
E 190Q – Autonomous Robot Navigation

Lab 1

Introduction to the Jaguar Lite Robot

INTRODUCTION
The purpose of this lab is to introduce students to the Jaguar Lite Autonomous Vehicle
platform and the associated C# base code that will be programmed within Microsoft
Visual Studio (MVS). By the end of the lab, students should understand the system
architecture, and how to program the robots to conduct future lab experiments. This lab
should be done in pairs.

BACKGROUND
The Jaguar uses a host computer to command and control the robot. Command signals
are accepted from a host computer application then sent over wireless communication
to an embedded microcontroller on the robot. Sensor signals are sent from the
embedded microcontroller back through the wireless communication to the host
computer application. See Figure 1 below.

Figure 1: System Architecture

In this course, we will only be concerned with programming the C# Application on the
host computer. The communication modules, embedded microprocessor, actuators and
sensors will not be reprogrammed or reconfigured.

For detailed description of the Jaguar Lite, see the manual that can be downloaded from
the course website’s lab page.

HOST COMPUTER

C#
Application

Communication
Module
Application

ROBOT

Embedded
Microprocessor

Communication
Module
Application

Commands

Sensors
Measurements

User
Inputs

Display

Actuators

Sensors

EXPERIMENTS

1. Locate the parts
Familiarize yourself with the robot. Be careful when lifting the robot off the ground.
Find the following components:

§ Laser Range Finder
§ Head Lights
§ GPS/IMU
§ Handle Bar
§ Video camera
§ Recharging sockets
§ Wireless Ethernet antenna
§ Power switch

Turn the robot on.

Figure 2: Jaguar Lite Components.

2. Setup the Wireless Connection
To make a wireless communication connection with the robot, you must first
establish a connection between your host PC and the wireless router in the robot.
Each robot has a different wireless router, so make sure you connect to the correct
router, (i.e. robot).

a. Set the Host PC’s IP Address – Open the Network and Sharing Center by

clicking on the wireless icon of the bottom right section of the windows tray. Then
select Change Adapter Settings. Double click on the Wireless Connection
Settings (Fig. 2b). Select Properties (Fig 2c). Then double click the Internet
Protocol Version 4 (TCP/IPv4) connection, (Fig. 2d). Now, set the IP address of
the PC to be 192.168.0. XXX, (Fig. 2e). Note, XXX can be anything but the

addresses already used by the robot’s router. See Table 1 for a list of robot
router IPs not available for your host PC. Be sure to set your subnet mask to
255.255.255.0.

 (a) (b)

	 	 	 	 	 	
(c) (d) (e)

Figure 2: Setting the Host PC IP address

b. Connect to the Robot Router - Left-click on the wireless connection icon
located on the bottom right corner of you system tray, (see Fig. 3a). Disconnect
from CLAREMONT-WPA, CINE, etc. if your computer is connected to it.

	 	 	 	 	
(a) (b)

Figure 3: Connecting to the wireless router

Select the robot’s router SSID that is specific to your robot as indicated in Table
1, by double-clicking the SSID. Each robot has its own router and you must
select the one corresponding to your robot (see table below). Enter the routers
Web key: drrobotdrrobot. Note you will not be able to get internet access and be
connected to the robot simultaneously. The internet needs the Host PC IP to be
automatically configured with DHCP, while connecting to the robot requires the
Host PC IP to be hardcoded as indicated below.

.

Robot Gateway
Robot ID

Robot Router IP Robot Motion
Board IP

Host PC IP Router
SSID

Lopez DrRobot 192.168.0.245 192.168.0.60 192.168.0.XXX DrJaguar
Yogi DrRobot 192.168.0.244 192.168.0.70 192.168.0.XXX DrJaguarY
Zed DrRobot 192.168.0.243 192.168.0.60 192.168.0.XXX DrJaguarZ

Alice DrRobot 192.168.0.242 192.168.0.90 192.168.0.XXX DrJaguarA

Table 1: Network Configuration

c. Setting the Robot IP address – On your computer, you must set the IP

addresses for your robots various components. The easiest way to do this is
double clicking the Jaguar Control icon. This will launch the Robot Login window,
(see Fig. 4). You must modify the 1st digit on the 4th number of each of the three
IP addresses. This digit is specific to your robot, (see table 1 Robot Motion Board
IP column). Once you select “Connect Robot” your settings will be saved to a text
file and you won’t have to run this program again unless you switch robots.

