

E190Q - Lecture 1 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2014

Figures courtesy of Siegwart & Nourbakhsh

Introduction

- Education
 - B.Sc.Eng Engineering Phyics, Queen's University
 - M.A.Sc. Mechanical Engineering, University of Toronto
 - Ph.D. Aeronautics & Astronautics / Computer Sci, Stanford University
- Industrial Work
 - Control Systems Designer Sterner Engineering
 - Software Architect Kiva Systems
- Academic Appointments
 - Assistant Prof University of Waterloo
 - Associate Prof Cal Poly
 - Visiting Prof Princeton

MSc – Neural Network Manipulator Control, 1998

PhD - Multi-Robot Systems, 2004

Kiva Systems, 2005

- An introduction to mobile robots and current approaches to robot autonomy.
- Topics include:
 - Mobile robot systems and modeling
 - Control structures
 - Sensors & Estimation
 - Localization and Mapping
 - Motion planning

- This course will consider the design and programming of robots using existing technology (i.e. off-the-shelf materials).
- This course will provide a broad overview of all components related to mobile robots with an emphasis is on robot autonomy.

Key Question

Where am I?

Key Answer

Use Probability!

Required Text:

 "An Introduction to Autonomous Robots", <u>Roland Siegwart</u> and <u>Illah R. Nourbakhsh</u>, MIT Press, 2004

- Recommended Texts:
 - "Behavior-Based Robotics", Ronald C. Arkin, MIT Press, 1998
 - "Principles of Robot Motion", Choset et. Al., MIT Press, 2005

- Recommended Background:
 - Programming skills
 - Knowledge of microprocessors
 - Linear algebra
 - Control systems
 - Algorithms
 - C#

The Dr. Robot Jaguar Lite

Class Format

- Lecture
 - Sprague / Shan 2425
 - 2.5 hours theory & experiments
- Lab
 - Sprague
 - 3 hours experiments

Grading

- 30% Midterm Exam
- 25% Competition
- 45% Experiments
 - Demonstrations
 - Lab Reports

Robot Competition

Two years ago ...

</E>

Robot Competition

• This year ...

Administrative Info.

Web site

http://www.hmc.edu/lair/E190Q/

Administrative Info.

- Instructor:
 - email:
 - Office Phone:
 - Office Location:
 - Office Hours:

Chris Clark clark@hmc.edu 909-607-8856 Parsons 2376 By Appointment

Navigation and Control

- 1. Course Objective
- 2. Example Systems
- 3. Approaches To Control
- 4. Navigation Example

Course Objective

- Provide robots with the ability to accomplish tasks autonomously.
- Autonomously?
 - Different levels dependant on application

Robot Navigation

- For autonomous behavior, mobile robots need the ability to navigate:
 - Learn the environment-> "Model"
 - Estimate where it is in the environment-> "Localize"
 - Move to desired locations in the environment

Navigation Problem

- Environment
 Characteristics
 - Structured vs.
 Unstructured
 - Known vs. Unknown
 - Static vs. Dynamic

David Anderson www.smu.edu

 Most systems are tailored to the problem characteristics.

Navigation and Control

- 1. Course Objective
- 2. Example Systems
- 3. Approaches To Control
- 4. Navigation Example

Historical Examples

The Tortoise (Walter, 1950)

Courtesy of Hans Moravec

Historical Examples

Shakey (SRI 1969)

Stanford Research Institute

Historical Examples

Stanford Cart (Moravec, 1977)

Courtesy of Hans Moravec

Planetary Exploration

Image of jpl's mars rover

Submersible ROV: Remotely Operated Vehicle

MBARI's ROV Ventana

Legged Robots

Security Robots

Frontline Robotics

Security Robots

AGVs: Autonomic Guided Vehicles

Multi-Robot Systems

Kiva Systems

UAVs: Unmanned Aerial Vehicles

AUV "Big Blue" from Advanced Ceramics Research, Inc.

Competitions

Navigation and Control

- 1. Course Objective
- 2. Example Systems
- 3. Approaches To Control
- 4. Navigation Example

Approaches to Control

Approaches to Control

- 1. Planning Based Control
 - Traditional methods born out of AI (1960's +)
- 2. Reactive (i.e. Behavior) Based Control
 - More recent (mid to late 1980's)
- 3. Mixture of Planning and Reactive
 - Today

- Through perception and sensors fusion, a model of the "real" world is captured in memory.
- A goal is given and a plan is generated, assuming the "real" world is not changing.
- Then, the plan is executed, one operation at a time.

- Example:
 - A robot is equipped with a camera and two arms to perform an assembly task, to put part A into part B

Sense

Obtain camera images

Fuse Measurements

 Process images and estimate positions of A and B

Plan:

- move left arm to A;
- move right arm to B;
- grab A; grab B;
- move left and right arm closer;
- assemble

- The camera sees is a world of "pixels".
 - What is "interesting" in the "real" world?
 - At what level of details should we represent the "real" world?
 - What if during plan execution, the "real" world changes?

Planning-based navigation architecture

- Perception, modeling and planning are computationally intensive.
- Model of the "real" world must be at all times accurate.
- Good for static world.

control.ee.ethz.ch

 Actions are connected to precepts via behaviors.

- **No model**: The real world is our model.
- A robot reacts to changes and exhibits complex behaviors

- A robot is equipped with many simple behaviors.
- Each behavior defines its own sensor data and actions.
- Interactions among the behaviors are resolved by coordination.
- These behaviors are concurrent and independent
- They **react** to changes instantly.

- Example:
 - A simple roaming mobile robot is equipped with the following behaviors:

- Different behaviors may share same sensors and/or actuators.
- Competitive or cooperative actions are handled by careful coordination.
- Behaviors may be added or deleted incrementally.

Subsumption Architecture

- Subsumption Architecture
 - Behavioral coordination can be based on a fixed priority of suppression.

Motion Control

Software: Low-Level Control (e.g. PID)

Hardware: Motors, legs, wheels

Perception

SICK

Hardware: Sensors

Software: Filtering raw data

Localization

Hardware: Processors

Software: Modeling and Mapping

Cognition

Hardware: Processors

Software: Planning Algorithms

Navigation and Control

- 1. Course Objective
- 2. Example Systems
- 3. Approaches To Control

4. Navigation Example

Example System 1: Minerva

Courtesy of Sebastian Thrun