E190Q - Lecture 4 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2014

Control Structures Planning Based Control

Prior Knowledge

Operator Commands

Point Tracking

1. P Control

2. Linear Systems
3. Motion Control
4. Reachable Space

PControl

- Proportional Feedback Control - P Control
- Uses the error between the desired and measured state to determine the control signal.

P Control

- If $x_{\text {desired }}$ is the desired state, and x is the actual state, we define the error as:

$$
e=x_{\text {desired }}-x
$$

P Control

- The control signal u is calculated as

$$
u=K_{P} e
$$

where K_{P} is called the proportional gain.

P Control

- Example:
- Consider the orientation control of an autonomous helicopter. Assume the orientation is completely controlled by the rear rotor.

P Control

- Example cont':
- The control signal u is calculated as

$$
u=K_{P}\left(\theta_{\text {desired }}-\theta\right)
$$

- Notes:
- If $\theta_{\text {desired }}=\theta$, the control signal is 0 .
- If $\theta_{\text {desired }}<\theta$, the control signal is negative, resulting in an decrease in θ.
- If $\theta_{\text {desired }}>\theta$, the control signal is positive, resulting in an increase in θ.
- The magnitude of the increase/decrease depends on K_{p}

P Control

- Block Diagram:

$$
u=K_{P}\left(\theta_{\text {desired }}-\theta\right)
$$

P Control

- Time Domain Response of step response
- Step from $\theta_{\text {desired }}=0$ to $\theta_{\text {desired }}=1$.

P Control

- Time Domain Response:
- Step from $\theta_{\text {desired }}=0$ to $\theta_{\text {desired }}=8$.
- Different dynamics in this example... overshoot!

Step Response

Point Tracking

1. P Control
2. Linear Systems
3. Motion Control
4. Reachable Space

Linear Systems

- Recall that the forward kinematics are a linear differential equation.
- We will use this equation to help develop a motion controller for point tracking
- We start by observing how the state x behaves if it obeys the following equation:

$$
\dot{x}=d x / d t=a x
$$

Linear Systems

- It should be obvious that the solution to the equation

$$
\dot{x}=a x
$$

is

$$
x(t)=x_{0} \exp (a t)
$$

where
x_{0} is the initial state
14

Linear Systems

- To confirm this solution, substitute into the original equation:

$$
\begin{aligned}
\dot{x} & =a x \\
d\left[x_{0} \exp (a t)\right] / d t & =a\left[x_{0} \exp (a t)\right] \\
a x_{0} \exp (a t) & =a x_{0} \exp (a t)
\end{aligned}
$$

Linear Systems

- To view how the state x behaves over time, we can plot out $x=x_{0} \exp (a t)$, assuming a is positive:

Linear Systems

- If a is negative and we can plot out $x=x_{0} \exp (a t)$, we get much different results:

Linear Systems

- This exponential decay informs us that the state x decays to zero over time.
- We say this system is "STABLE".
- We use this property in control theory to drive states down to zero (e.g. if $e=x_{\text {desired }}-x$, drive e to 0).

Linear Systems

- The above example was a one dimensional linear system (i.e. single state x).
- Our system is a multi-dimensional system (i.e. 3 states x, y, θ).
- We need to describe the system with matrices:

$$
\dot{x}=A x
$$

where A is a matrix such that $A \in R^{n x n}$

Linear Systems

- The eigen values of A, represented by λ_{i}, are coefficients that satisfy the equation:

$$
A x_{i}=\lambda_{i} x_{i}
$$

for particular states called x_{i}, called the eigen vectors.

- A solution to the system can be written as the combination of eigen vectors:

$$
x(t)=x_{1} e^{\lambda_{1} t}+x_{2} e^{\lambda_{2} t}+\ldots+x_{n} e^{\lambda_{n} t}
$$

Linear Systems

- In this case, the system

$$
\dot{x}=A x
$$

is said to be stable if the eigen-values of A are less than 0 .

Linear Systems

- We solve for eigen values by noting:

$$
(A-\lambda I) x=0
$$

- For this to hold true,

$$
\operatorname{det}(A-\lambda I)=0
$$

Linear Systems

- Example:

$$
\begin{aligned}
A= & {\left[\begin{array}{ll}
3 & 6 \\
1 & 4
\end{array}\right] } \\
A-\lambda I & =\left[\begin{array}{cc}
3-\lambda & 6 \\
1 & 4-\lambda
\end{array}\right] \\
\operatorname{det}(A-\lambda I) & =(3-\lambda)(4-\lambda)-6 \\
& =\lambda^{2}-7 \lambda+6 \\
& =(\lambda-6)(\lambda-1)
\end{aligned}
$$

Therefore $\lambda_{1}=6, \lambda_{2}=1$

Linear Systems

- Summary:
- If our robot behaves like a system of the form $\dot{x}=A x$, where the eigen values of A are negative and x represents the difference between desired and actual states, the system will move to our desired state!

