E190Q - Lecture 8 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2014

Control Structures Planning Based Control

Prior Knowledge

Outline - Mapping

1. Wall as Lines
2. Segmentation
3. Line Extraction
4. Walls as Grid Cells
5. Evidence Grid
6. Log Likelihood

Line Extraction Problem

- Given range data, how do we extract line segments (or planes) to create?
- These features (line segments) can be used to build maps or be compared with an existing map.

Line Extraction Problem

- From raw data, create features
- Features are much more compact than raw data
- Can reflect physical or abstract objects
- Rich in information
- Can assess accuracy of feature

Line Extraction Problem

- Three Questions

1. How many lines are there?
2. Which data points belong to which lines?
3. Given which points belong to which lines, how do we estimate - Line Extraction line parameters?

Outline - Mapping

1. Wall as Lines
2. Line Extraction
3. Segmentation
4. Walls as Grid Cells
5. Evidence Grid
6. Log Likelihood

Line Extraction

- Problem:
- Given a measurement vector of range and bearing tuples, what are the parameters that define a line feature for these measurements.

Line Extraction

- Problem (restated):
- Given a measurement vector of N range and bearing tuples, $x_{i}=\left(\rho_{i}, \theta_{i}\right)$ for $i=1 . . N$, what are the parameters r, α that define a line feature for these measurements.

Line Extraction

- Solution: Minimize Sum of

Squared Errors

- All measurements should satisfy the linear equation:

$$
\rho_{i} \cos \left(\theta_{i}-\alpha\right)=r
$$

- But measurements are noisy, and points will be some distance d_{i} from the line.

$$
\rho_{i} \cos \left(\theta_{i}-\alpha\right)-r=d_{i}
$$

Line Extraction

- Solution: Minimize Sum of

Squared Errors

- Our solution tries to minimize the error

$$
S=\sum_{i} d_{i}^{2}=\sum_{i}\left(\rho_{i} \cos \left(\theta_{i}-\alpha\right)-r\right)^{2}
$$

- We do this by solving the system of equations

$$
\frac{\partial S}{\partial \alpha}=0 \quad \frac{\partial S}{\partial r}=0
$$

Line Extraction

- Solution: Minimize Sum of Squared Errors
- This is known as an Unweighted Least Squares Solution
- We can do better by using our confidence in each measurement
- Recall there is a error variance associated with each measurement

- This leads to a Weighted Least Square Solution

Line Extraction

- Solution: Minimize Sum of Squared Errors
- The Weighted Least Squares Solution reformulates the error to minimize:

$$
w_{i}=1 / \sigma_{i}^{2}
$$

Line Extraction

- Solution: Minimize Sum of Squared Errors
- The solution to

$$
\frac{\partial S}{\partial \alpha}=0 \quad \frac{\partial S}{\partial r}=0
$$

- Results in

$$
\begin{gathered}
r=\frac{\sum w_{i} \rho_{i} \cos \left(\theta_{i}-\alpha\right)}{\sum w_{i}} \\
\alpha=\frac{1}{2} \operatorname{atan}\left(\frac{\sum w_{i} \rho_{i}^{2} \sin 2 \theta_{i}-\frac{2}{\sum_{w_{i}}} \sum \sum w_{i} w_{j} \rho_{i} \rho_{j} \cos \theta_{i} \sin \theta_{j}}{\sum w_{i} \rho_{i}^{2} \cos 2 \theta_{i}-\frac{1}{\sum_{w_{i}}} \sum \sum w_{i} w_{j} \rho_{i} \rho_{j} \cos \left(\theta_{i}+\theta_{j}\right)}\right)
\end{gathered}
$$

