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E190Q – Lecture 3 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Spring 2014 

Figures courtesy of Siegwart & Nourbakhsh 
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Control Structures 
Planning Based Control 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 

!
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Motion Uncertainty 

1.  Odometry & Dead Reckoning 
2.  Modeling motion 
3.  Odometry on the Jaguar 
4.  Example System  
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Odometry & Dead Reckoning 

§  Odometry 
§  Use wheel sensors to update 

position 
§  Dead Reckoning 

§  Use wheel sensors and heading 
sensor to update position 

§  Straight forward to implement 
§  Errors are integrated, 

unbounded http://www.guiott.com 
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Odometry & Dead Reckoning 

§  Odometry Error Sources? 
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Odometry & Dead Reckoning 

§  Odometry Error Sources? 

§  Limited resolution during integration 
§  Unequal wheel diameter 
§  Variation in the contact point of the wheel  
§  Unequal floor contact and variable friction can lead to 

slipping 
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Odometry & Dead Reckoning 

§  Odometry Errors 
§  Deterministic errors can be eliminated through proper 

calibration 
§  Non-deterministic errors have to be described by 

error models and will always lead to uncertain position 
estimate. 
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Motion Uncertainty 

1.  Odometry & Dead Reckoning 
2.  Modeling motion 
3.  Odometry on the Jaguar 
4.  Example System  
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Modeling Motion 

§  If a robot starts from a position p, and the right and 
left wheels move respective distances Δsr and Δsl, 
what is the resulting new position p’ ? 
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Modeling Motion 

§  To start, let’s model the change in angle Δθ and 
distance travelled Δs by the robot. 
§  Assume the robot is travelling on a circular arc of 

constant radius. 

Δsr 

Δsl 
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Modeling Motion 

§  Begin by noting the following holds for circular arcs: 
   

 Δsl  = Rα   Δsr  = (R+2L)α      Δs = (R+L)α  
          

Δsr 

Δsl 

Δs 

R 

2L 
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Modeling Motion 

§  Now manipulate first two equations: 
   Δsl  = Rα  Δsr  = (R+2L)α 
 To: 
     Rα = Δsl  
     Lα = (Δsr  - Rα)/2  
         = Δsr /2  –  Δsl /2 
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Modeling Motion 

§   Substitute this into last equation for Δs:  

     Δs = (R+L)α      
          =  R α + Lα 
          =  Δsl + Δsr /2  –  Δsl /2 
          =  Δsl /2 + Δsr /2    

                    =  Δsl  + Δsr  
          2  
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Modeling Motion 

§  Or, note the distance the center travelled is simply 
the average distance of each wheel: 
    Δs = Δsr + Δsl  
         2 

Δsr 

Δsl 

Δs 
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Modeling Motion 

§  To calculate the change in angle Δθ, observe that it 
equals the rotation about the circular arc’s center point 

 

            Δθ = α      
     

Δs 

α 

α 
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Modeling Motion 

§   So we solve for α by equating α  from the first two 
equations:  
   Δsl  = Rα  Δsr  = (R+2L)α   
  

  This results in:       
           Δsl / R = Δsr / (R+2L) 
    (R+2L) Δsl = R Δsr 
           2L Δsl = R (Δsr - Δsl ) 
           2L Δsl = R  

         (Δsr - Δsl ) 
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Modeling Motion 

§   Substitute R into 
     α  = Δsl / R      
         = Δsl (Δsr - Δsl ) / (2L Δsl )  

            = (Δsr - Δsl ) 
        2L     

 
  So…   
              Δθ = (Δsr - Δsl ) 
        2L     
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Modeling Motion 

§  Now that we have Δθ and Δs, we can calculate 
the position change in global coordinates. 
§  We use a new segment of length Δd.  
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Modeling Motion 

§  Now calculate the change in position as a function of 
Δd.  

XI 

YI 
θ + Δθ 

Δd 

θ + Δθ/2 
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Modeling Motion 

§  Using Trig:  
   Δx = Δd cos(θ + Δθ/2) 
   Δy = Δd sin(θ + Δθ/2) 
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Modeling Motion 

§  Now if we assume that the motion is small, then we 
can assume that Δd ≈ Δs :  

§  So… 
   Δx = Δs cos(θ + Δθ/2) 
   Δy = Δs sin(θ + Δθ/2) 

θ + Δθ 

Δd 

Δs 
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Modeling Motion 

§  Summary: 
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Modeling Uncertainty in Motion 

§  Let’s look at delta terms as errors in wheel motion, and 
see how they propagate into positioning errors. 
§  Example: the robot is trying to move forward 1 m on the x axis.     