24

Point Tracking

1. P Control
2. Linear Systems
3. Motion Control
4. Reachable Space

Motion Control

- Goal is to follow a trajectory from an initial state to some desired goal location.
- Several approaches
- Could construct a global trajectory first, then track points on the trajectory locally

Motion Control

- If we define the error to be in the robot frame:

$$
e(t)=\left[\begin{array}{lll}
x & y & \theta
\end{array}\right]^{T}
$$

- Goal is to find gain matrix K such that control of $v(t)$ and $w(t)$ will drive the error $e(t)$ to zero.

$$
\left[\begin{array}{l}
v(t) \\
w(t)
\end{array}\right]=K e(t)
$$

Motion Control

- Recall our forward kinematics

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right)\binom{v}{w}
$$

Motion Control

- We use the coordinate transformation

$$
\begin{aligned}
\rho & =\sqrt{\Delta x^{2}+\Delta y^{2}} \\
\alpha & =-\theta+\operatorname{atan} 2(\Delta y, \Delta x) \\
\beta & =-\theta-\alpha
\end{aligned}
$$

Motion Control

- Now we define the problem as driving the robot to goal

$$
\left(\begin{array}{l}
\rho \\
\alpha \\
\beta
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Motion Control

- We know this will happen if the dynamics of the system obey

$$
\left(\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right)=A\left(\begin{array}{l}
\rho \\
\alpha \\
\beta
\end{array}\right)
$$

Where A is a 3×3 matrix with eigen values less than 0 .

Motion Control

- Using the coordinate transformation, calculate the new kinematics:

$\dot{\rho}=$ projection of v on ρ
$=-v \cos (\alpha)$

Motion Control

- Using the coordinate transformation, calculate the new kinematics:

$$
\begin{aligned}
\rho \dot{\beta} & =\text { projection of } v \text { perpendicular to } \rho \\
& =-v \sin (\alpha) \\
\dot{\beta} & =-v \sin (\alpha) / \rho
\end{aligned}
$$

Motion Control

- Using the coordinate transformation, calculate the new kinematics:

$$
\begin{aligned}
& \alpha=-\beta-\theta \\
& \dot{\alpha}=-\dot{\beta}-\dot{\theta} \\
& \dot{\alpha}=v \sin (\alpha) / \rho-w
\end{aligned}
$$

Motion Control

- In matrix from:

$$
\left(\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right)=\left(\begin{array}{lc}
-\cos \alpha & 0 \\
\sin \alpha / \rho & -1 \\
-\sin \alpha / \rho & 0
\end{array}\right)\left[\begin{array}{c}
v \\
w
\end{array}\right] \quad \text { for } \alpha \text { within }(-\pi / 2, \pi / 2]
$$

Motion Control

- Let's try the control law:

$$
v=k_{\rho} \rho \quad w=k_{\alpha} \alpha+k_{\beta} \beta
$$

- Note that this is a form of P control, and if ρ, α, β all go to zero, then v and w will go to zero.

Motion Control

- To analyze controller, substitute control law into kinematics and linearize:
- For small $x, \cos (x) \approx 1$ and $\sin (x) \approx x$
- This is in the form...

$$
\dot{x}=A x
$$

Motion Control

- Check for stability:
- Take the determinant of A and solving for eigen values leads to:

$$
\left(\lambda+k_{\rho}\right)\left(\lambda^{2}+\lambda\left(k_{\alpha}-k_{\rho}\right)-k_{\rho} k_{\beta}\right)=0
$$

- Thus the system will be stable if:

$$
k_{\rho}>0 \quad k_{\beta}<0 \quad k_{\alpha}-k_{\rho}>0
$$

Motion Control

- Testing this control law with many different start points:

Motion Control

- The derived control law works well if $\alpha \in$ [$-\pi / 2, \pi / 2$]
- For other cases where $a b s(\alpha)>\pi / 2$, we must modify the controller. So that the robot will move backwards to the desired position when required

Motion Control

- Backwards Example:

Motion Control

- Backwards Method:

$$
\begin{aligned}
\rho & =\sqrt{\Delta x^{2}+\Delta y^{2}} \\
\alpha & =-\theta+\operatorname{atan} 2(-\Delta y,-\Delta x) \\
\beta & =-\theta-\alpha
\end{aligned}
$$

Motion Control

- Backwards Method Summary:
- If $\alpha \in[-\pi / 2, \pi / 2]$
- Use regular transform to polar coordinates
- Use control law: $\quad v=k_{\rho} \rho \quad w=k_{\alpha} \alpha+k_{\beta} \beta$
- Else
- Redefine α as shown in backwards method
- Use control law: $\quad v=-k_{\rho} \rho \quad w=k_{\alpha} \alpha+k_{\beta} \beta$

Point Tracking

1. P Control
2. Linear Systems
3. Motion Control
4. Reachable Space

Reachable Space

- Kinematic Constraints
- One can calculate constraints on each individual wheel, then combine for constraints on entire robot.

Reachable Space

- Two main constraints:

1. Rolling Constraint: no slipping!
2. Sliding Constraint: no lateral movement!

Reachable Space

- Degrees of Freedom:
- Def' n: The number of coordinates that it takes to uniquely specify the state of a system.
- In 3D, there are 6 degrees of freedom associated to the movement of a rigid body: 3 for its position, and 3 for its

B J Stone, Univ. of Western Australia

Reachable Space

- Configurations in the Workspace
- A robot's workspace is defined by the Degrees Of Freedom of the robot state.
- Not all robot configurations within the workspace are reachable

Reachable Space

- NonHolonomic Robots
- A nonholonomic constraint is one that is not integrable.

Reachable Space

- Paths in the Workspace
- Path's in the workspace are limited, especially if the robot is nonholonomic

50

Reachable Space

- Trajectories in the Workspace
- A trajectory is a path parameterized by time.
- Admissible paths don't always lead to admissible trajectories.