Line Extraction

- Examples - Underwater Wall Mapping

15

Line Extraction

- Examples - Underwater Wall Mapping

16

Line Extraction

- Examples - Underwater Wall Mapping

17

Line Extraction

- Examples - Underwater Wall Mapping

18

Line Extraction

- Examples - Underwater Wall Mapping

19

Line Extraction

- Examples - Underwater Wall Mapping

Line Extraction

- Examples - Underwater Wall Mapping

Line Extraction

- Examples - Underwater Wall Mapping

Outline - Mapping

1. Wall as Lines
2. Line Extraction
3. Segmentation

- Split and Merge
- Split and Merge - Fixed Endpoint
- RANSAC

2. Walls as Grid Cells
3. Evidence Grid
4. Log Likelihood

Segmentation

- Split and Merge

- Recursive procedure of fitting and splitting

Initialise set \mathbf{S} to contain all points

Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance $>$ threshold \Rightarrow split \& repeat with left and right point sets

Merge

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point

- If distance <= threshold, merge both segments

Segmentation

- Split and Merge

- Recursive procedure of fitting and splitting

Initialise set \mathbf{S} to contain all points
Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance $>$ threshold \Rightarrow split \& repeat with left and right point sets
Merge
- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments

Segmentation

- Split and Merge

- Recursive procedure of fitting and splitting

Initialise set \mathbf{S} to contain all points
Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance > threshold \Rightarrow split \& repeat with left and right point sets

Merge

- If two consecutive segments are close/collinear
 enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments

Segmentation

- Split and Merge

- Recursive procedure of fitting and splitting

Initialise set \mathbf{S} to contain all points

Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance $>$ threshold \Rightarrow split \& repeat with left and right point sets

Merge

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments

Outline - Mapping

1. Wall as Lines
2. Line Extraction
3. Segmentation

- Split and Merge
- Split and Merge - Fixed Endpoint
- RANSAC

2. Walls as Grid Cells
3. Evidence Grid
4. Log Likelihood

Segmentation

- Split and Merge - Iterative End Point
- Recursive splitting, but simply connects end points for fitting

\rightarrow

Outline - Mapping

1. Wall as Lines
2. Line Extraction
3. Segmentation

- Split and Merge
- Split and Merge - Fixed Endpoint
- RANSAC

2. Walls as Grid Cells
3. Evidence Grid
4. Log Likelihood

Segmentation

- RANSAC = RANdomSAmpleConsensus.
- A generic and robust fitting algorithm of models in the presence of outliers (i.e. points which do not satisfy a model)
- Generally applicable algorithm to any problem where the goal is to identify the inliers which satisfy a predefined model.
- Typical applications in robotics are: line extraction from 2D range data, plane extraction from 3D range data, feature matching...

Segmentation

- RANSAC
- RANSAC is an iterative method and is nondeterministic in that the probability to find a set free of outliers increases as more iterations are used
- Drawback: A nondeterministic method, results are different between runs.

Segmentation

- RANSAC Example

Segmentation

- RANSAC Example

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Segmentation

- RANSAC Example

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Segmentation

- RANSAC Example

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Segmentation

- RANSAC Example

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Segmentation

- RANSAC Example

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Segmentation

- RANSAC Example

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Segmentation

- RANSAC Example

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Segmentation

- RANSAC Example

- Stop after k iterations and select model with the max number of inliers.

Outline - Mapping

1. Wall as Lines
2. Line Extraction
3. Segmentation

- Split and Merge
- Split and Merge - Fixed Endpoint
- RANSAC

2. Walls as Grid Cells
3. Evidence Grid
4. Log Likelihood

Walls as Grid Cells

- Evidence Grids
- AKA Occupancy Grids
- Workspace is discritized into grid cells
- Each grid cell is assigned a likelihood of occupation $p_{i j} \in[0,1]$

Walls as Grid Cells

1990

Walls as Grid Cells

45

www.frc.ri.cum/~hpm/talks/cevo.slides/seeqrid.html

Walls as Grid Cells

- Updating with a Sensor Model (example)
- For a maximum range R, there are B range values each with a corresponding signal strength s^{i}

$$
Z=[\underbrace{\beta S^{0} \underbrace{\beta}_{\substack{\text { Strength of returns } \\ \text { for increasing range }}} \ldots S^{B}]}_{\substack{\text { sonar } \\ \text { angle }}}
$$

Walls a Grid Cells

- Updating the Grid
- Using geometry, the corresponding grid cell for each each sonar sensor bin must be determined.
- Several bins could correspond with a single grid cell OR
- Several grid cells could correspond with a single bin

Walls as Grid Cells

- Using a Sensor Model
- Each signal strength s^{i} must correspond to a likelihood of a occupancy $P\left(c_{i j} \mid z\right)$ in the map
- We use a function $P\left(z \mid c_{i j}\right)$ that must be determined experimentally.

