

E190Q – Lecture 3 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2014

Figures courtesy of Siegwart & Nourbakhsh

Control Structures Planning Based Control

Motion Uncertainty

- 1. Odometry & Dead Reckoning
- 2. Modeling motion
- 3. Odometry on the Jaguar
- 4. Example System

- Odometry
 - Use wheel sensors to update position
- Dead Reckoning
 - Use wheel sensors and heading sensor to update position
- Straight forward to implement
- Errors are integrated, unbounded

http://www.guiott.com

• Odometry Error Sources?

- Odometry Error Sources?
 - Limited resolution during integration
 - Unequal wheel diameter
 - Variation in the contact point of the wheel
 - Unequal floor contact and variable friction can lead to slipping

- Odometry Errors
 - Deterministic errors can be eliminated through proper calibration
 - Non-deterministic errors have to be described by error models and will always lead to uncertain position estimate.

Motion Uncertainty

- 1. Odometry & Dead Reckoning
- 2. Modeling motion
- 3. Odometry on the Jaguar
- 4. Example System

• If a robot starts from a position p, and the right and left wheels move respective distances Δs_r and Δs_l , what is the resulting new position p'?

- To start, let's model the change in angle $\Delta \theta$ and distance travelled Δs by the robot.
 - Assume the robot is travelling on a circular arc of constant radius.

Begin by noting the following holds for circular arcs:

$$\Delta s_l = R\alpha$$
 $\Delta s_r = (R+2L)\alpha$ $\Delta s = (R+L)\alpha$

Now manipulate first two equations:

$$\Delta s_l = R\alpha$$
 $\Delta s_r = (R+2L)\alpha$
To:

$$R\alpha = \Delta s_l$$

$$L\alpha = (\Delta s_r - R\alpha)/2$$

$$= \Delta s_r/2 - \Delta s_l/2$$

• Substitute this into last equation for Δs :

$$\Delta s = (R+L)\alpha$$

= $R \alpha + L\alpha$
= $\Delta s_l + \Delta s_r/2 - \Delta s_l/2$
= $\Delta s_l/2 + \Delta s_r/2$
= $\Delta s_l + \Delta s_r/2$
= $\Delta s_l + \Delta s_r/2$

 Or, note the distance the center travelled is simply the average distance of each wheel:

• To calculate the change in angle $\Delta \theta$, observe that it equals the rotation about the circular arc's center point

• So we solve for α by equating α from the first two equations:

$$\Delta s_l = R\alpha \qquad \Delta s_r = (R+2L)\alpha$$

This results in:

$$\Delta s_l / R = \Delta s_r / (R + 2L)$$

$$(R + 2L) \Delta s_l = R \Delta s_r$$

$$2L \Delta s_l = R (\Delta s_r - \Delta s_l)$$

$$\frac{2L \Delta s_l}{(\Delta s_r - \Delta s_l)} = R$$

Substitute R into

$$\alpha = \Delta s_l / R$$

= $\Delta s_l (\Delta s_r - \Delta s_l) / (2L \Delta s_l)$
= $(\Delta s_r - \Delta s_l)$
 $2L$

So...

$$\Delta \theta = \frac{(\Delta s_r - \Delta s_l)}{2L}$$

- Now that we have $\Delta \theta$ and Δs_{j} we can calculate the position change in global coordinates.
 - We use a new segment of length Δd .

• Now calculate the change in position as a function of Δd .

Using Trig:

 $\Delta x = \Delta d \cos(\theta + \Delta \theta/2)$ $\Delta y = \Delta d \sin(\theta + \Delta \theta/2)$

• Now if we assume that the motion is small, then we can assume that $\Delta d \approx \Delta s$:

• Summary:

$$\Delta x = \Delta s \cos(\theta + \Delta \theta / 2)$$

$$\Delta y = \Delta s \sin(\theta + \Delta \theta / 2)$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{b}$$

$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

$$p' = f(x, y, \theta, \Delta s_r, \Delta s_l) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r - \Delta s_l}{b} \end{bmatrix}$$

- Let's look at delta terms as errors in wheel motion, and see how they propagate into positioning errors.
 - Example: the robot is trying to move forward 1 m on the x axis.

$$\Delta s = 1 + e_s$$
$$\Delta \theta = 0 + e_\theta$$

where e_s and e_{θ} are error terms

• According to the following equations, the error $e_s = 0.001$ m produces errors in the direction of motion.

$$\Delta x = \Delta s \cos(\theta + \Delta \theta/2)$$
$$\Delta y = \Delta s \sin(\theta + \Delta \theta/2)$$

• However, the $\Delta\theta$ term affects each direction differently. If $e_{\theta} = 2 \text{ deg and } e_s = 0 \text{ meters}$, then: $cos(\theta + \Delta\theta/2) = 0.9998$ $sin(\theta + \Delta\theta/2) = 0.0175$

So

$$\Delta x = 0.9998$$
$$\Delta y = 0.0175$$

 But the robot is supposed to go to x=1,y=0, so the errors in each direction are

$$\Delta x = +0.0002$$

$$\Delta y = -0.0175$$

 THE ERROR IS BIGGER IN THE "Y" DIRECTION!

 Errors perpendicular to the direction grow much larger.

