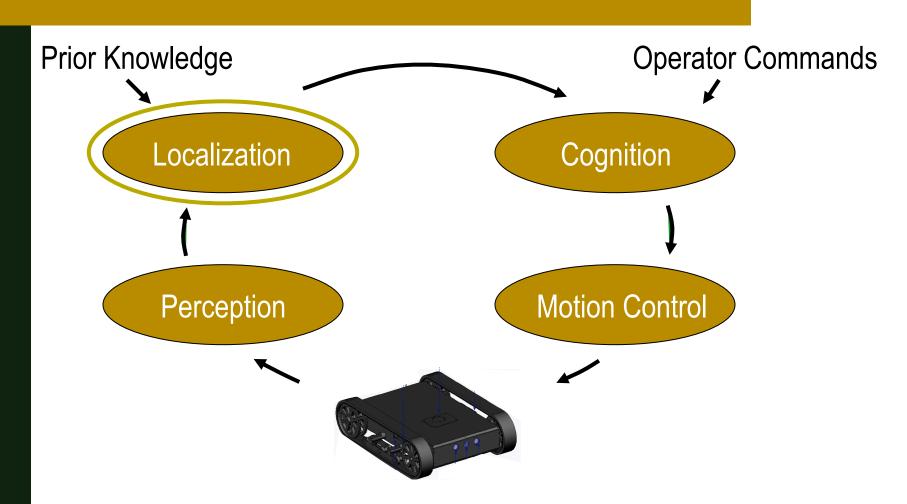


E190Q – Lecture 8 Autonomous Robot Navigation

Instructor: Chris Clark

Semester: Spring 2014

Control Structures Planning Based Control

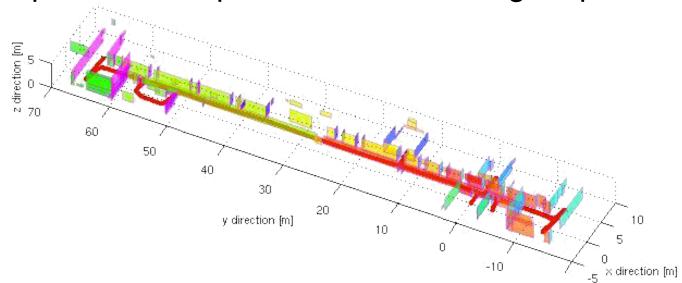


Outline – Mapping

- 1. Wall as Lines
 - 1. Segmentation
 - 2. Line Extraction
- 2. Walls as Grid Cells
 - 1. Evidence Grid
 - 2. Log Likelihood

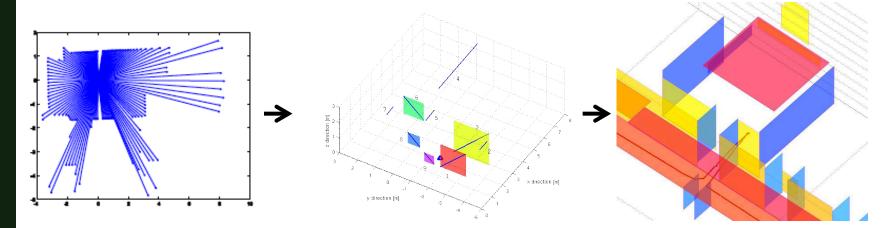
Line Extraction Problem

- Given range data, how do we extract line segments (or planes) to create?
 - These features (line segments) can be used to build maps or be compared with an existing map.



Line Extraction Problem

- From raw data, create features
 - Features are much more compact than raw data
 - Can reflect physical or abstract objects
 - Rich in information
 - Can assess accuracy of feature



Line Extraction Problem

- Three Questions
 - 1. How many lines are there?
 - 2. Which data points belong to which lines?