Note, once you finish your IP changes, the rest of the Jaguar Control program
will be launched. You can explore the program, but you won’t be needing it for
class.

Figure 4: Changing IP addresses for each robot with the Robot Login utility. The blue

arrows point to the three digits that are specific to the robot.

d. Setup WiRobot GateWay – There is a utility program created by Dr. Robot that
enables the code we write to connect (through the wireless connection) with the
robot hardware. This utility program, called the WiRobot Gateway, must be run
for the robot to work. To run this program, double-click on the WiRobotGateWay
shortcut located on your desktop. A window should pop up that looks like:

	 	 	 	 	
(a) (b)

Figure 5: WiFi gateway utility window. No connection has been made in (a), but a
successful connection has been made in (b).

If the connection is made, the WiFi gateway window will minimize itself. You can
double check that the connection is made by selecting it from the windows tray at
the bottom. Make sure there is a green check on the power switch icon (see Figure
3b).

Ensure that the Robot ID is set to “DrRobot” as shown in Fig. 5. Note ALL robots in
class have this same Robot ID regardless of IP. This will map your C# code to the
hardware. If you want to use a different name other than DrRobot, you must also
change this in your C# code.

Ensure the Wi-Fi Connection IP of the robot’s main controller is set to 192.168.0.XX,
where XX is dependent on your robot (see Table 1). Note, all other IPs for that robot
should have the same first digit in the last field of the IP. For example, if the robot
motion board IP is 192.168.0.60, then the vision board should be 192.168.0.61.
Likewise, if the robot motion board IP is 192.168.0.70, then the vision board should
be 192.168.0.71. Enter the Port as “10001” as shown in Fig. 4.

Lucky for you, the instructor has written the C# base code so that it will immediately
run the WiRobot Gateway utility upon application startup. The appropriate settings
are saved in a file so you can enter them if you change robots. The settings are
located in the file “C:\Dr RobotAppFile\OutdoorRobotConfig.xml.

3. Locate the code
In this class, we will not be touching the embedded code on the robot’s
microprocessor. Instead, we will program everything on the host PC. There is a C#
code base that will run on the PC, using the WiFi connection to get closed loop
control of the robot.

First, let’s get the code base on to the PC. From the website lab page, download the
zipped folder “E190Q-Lab01-BaseCode.zip” and extract it to your Desktop. You may
want to rename the extracted folder “E190Q-Lab01-BaseCode_X”, where X is your
group name. There may be several groups using this same computer.

Open the folder and double click on the file “JaguarControl.sln”. A visual studio
window should open, with the base code solution, (see Fig. 6).

Figure 6: Jaguar Control Solution opened in Microsoft Visual Studio

Now you can use the list of files in the Solution Explorer (left or right pane) to
navigate the code. You can right-click a file and select “View Code” to open them for
viewing or editing. Make sure you can find the files listed below which you will edit in
subsequent steps of this lab.

§ JaguarCtrl.cs
§ Navigation.cs

Figure 7: Overview of Class structure.

The overall code architecture is shown in Fig. 7. Note that the application file is
Program, which instantiates a dialogue window: JaguarCtrl. Within JaguarCtrl, an
instantiation of Navigation is created. This is where most of the programming is done
for localization and control of the robot.

The DrRobotRobotConnection class is used to call the WiRobotGateWay utility
application interface with the real robot through WiFi. The LaserScan and
IMUGPSComm classes are used to access the respective sensors.

4. Build and Run
From the Build drop down menu on Visual Studio, select Build Solution. From the
Debugging drop down menu, select Start Debugging. A dialog box should appear as
shown in Fig. 8.

