E190Q - Lecture 3 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2014

Control Structures Planning Based Control

Prior Knowledge
Operator Commands

Motion Uncertainty

1. Odometry \& Dead Reckoning
2. Modeling motion
3. Odometry on the Jaguar
4. Example System

Odometry \& Dead Reckoning

- Odometry
- Use wheel sensors to update position
- Dead Reckoning
- Use wheel sensors and heading sensor to update position
- Straight forward to implement
- Errors are integrated, unbounded

Odometry \& Dead Reckoning

- Odometry Error Sources?

Odometry \& Dead Reckoning

- Odometry Error Sources?
- Limited resolution during integration
- Unequal wheel diameter
- Variation in the contact point of the wheel
- Unequal floor contact and variable friction can lead to slipping

Odometry \& Dead Reckoning

- Odometry Errors
- Deterministic errors can be eliminated through proper calibration
- Non-deterministic errors have to be described by error models and will always lead to uncertain position estimate.

Motion Uncertainty

1. Odometry \& Dead Reckoning
2. Modeling motion
3. Odometry on the Jaguar
4. Example System

Modeling Motion

- If a robot starts from a position p, and the right and left wheels move respective distances Δs_{r} and Δs_{l}, what is the resulting new position p^{\prime} ?

Modeling Motion

- To start, let's model the change in angle $\Delta \theta$ and distance travelled Δs by the robot.
- Assume the robot is travelling on a circular arc of constant radius.

Modeling Motion

- Begin by noting the following holds for circular arcs:

$$
\Delta s_{l}=R \alpha
$$

$$
\Delta s_{r}=(R+2 L) \alpha \quad \Delta s=(R+L) \alpha
$$

Modeling Motion

- Now manipulate first two equations:

$$
\Delta s_{l}=R \alpha \quad \Delta s_{r}=(R+2 L) \alpha
$$

To:

$$
\begin{aligned}
R \alpha & =\Delta s_{l} \\
L \alpha & =\left(\Delta s_{r}-R \alpha\right) / 2 \\
& =\Delta s_{r} / 2-\Delta s_{l} / 2
\end{aligned}
$$

Modeling Motion

- Substitute this into last equation for Δs :

$$
\begin{aligned}
\Delta s & =(R+L) \alpha \\
& =R \alpha+L \alpha \\
& =\Delta s_{l}+\Delta s_{r} / 2-\Delta s_{l} / 2 \\
& =\Delta s_{l} / 2+\Delta s_{r} / 2 \\
& =\frac{\Delta s_{l}+\Delta s_{r}}{2}
\end{aligned}
$$

Modeling Motion

- Or, note the distance the center travelled is simply the average distance of each wheel:

$$
\Delta s=\frac{\Delta s_{r}+\Delta s_{l}}{2}
$$

Modeling Motion

- To calculate the change in angle $\Delta \theta$, observe that it equals the rotation about the circular arc's center point

15

Modeling Motion

- So we solve for α by equating α from the first two equations:

$$
\Delta s_{l}=R \alpha \quad \Delta s_{r}=(R+2 L) \alpha
$$

This results in:

$$
\begin{aligned}
& \Delta s_{l} / R=\Delta s_{r} /(R+2 L) \\
&(R+2 L) \Delta s_{l}=R \Delta s_{r} \\
& 2 L \Delta s_{l}=R\left(\Delta s_{r}-\Delta s_{l}\right) \\
& \frac{2 L \Delta s_{l}}{}= R \\
&\left(\Delta s_{r}-\Delta s_{l}\right)
\end{aligned}
$$

Modeling Motion

- Substitute R into

$$
\begin{aligned}
\alpha & =\Delta s_{l} / R \\
& =\Delta s_{l}\left(\Delta s_{r}-\Delta s_{l}\right) /\left(2 L \Delta s_{l}\right) \\
& =\frac{\left(\Delta s_{r}-\Delta s_{l}\right)}{2 L}
\end{aligned}
$$

So...

$$
\Delta \theta=\frac{\left(\Delta s_{r}-\Delta s_{l}\right)}{2 L}
$$

Modeling Motion

- Now that we have $\Delta \theta$ and Δs, we can calculate the position change in global coordinates.
- We use a new segment of length Δd.

Modeling Motion

- Now calculate the change in position as a function of Δd.