3. Given which points belong to which lines, how do we estimate - Line Extraction line parameters?

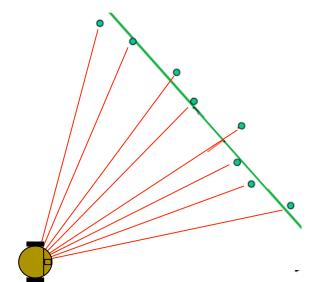
Segmentation

Outline – Mapping

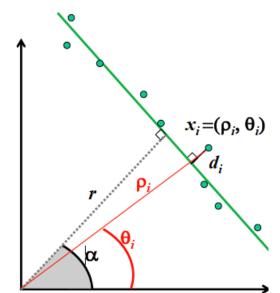
- 1. Wall as Lines
 - 1. Line Extraction
 - 2. Segmentation
- 2. Walls as Grid Cells
 - 1. Evidence Grid
 - 2. Log Likelihood

Problem:

 Given a measurement vector of range and bearing tuples, what are the parameters that define a line feature for these measurements.



- Problem (restated):
 - Given a measurement vector of N range and bearing tuples, $x_i = (\rho_i, \theta_i)$ for i=1..N, what are the parameters r,α that define a line feature for these measurements.

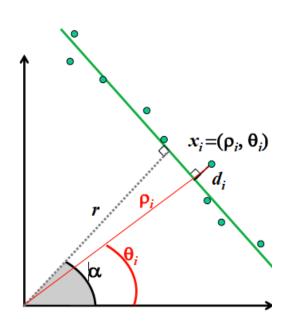


- Solution: Minimize Sum of Squared Errors
 - All measurements should satisfy the linear equation:

$$\rho_i \cos(\theta_i - \alpha) = r$$

But measurements are noisy, and points will be some distance d_i from the line.

$$\rho_i \cos(\theta_i - \alpha) - r = d_i$$

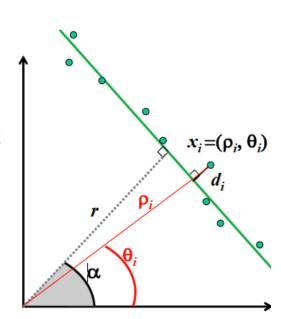


- Solution: Minimize Sum of Squared Errors
 - Our solution tries to minimize the error

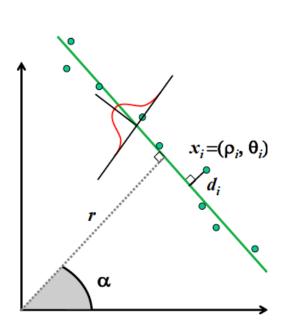
$$S = \sum_{i} d_i^2 = \sum_{i} (\rho_i \cos(\theta_i - \alpha) - r)^2$$

We do this by solving the system of equations

$$\frac{\partial S}{\partial \alpha} = 0$$
 $\frac{\partial S}{\partial r} = 0$

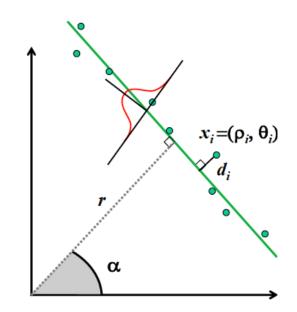


- Solution: Minimize Sum of Squared Errors
 - This is known as an Unweighted Least Squares Solution
 - We can do better by using our confidence in each measurement
 - Recall there is a error variance associated with each measurement
 - This leads to a Weighted Least Square Solution



- Solution: Minimize Sum of Squared Errors
 - The Weighted Least Squares Solution reformulates the error to minimize:

$$w_i = 1/\sigma_i^2$$
$$S = \sum w_i d_i^2$$



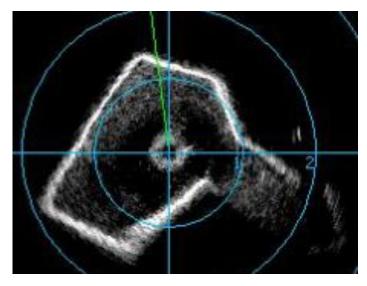
- Solution: Minimize Sum of Squared Errors
 - The solution to