   If: 

      Δs = 1 + es  
     Δθ = 0 + eθ 
   

       where es and eθ are error terms 

 Δs 

Δθ 
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Modeling Uncertainty in Motion 

§  According to the following equations, the error es = 
0.001m produces errors in the direction of motion. 
   Δx = Δs cos(θ + Δθ/2) 
   Δy = Δs sin(θ + Δθ/2) 

 
§  However, the Δθ term affects each direction differently. 

If eθ = 2 deg and es = 0 meters, then: 
    cos(θ + Δθ/2) = 0.9998 
    sin(θ + Δθ/2) = 0.0175 
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Modeling Uncertainty in Motion 

§  So 
    Δx = 0.9998 
    Δy = 0.0175 

§  But the robot is supposed to go to x=1,y=0, so 
the errors in each direction are 
    Δx = +0.0002 
    Δy = -0.0175 

§  THE ERROR IS BIGGER IN THE “Y” 
DIRECTION! 
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Modeling Uncertainty in Motion 

§  Errors perpendicular to the direction grow much 
larger. 
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Modeling Uncertainty in Motion 

§  Error ellipse does not remain perpendicular to 
direction. 
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Motion Uncertainty 

1.  Odometry & Dead Reckoning 
2.  Modeling Uncertainty in motion 
3.  Odometry on the Jaguar 
4.  Example System  
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Odometry on the Jaguar 

§  Goals: 
§  Calculate the resulting robot position and orientation 

from wheel encoder measurements. 
§  Display them on the GUI. 
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Odometry on the Jaguar 

§  Method cont’: 
§  Make use of the fact that your encoder has resolution 

of 190 counts per revolution. Be able to convert this to 
a distance travelled by the wheel. 
      rϕr = Δsr  

§  Given the distance travelled by each wheel, we can 
calculate the change in the robot’s distance and 
orientation. 
   Δs = Δsr + Δsl   Δθ = (Δsr - Δsl ) 
       2       2L 
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Odometry on the Jaguar 

§  Method cont’: 
§  Now you should be able to update the position/

orientation in global coordinates. 
   Δx = Δs cos(θ + Δθ/2) 
   Δy = Δs sin(θ + Δθ/2) 
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Motion Uncertainty 

1.  Odometry & Dead Reckoning 
2.  Modeling Uncertainty in motion 
3.  Odometry on the Jaguar 
4.  Example System  



The VideoRay MicroROV 

§  ROV Specs 
§  Two horizontal thrusters, 

one vertical 
§  Forward facing color 

camera 
§  Rear facing B/W camera 
§  1.4 m/s (2.6 knots) speed 
§  152m depth rating 
§  Depth & Heading sensors 
§  SeaSprite Scanning Sonar 



The VideoRay MicroROV 

§  ROV Modeling 



Equations of Motion 

§  6 degrees of freedom (DOF): 
§  State vectors: 

body-fixed velocity vector: 
earth-fixed pos. vector: 

DOF Surge Sway Heave Roll Pitch Yaw 

Velocities u v w p q r 

Position & Attitude x y z φ	

 θ	

 ψ	



Forces & Moments X Y Z K M N 
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Equations of Motion 

§  Initial Assumptions 

§  The ROV will usually move with low velocity when on mission 
§  Almost three planes of symmetry; 
§  Vehicle is assumed to be performing non-coupled motions. 

[W. Wang et al., 2006] 



Equations of Motion 

§  Horizontal Plane: 

§  Vertical Plan: 
�

[W. Wang et al., 2006] 



Theory vs. Experiment 

§  Coefficients for the dynamic 
model are pre-calculated 
using strip theory;  

§  A series of tests are carried 
out to validate the 
hydrodynamic coefficients, 
including 
§  Propeller mapping 
§  Added mass coefficients 
§  Damping coefficients 



Propeller Thrust Mapping 

§  The forward thrust can be represented as: 



Direct Drag Forces 

§  The drag can be modeled as non linear 
functions 

Drag in Heave (Z) 
Direction 

Drag in Sway (Y) 
Direction 

Drag in Surge (X) 
Direction 



Perpendicular Drag Forces 

•  Heave (Z) drag from surge speed 



Model Verification 

§  Yaw Verification 



Model Verification 

§  Surge Verification 



Autonomous Control 