Modeling Motion

- Using Trig:

$$
\begin{aligned}
& \Delta x=\Delta d \cos (\theta+\Delta \theta / 2) \\
& \Delta y=\Delta d \sin (\theta+\Delta \theta / 2)
\end{aligned}
$$

Modeling Motion

- Now if we assume that the motion is small, then we can assume that $\Delta d \approx \Delta s$:
- So...

$$
\begin{aligned}
& \Delta x=\Delta s \cos (\theta+\Delta \theta / 2) \\
& \Delta y=\Delta s \sin (\theta+\Delta \theta / 2)
\end{aligned}
$$

Modeling Motion

- Summary:

$$
\Delta x=\Delta s \cos (\theta+\Delta \theta / 2)
$$

$$
\Delta y=\Delta s \sin (\theta+\Delta \theta / 2)
$$

$$
\Delta \theta=\frac{\Delta s_{r}-\Delta s_{l}}{b}
$$

$$
\Delta s=\frac{\Delta s_{r}+\Delta s_{l}}{2}
$$

$\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]+\left[\begin{array}{c}\frac{\Delta s_{r}+\Delta s_{l}}{2} \cos \left(\theta+\frac{\Delta s_{r}-\Delta s_{l}}{2 b}\right) \\ \frac{\Delta s_{r}+\Delta s_{l}}{2} \sin \left(\theta+\frac{\Delta s_{r}-\Delta s_{l}}{2 b}\right) \\ \frac{\Delta s_{r}-\Delta s_{l}}{b}\end{array}\right]$

Modeling Uncertainty in Motion

- Let's look at delta terms as errors in wheel motion, and see how they propagate into positioning errors.
- Example: the robot is trying to move forward 1 m on the x axis.

$$
\begin{aligned}
& \Delta s=1+e_{s} \\
& \Delta \theta=0+e_{\theta}
\end{aligned}
$$

where e_{s} and e_{θ} are error terms

23

Modeling Uncertainty in Motion

- According to the following equations, the error $e_{s}=$ 0.001 m produces errors in the direction of motion.

$$
\begin{aligned}
& \Delta x=\Delta s \cos (\theta+\Delta \theta / 2) \\
& \Delta y=\Delta s \sin (\theta+\Delta \theta / 2)
\end{aligned}
$$

- However, the $\Delta \theta$ term affects each direction differently. If $e_{\theta}=2$ deg and $e_{s}=0$ meters, then:

$$
\begin{aligned}
& \cos (\theta+\Delta \theta / 2)=0.9998 \\
& \sin (\theta+\Delta \theta / 2)=0.0175
\end{aligned}
$$

Modeling Uncertainty in Motion

- So

$$
\begin{aligned}
& \Delta x=0.9998 \\
& \Delta y=0.0175
\end{aligned}
$$

- But the robot is supposed to go to $x=1, y=0$, so the errors in each direction are

$$
\begin{aligned}
& \Delta x=+0.0002 \\
& \Delta y=-0.0175
\end{aligned}
$$

- THE ERROR IS BIGGER IN THE " Y " DIRECTION!

Modeling Uncertainty in Motion

- Errors perpendicular to the direction grow much larger.

Modeling Uncertainty in Motion

- Error ellipse does not remain perpendicular to direction.

27

Motion Uncertainty

1. Odometry \& Dead Reckoning
2. Modeling Uncertainty in motion
3. Odometry on the Jaguar
4. Example System

Odometry on the Jaguar

- Goals:
- Calculate the resulting robot position and orientation from wheel encoder measurements.
- Display them on the GUI.

Odometry on the Jaguar

- Method cont':
- Make use of the fact that your encoder has resolution of 190 counts per revolution. Be able to convert this to a distance travelled by the wheel.

$$
r \varphi_{r}=\Delta s_{r}
$$

- Given the distance travelled by each wheel, we can calculate the change in the robot's distance and orientation.

$$
\Delta s=\frac{\Delta s_{r}+\Delta s_{l}}{2} \quad \Delta \theta=\frac{\left(\Delta s_{r}-\Delta s_{l}\right)}{2 L}
$$

Odometry on the Jaguar

- Method cont':
- Now you should be able to update the position/ orientation in global coordinates.

$$
\begin{aligned}
& \Delta x=\Delta s \cos (\theta+\Delta \theta / 2) \\
& \Delta y=\Delta s \sin (\theta+\Delta \theta / 2)
\end{aligned}
$$