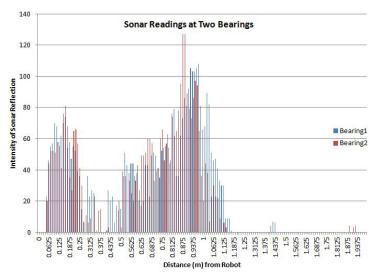
$$\frac{\partial S}{\partial \alpha} = 0 \qquad \frac{\partial S}{\partial r} = 0$$

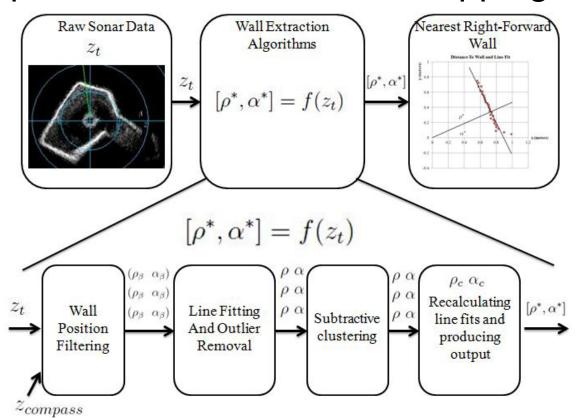
Results in

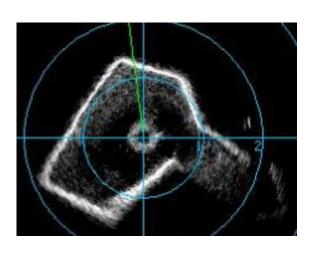
$$r = \frac{\sum w_i \rho_i \cos(\theta_i - \alpha)}{\sum w_i}$$

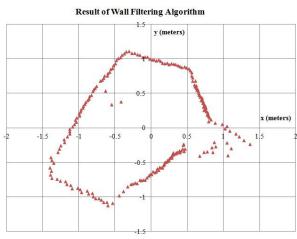
$$\alpha = \frac{1}{2} \operatorname{atan} \left(\frac{\sum w_i \rho_i^2 \sin 2\theta_i - \frac{2}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos \theta_i \sin \theta_j}{\sum w_i \rho_i^2 \cos 2\theta_i - \frac{1}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos (\theta_i + \theta_j)} \right)$$

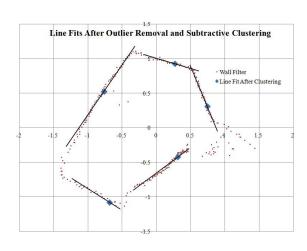












Outline – Mapping

- 1. Wall as Lines
 - 1. Line Extraction
 - 2. Segmentation
 - Split and Merge
 - Split and Merge Fixed Endpoint
 - RANSAC
- 2. Walls as Grid Cells
 - 1. Evidence Grid
 - 2. Log Likelihood

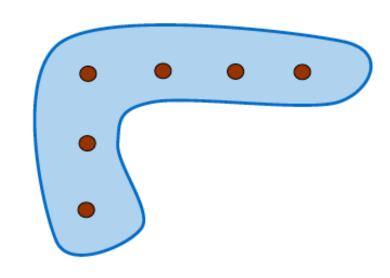
- Split and Merge
 - Recursive procedure of fitting and splitting

Initialise set S to contain all points

Split

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- · If distance <= threshold, merge both segments



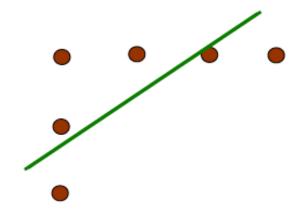
- Split and Merge
 - Recursive procedure of fitting and splitting

Initialise set S to contain all points

Split

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments



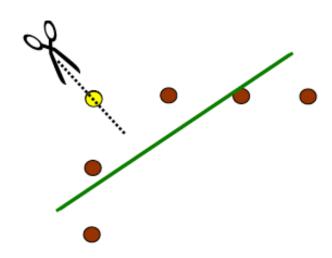
- Split and Merge
 - Recursive procedure of fitting and splitting