Walls a Grid Cells

- Updating the Grid
- How do we get $P\left(z_{t} \mid c_{i j}\right)$?
- Experiments...

Walls as Grid Cells

- Using a Sensor Model
- More sophisticated models are available for $P\left(z \mid c_{i j}\right)$

50

Walls a Grid Cells

- Updating the Grid

- Use Baye's rule to update each cell $c_{i j}$'s likelihood of occupancy for measurement z at time step t

$$
P\left(c_{i j, t}\right)=P\left(c_{i, t, t} \mid z_{t}\right)=\frac{P\left(z_{t} \mid c_{i j, t-}\right) P\left(c_{i, t-1}\right)}{P\left(z_{t}\right)}
$$

$P\left(c_{i j, t}\right)=$ probability cell ij is occupied at time t
$P\left(z_{t}\right)=$ probability of obtaining measurement Z at time t
$P\left(z_{t} \mid c_{i j, t-1}\right)=$ probability of Z given $o_{i j}$ from the sensor model

Walls a Grid Cells

- Updating the Grid
- Similarly

$$
P\left(-c_{i j, t} \mid z_{t}\right)=\frac{P\left(z_{t} \mid-c_{i j, t-1}\right) P\left(-c_{i j, t-1}\right)}{P\left(z_{t}\right)}
$$

Walls a Grid Cells

- Updating the Grid

- Now, the odds o of some fact A being true can be written as

$$
o(A)=P(A) / P(-A)
$$

- In our case

$$
\begin{aligned}
o\left(c_{i j, t} \mid z_{t}\right) \quad & =P\left(\left(c_{i j, t} \mid z_{t}\right) / P\left(-c_{i j, t} \mid z_{t}\right)\right. \\
& =\frac{P\left(z_{t} \mid c_{i j, t-1}\right) P\left(c_{i j, t-1}\right)}{P\left(z_{t} \mid-c_{i j, t-1}\right) P\left(-c_{i j, t-1}\right)} \\
= & o\left(z_{t} \mid c_{i j, t-1}\right) o\left(c_{i j, t-1}\right)
\end{aligned}
$$

Walls a Grid Cells

- Updating the Grid

- What if we take the log odds

$$
\log o\left(c_{i j, t} \mid z_{t}\right)=\log o\left(z_{t} \mid c_{i j, t-1}\right)+\log o\left(c_{i j, t-1}\right)
$$

- Characteristics
- The last term is equated to previous log odds of $\log o\left(c_{i j, t-1} \mid z_{t-1}\right)$
- No need for knowledge of $P(z)$
- Updates can be done with addition, not multiplication

Walls a Grid Cells

- Updating the Grid
- Properties of log odds

$$
\begin{aligned}
\gamma(p) & =\operatorname{logit}(p) \\
& =\log (p /(1-p)) \\
& =\log (p)-\log (1-p)
\end{aligned}
$$

- Most often the natural logarithm is used

$$
\gamma(p)=\ln (p)-\ln (1-p)
$$

Walls a Grid Cells

- Updating the Grid
- The logit() function

Walls a Grid Cells

- Updating the Grid
- The $\operatorname{logit}^{-1}()$ function

$$
\begin{aligned}
p(\gamma) & =\operatorname{logit}^{-1}(\gamma) \\
& =\exp (\gamma) /(1+\exp (\gamma))
\end{aligned}
$$

Walls as Grid Cells

- Application Example

58