Motion Uncertainty

1. Odometry \& Dead Reckoning
2. Modeling Uncertainty in motion
3. Odometry on the Jaguar
4. Example System

The VideoRay MicroROV

ROV Specs

- Two horizontal thrusters, one vertical
- Forward facing color camera
- Rear facing B/W camera
- 1.4 m/s (2.6 knots) speed
- 152m depth rating

- Depth \& Heading sensors
- SeaSprite Scanning Sonar

The VideoRay MicroROV

ROV Modeling

$$
\begin{aligned}
m\left[\dot{u}-v r+w q-x_{G}\left(q^{2}+r^{2}\right)+y_{G}(p q-\dot{r})+z_{G}(p r+\dot{q})\right] & =X \\
m\left[\dot{v}-w p+u r-y_{G}\left(r^{2}+p^{2}\right)+z_{G}(q r-\dot{p})+x_{G}(q p+\dot{r})\right] & =Y \\
m\left[\dot{w}-u q+v p-z_{G}\left(p^{2}+q^{2}\right)+x_{G}(r p-\dot{q})+y_{G}(r q+\dot{p})\right] & =Z \\
I_{x} \dot{p}+\left(I_{z}-I_{y}\right) q r-(\dot{r}+p q) I_{x z}+\left(r^{2}-q^{2}\right) I_{y z}+(p r-\dot{q}) I_{x y} & \\
+m\left[y_{G}(\dot{w}-u q+v p)-z_{G}(\dot{v}-w p+u r)\right] & =K \\
I_{y} \dot{q}+\left(I_{x}-I_{z}\right) r p-(\dot{p}+q r) I_{x y}+\left(p^{2}-r^{2}\right) I_{z x}+(q p-\dot{r}) I_{y z} & \\
+m\left[z_{G}(\dot{u}-v r+w q)-x_{G}(\dot{w}-u q+v p)\right] & =M \\
I_{z} \dot{r}+\left(I_{y}-I_{x}\right) p q-(\dot{q}+r p) I_{y z}+\left(q^{2}-p^{2}\right) I_{x y}+(r q-\dot{p}) I_{z x} & \\
+m\left[x_{G}(\dot{v}-w p+u r)-y_{G}(\dot{u}-v r+w q)\right] & =N
\end{aligned}
$$

Equations of Motion

- 6 degrees of freedom (DOF):
- State vectors: body-fixed velocity vector: earth-fixed pos. vector:

$$
\begin{aligned}
& \boldsymbol{v}=\left[\boldsymbol{v}_{1}^{T}, \boldsymbol{v}_{2}^{T}\right]^{T}=[u, v, w, p, q, r]^{T} \\
& \eta=\left[\eta_{1}^{T}, \boldsymbol{\eta}_{1}^{T}\right]^{T}=[x, y, z, \boldsymbol{\phi}, \boldsymbol{\theta}, \psi]^{T}
\end{aligned}
$$

DOF	Surge	Sway	Heave	Roll	Pitch	Yaw
Velocities	u	v	w	p	q	r
Position \& Attitude	x	y	z	ϕ	θ	ψ
Forces \& Moments	X	Y	Z	K	M	N

Equations of Motion

Initial Assumptions

- The ROV will usually move with low velocity when on mission
- Almost three planes of symmetry;
- Vehicle is assumed to be performing non-coupled motions.

Equations of Motion

- Horizontal Plane:

$$
\begin{aligned}
m_{11} \dot{u} & =-m_{22} v r+X_{u} u+X_{u|u|} u|u|+X \\
m_{22} \dot{v} & =m_{11} u r+Y_{v} v+Y_{v|v|} v|v| \\
I \dot{r} & =N_{r} r+N_{r|r|} r|r|+N
\end{aligned}
$$

- Vertical Plan:

$$
m_{33} \dot{w}=Z_{w} w+Z_{w|w|} w|w|+Z
$$

Theory vs. Experiment

- Coefficients for the dynamic model are pre-calculated using strip theory;

- A series of tests are carried out to validate the hydrodynamic coefficients, including
- Propeller mapping
- Added mass coefficients
- Damping coefficients

Propeller Thrust Mapping

- The forward thrust can be represented as:

Direct Drag Forces

- The drag can be modeled as non linear functions

Drag in Heave (Z) Direction

Drag in Sway (Y)
Direction

Drag in Surge (X)
Direction

Perpendicular Drag Forces

- Heave (Z) drag from surge speed

Model Verification

- Yaw Verification

Model Verification

- Surge Verification

Autonomous Control