Orient yourself with the GUI. The left panel displays a 2D top down view of the robot
within a Cartesian coordinate frame. The track bars allow forward/reverse actuation,
and CW or CCW rotation actuation. Various sensor measurements are displayed.
The bottom right panels have control buttons and settings.

Of importance is the Hardware Mode check box. This allows users to switch
between control of a simulated robot agent, or the actual robot itself. Students
should conduct all debugging in Simulator mode.

JaguarCtrl

Program

DrRobotRobot
Connection

Navigation LaserScan IMUGPSComm

Figure 8: Jaguar Control Dialogue Window

5. Control the Robot Manually
Beach the robot on something so that it cannot move when the motors are actuated.
Select the Hardware Mode check box. Experiment with the Track bars and Stop
buttons.

Repeat using the Simulator. Note at this point the robot will not move around in your
display, we will code that up in the next lab!

6. Reverse directions of robot Motion
In this part of the lab, you will edit the JaguarCtrl.cs file to make the motion control
buttons work in reverse. The purpose of this step is to get acquainted with the code
in two ways:

§ Where command functions from the dialogue window are located.
§ How to send commands to the robot

Find the function trackBarForwardPower_ValueChanged(). This function is called
when the leftmost trackbar is changed. The code in this function sets the value of
forwardVel based on the value of the trackBar.

The DCMotorVelocityNonTimeCtrAll() function sends the desired speeds to
each motor on the robot. There are two calls with this function, depending on
whether the desired motor velocities should be sent to the real robot or a simulator.
Note the negative signs on the fifth argument being sent to the function, why are
they present?

Now that you are somewhat familiar with the code, you can make some simple
changes. See if you can edit the code to make the robot move backwards instead of
forward when the leftmost track bar is moved to the left. Don’t forget to change this
back for later.

7. Modify the Robot Position
Find the function LocalizeRealWithOdometry() in the Navigation.cs file. This is
called at every iteration of the control loop. In this function, let x=x+0.005 (i.e. at
every iteration of the control loop the robot’s position will be increased 5 mm in the
positive x direction.)

Compile and run the code. Your GUI robot should move forward on the screen.

8. Log Data
Try logging data using the Record button. Make sure you can find the file where the
data is logging. Track within the code, how a button click results in file creation and
data being saved. Determine what data is being written to the file. Modify the code
so that a value of 9999 will be written to the log file in place of y at every iteration of
the control loop. Have the instructor or proctor check this.

9. Closed loop control
BEFORE YOU START THIS SECTION, BEACH YOUR ROBOT. DON’T ACTUATE
THE MOTORS ON THE GROUND UNTIL THE PROCTOR HAS GIVEN YOU AN
OK.

The goal of this part of the lab is to make the robot drive to a wall, and position itself
1.000 m from the wall. The robot should start facing the wall, and be located
somewhere between 0.50 m and 3.00 m from the wall.

The closed loop control should work as follows. If the robot is farther than 1.00 m
from the wall, it should move forward and stop at a distance of 1.00 m from wall. If
the robot is closer than 1.00 m to the wall, it should move backwards and stop at a
distance of 1.00 m from the wall. If you are clever you can use a “Proportional
Feedback Control” system. The laser range finder can provide the necessary
sensing information.

The function to be edited is WallPositioning(), located in Navigation.cs. Note how
the function is called from RunControlLoop(), the main thread called from the
Navigation constructor. (Try to find these calls).

Within RunControlLoop, most of your future labs will be based. It is from here that
different localization and control algorithms will be called.

To make this happen, you must set the values for motorSignalR and motorSignalL.
Note, the central laser range measurement has been setup for you to use and is
called centralLaserRange.

Test your code with the robot beached. Ask a proctor to check that the code is
working before you put the robot on the ground for testing.

10. Report
Write a 1-2 page report documenting your closed-loop control design. Be sure to
include the following sections: abstract, introduction, problem definition, control
design, results, conclusion. Be sure that your results section includes plots of
distance to the wall as a function of time.

Note, all lab documents in this class will follow the template found at:
http://www.ieee.org/conferences_events/conferences/publishing/templates.html

Please submit your lab 1 report by 9am, Friday January 30th, 2015.