Initialise set S to contain all points

Split

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments



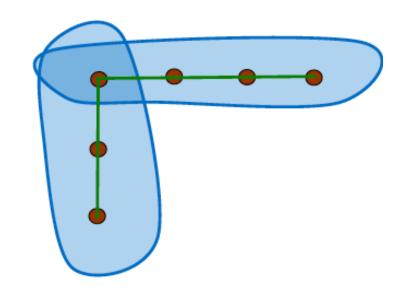
- Split and Merge
 - Recursive procedure of fitting and splitting

Initialise set **S** to contain all points

Split

- Fit a line to points in current set S
- · Find the most distant point to the line
- If distance > threshold ⇒ split & repeat with left and right point sets

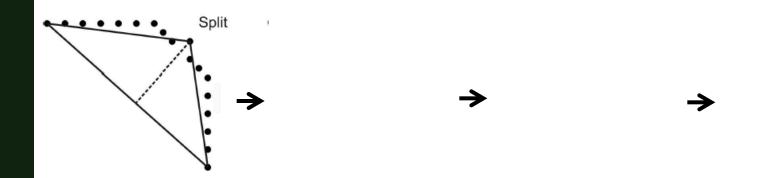
- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments



Outline – Mapping

- 1. Wall as Lines
 - 1. Line Extraction
 - 2. Segmentation
 - Split and Merge
 - Split and Merge Fixed Endpoint
 - RANSAC
- 2. Walls as Grid Cells
 - 1. Evidence Grid
 - 2. Log Likelihood

- Split and Merge Iterative End Point
 - Recursive splitting, but simply connects end points for fitting



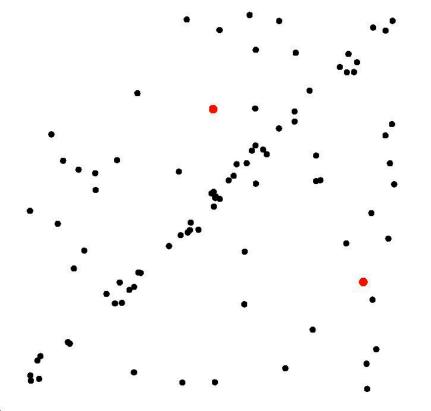
Outline – Mapping

- 1. Wall as Lines
 - 1. Line Extraction
 - 2. Segmentation
 - Split and Merge
 - Split and Merge Fixed Endpoint
 - RANSAC
- 2. Walls as Grid Cells
 - 1. Evidence Grid
 - 2. Log Likelihood

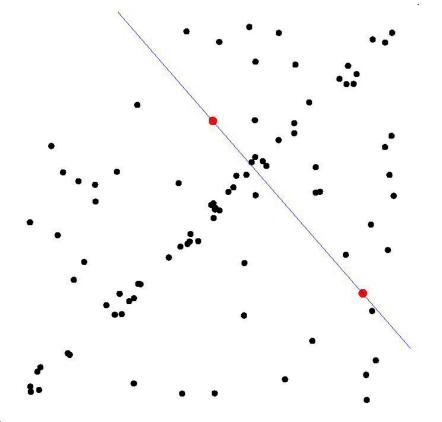
- RANSAC = RANdomSAmpleConsensus.
 - A generic and robust fitting algorithm of models in the presence of outliers (i.e. points which do not satisfy a model)
 - Generally applicable algorithm to any problem where the goal is to identify the inliers which satisfy a predefined model.
 - Typical applications in robotics are: line extraction from 2D range data, plane extraction from 3D range data, feature matching...

RANSAC

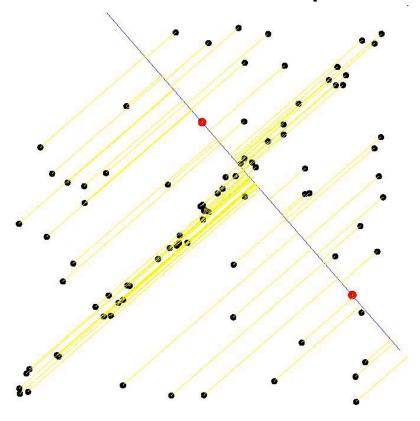
- RANSAC is an iterative method and is nondeterministic in that the probability to find a set free of outliers increases as more iterations are used
- Drawback: A nondeterministic method, results are different between runs.