 Error ellipse does not remain perpendicular to direction.

Motion Uncertainty

- 1. Odometry & Dead Reckoning
- 2. Modeling Uncertainty in motion
- 3. Odometry on the Jaguar
- 4. Example System

Odometry on the Jaguar

- Goals:
 - Calculate the resulting robot position and orientation from wheel encoder measurements.
 - Display them on the GUI.

Odometry on the Jaguar

- Method cont':
 - Make use of the fact that your encoder has resolution of 190 counts per revolution. Be able to convert this to a distance travelled by the wheel.

$$r\varphi_r = \Delta s_r$$

 Given the distance travelled by each wheel, we can calculate the change in the robot's distance and orientation.

$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2} \qquad \qquad \Delta \theta = (\Delta s_r - \Delta s_l) \\ \frac{\Delta \theta}{2L}$$

Odometry on the Jaguar

- Method cont':
 - Now you should be able to update the position/ orientation in global coordinates.

$$\Delta x = \Delta s \cos(\theta + \Delta \theta/2)$$
$$\Delta y = \Delta s \sin(\theta + \Delta \theta/2)$$

Motion Uncertainty

- 1. Odometry & Dead Reckoning
- 2. Modeling Uncertainty in motion
- 3. Odometry on the Jaguar

4. Example System

The VideoRay MicroROV

ROV Specs

- Two horizontal thrusters, one vertical
- Forward facing color camera
- Rear facing B/W camera
- 1.4 m/s (2.6 knots) speed
- 152m depth rating
- Depth & Heading sensors
- SeaSprite Scanning Sonar

The VideoRay MicroROV

ROV Modeling

$$\begin{split} m[\dot{u} - vr + wq - x_G(q^2 + r^2) + y_G(pq - \dot{r}) + z_G(pr + \dot{q})] &= X \\ m[\dot{v} - wp + ur - y_G(r^2 + p^2) + z_G(qr - \dot{p}) + x_G(qp + \dot{r})] &= Y \\ m[\dot{w} - uq + vp - z_G(p^2 + q^2) + x_G(rp - \dot{q}) + y_G(rq + \dot{p})] &= Z \\ I_x \dot{p} + (I_z - I_y)qr - (\dot{r} + pq)I_{xz} + (r^2 - q^2)I_{yz} + (pr - \dot{q})I_{xy} \\ &+ m[y_G(\dot{w} - uq + vp) - z_G(\dot{v} - wp + ur)] &= K \\ I_y \dot{q} + (I_x - I_z)rp - (\dot{p} + qr)I_{xy} + (p^2 - r^2)I_{zx} + (qp - \dot{r})I_{yz} \\ &+ m[z_G(\dot{u} - vr + wq) - x_G(\dot{w} - uq + vp)] &= M \\ I_z \dot{r} + (I_y - I_x)pq - (\dot{q} + rp)I_{yz} + (q^2 - p^2)I_{xy} + (rq - \dot{p})I_{zx} \\ &+ m[x_G(\dot{v} - wp + ur) - y_G(\dot{u} - vr + wq)] &= N \end{split}$$

Equations of Motion

- 6 degrees of freedom (DOF):
- State vectors: body-fixed velocity vector: earth-fixed pos. vector:

$$\boldsymbol{\nu} = \begin{bmatrix} \boldsymbol{\nu}_1^T, \boldsymbol{\nu}_2^T \end{bmatrix}^T = \begin{bmatrix} u, v, w, p, q, r \end{bmatrix}^T$$
$$\boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\eta}_1^T, \boldsymbol{\eta}_1^T \end{bmatrix}^T = \begin{bmatrix} x, y, z, \phi, \theta, \psi \end{bmatrix}^T$$

DOF	Surge	Sway	Heave	Roll	Pitch	Yaw
Velocities	и	v	W	р	q	r
Position & Attitude	x	У	Z	ϕ	θ	ψ
Forces & Moments	X	Y	Ζ	K	М	N

Equations of Motion

Initial Assumptions

- The ROV will usually move with low velocity when on mission
- Almost three planes of symmetry;
- Vehicle is assumed to be performing non-coupled motions.

[W. Wang et al., 2006]

Equations of Motion

Horizontal Plane:

$$\begin{split} m_{11}\dot{u} &= -m_{22}vr + X_{u}u + X_{u|u|}u|u| + X\\ m_{22}\dot{v} &= m_{11}ur + Y_{v}v + Y_{v|v|}v|v|,\\ I\dot{r} &= N_{r}r + N_{r|r|}r|r| + N, \end{split}$$

Vertical Plan:

$$m_{33}\dot{w} = Z_w w + Z_{w|w|} w|w| + Z$$

[W. Wang et al., 2006]

Theory vs. Experiment

- Coefficients for the dynamic model are pre-calculated using strip theory;
- A series of tests are carried out to validate the hydrodynamic coefficients, including
 - Propeller mapping
 - Added mass coefficients
 - Damping coefficients

Propeller Thrust Mapping

The forward thrust can be represented as:

Direct Drag Forces

 The drag can be modeled as non linear functions

Perpendicular Drag Forces

Heave (Z) drag from surge speed

Model Verification

Yaw Verification

Model Verification

Surge Verification

Autonomous Control

