) Cistern sonar mosaic