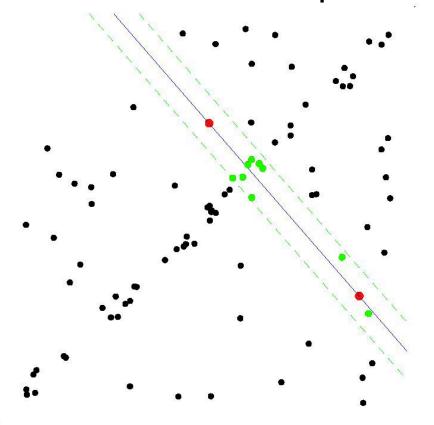
- Select sample of 2 points at random
- Calculate model
 parameters that fit the data
 in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat



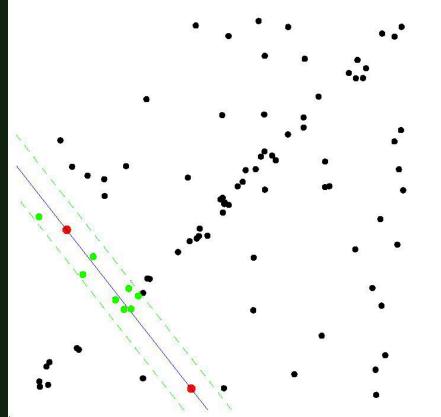
- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat



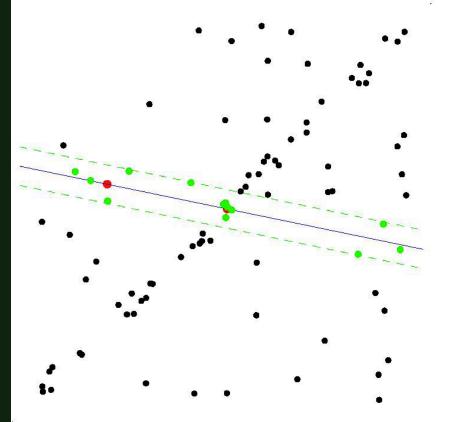
- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat



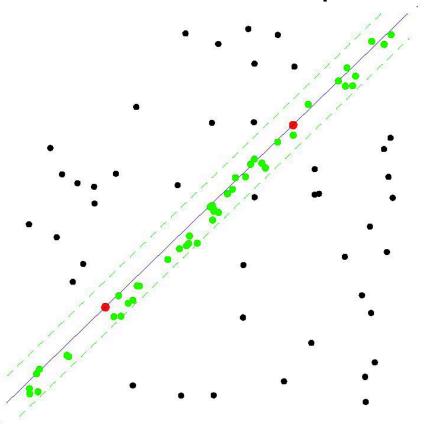
- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat



- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

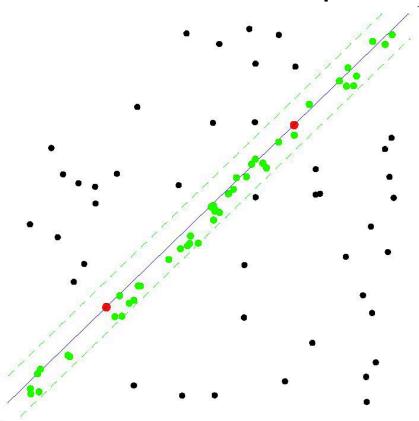


- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat



- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

RANSAC Example

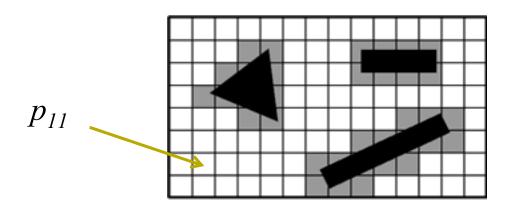


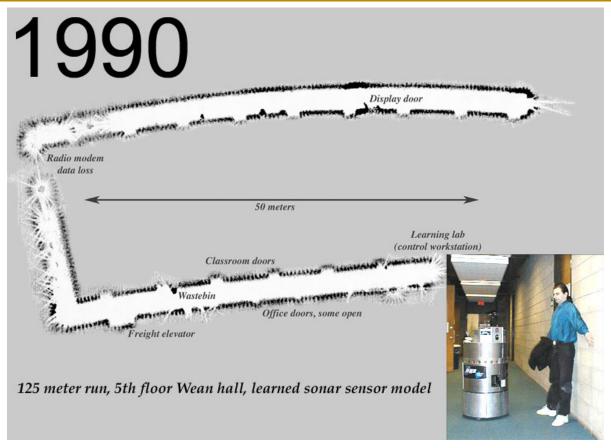
 Stop after k iterations and select model with the max number of inliers.

Outline – Mapping

- 1. Wall as Lines
 - 1. Line Extraction
 - 2. Segmentation
 - Split and Merge
 - Split and Merge Fixed Endpoint
 - RANSAC
- 2. Walls as Grid Cells
 - 1. Evidence Grid
 - 2. Log Likelihood

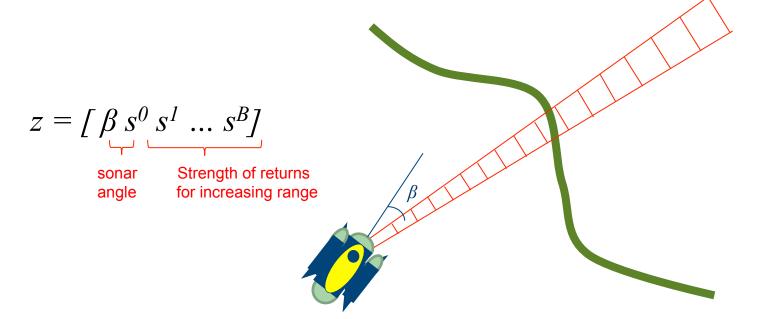
- Evidence Grids
 - AKA Occupancy Grids
 - Workspace is discritized into grid cells
 - Each grid cell is assigned a likelihood of occupation $p_{ij} \in [0,1]$



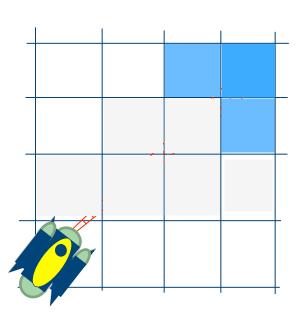


www.frc.ri.cum/~hpm/talks/cevo.slides/seeqrid.html

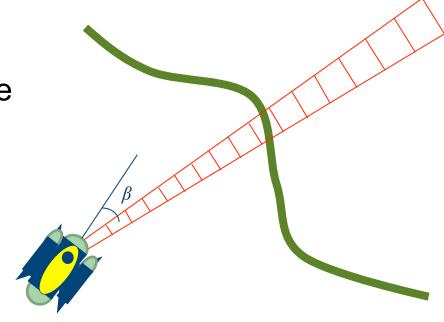
- Updating with a Sensor Model (example)
 - For a maximum range R, there are B range values each with a corresponding signal strength s^i



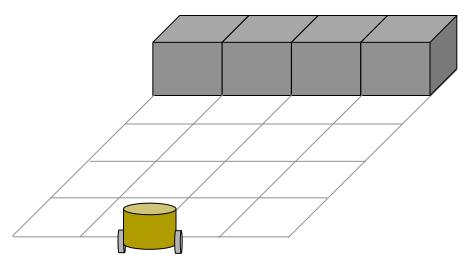
- Updating the Grid
 - Using geometry, the corresponding grid cell for each each sonar sensor bin must be determined.
 - Several bins could correspond with a single grid cell
 OR
 - Several grid cells could correspond with a single bin



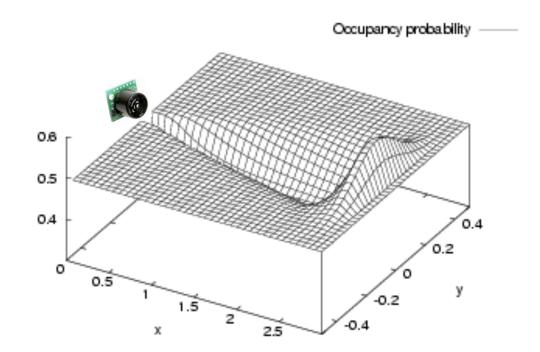
- Using a Sensor Model
 - Each signal strength sⁱ
 must correspond to a
 likelihood of a
 occupancy P(c_{ij} |z) in the
 map
 - We use a function $P(z|c_{ij})$ that must be determined experimentally.



- Updating the Grid
 - How do we get $P(z_t|c_{ij})$?
 - Experiments...



- Using a Sensor Model
 - More sophisticated models are available for $P(z | c_{ij})$



- Updating the Grid
 - Use Baye's rule to update each cell c_{ij} 's likelihood of occupancy for measurement z at time step t

$$P(c_{ij,t}) = P(c_{ij,t}|z_t) = \frac{P(z_t|c_{ij,t-1})P(c_{ij,t-1})}{P(z_t)}$$

 $P(c_{ij,t})$ =probability cell ij is occupied at time t $P(z_t)$ =probability of obtaining measurement Z at time t $P(z_t|c_{ij,t-1})$ =probability of Z given o_{ij} from the sensor model

- Updating the Grid
 - Similarly

$$P(-c_{ij,t}|z_t) = \frac{P(z_t|-c_{ij,t-1})P(-c_{ij,t-1})}{P(z_t)}$$

- Updating the Grid
 - Now, the odds o of some fact A being true can be written as

$$o(A) = P(A)/P(-A)$$

In our case

$$o(c_{ij,t}|z_{t}) = P((c_{ij,t}|z_{t})/P(-c_{ij,t}|z_{t}))$$

$$= P(z_{t}|c_{ij,t-1})P(c_{ij,t-1})$$

$$= O(z_{t}|c_{ij,t-1})O(c_{ij,t-1})$$

$$= o(z_{t}|c_{ij,t-1})o(c_{ij,t-1})$$

- Updating the Grid
 - What if we take the log odds

$$log \ o(c_{ij,t}|z_t) = log \ o(z_t|c_{ij,t-1}) + log \ o(c_{ij,t-1})$$

- Characteristics
 - The last term is equated to previous log odds of $log \ o(c_{ij,t-1}|z_{t-1})$
 - No need for knowledge of P(z)
 - Updates can be done with addition, not multiplication

- Updating the Grid
 - Properties of log odds

$$\gamma(p) = logit(p)$$

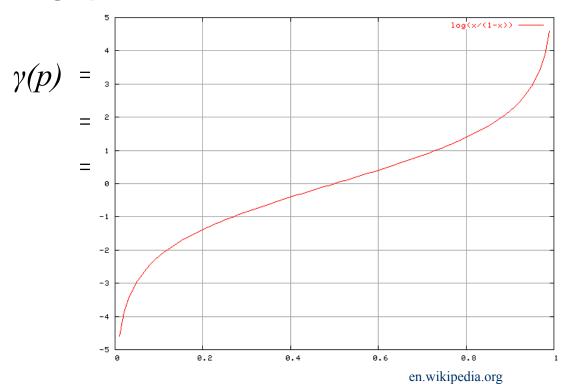
$$= log (p/(1-p))$$

$$= log(p) - log(1-p)$$

Most often the natural logarithm is used

$$\gamma(p) = ln(p) - ln(1-p)$$

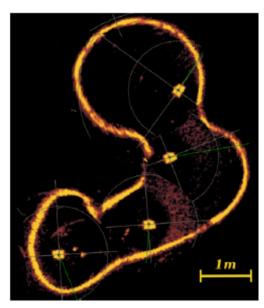
- Updating the Grid
 - The *logit()* function



- Updating the Grid
 - The *logit -1()* function

$$p(\gamma) = logit^{-1}(\gamma)$$
$$= exp(\gamma) / (1 + exp(\gamma))$$

Application Example



(a) Cistern sonar mosaic