
E160 Lab 02

Odometry Spring 2018

1. Introduction
Odometry is a useful method for predicting the position of a robot after it has moved.
The prediction is accomplished by counting the number of wheel revolutions that each
wheel rotated, then converting this to motion to coordinates a global coordinate frame.
Unfortunately, this method is prone to errors from slipping, measurement resolution, and
poor modeling of the system (e.g. wheel dimensions).

This lab requires students to implement odometry in the pololu romi robot platform, and
characterize the types of errors that can be encountered. The sensor used will be the
romi encoder kit, (see Fig. 1 below).

Fig. 1: Pololu Romi Encoder kit.

As described on the Pololu website, “The encoder board senses the rotation
of the magnetic disc and provides a resolution of 12 counts per revolution of
the motor shaft when counting both edges of both channels, which
corresponds to approximately 1440 counts per revolution of the Romi’s
wheels.”

2. Background
Download the lab 2 base code, (see web site lab page). The code to be modified is
located in the file E160_robot.py. Within this file there is function called update(), that is

called at every time step of the main thread in the E160_gui.py file.

To localize the robot, the update() function calls localize() on line 46 which is

reponsible for updating the robot’s state estimate to be stored the variable name
state_est. Within the localize() function, there are two function calls, the first function

called is update_odometry(). The second is update_state(). All your code for lab 2

should be written in these two functions.

https://www.pololu.com/product/3542

Within update_odometry(), you are required to calculate the delta_s and delta_theta

since the last time step. With these two variables calculated, the new state x, y, t will be
calculated in update_state().

Note 1: that the 2D graphics window will display the robot at the actual state.

Note 2: in this lab, you will need to toggle back and forth between using the real robot
hardware and simulating the hardware. To do this, you must modify the line 25 of the
file environment.py.

3. Experiments

1. Read the Sensors
The odometry lab uses two encoders, one located on each drive wheel to measure
the wheel distances. To access these measurements, the following function is used
on line 43 of E160_robot.py.

update_sensor_measurements()

This function returns the two encoder measurements that are then assigned to
self.encoder_measurements. Depending the orientation of your robot, figure out

which of the two array element belongs to which wheel.

2. Calculate the Encoder Count Difference
To get the motion of the past time step, we must difference the current sensor
reading with the last sensor reading. This will reflect the number of encoder pulses
that were counted during the last time step. To do so, set these encoder differences
as variables diffEncoder0 and diffEncoder1 within the update_odometry()

function. You will need to use and then record the previous encoder measurements
self.last_encoder_measurements, which is 1x2 array variable.

3. Start up
When the code is started, the hardware will send whatever encoder measurements
were logged by the teensy the last time the robot was used. This will cause the
diffEncoder variables to jump at the beginning since the
last_encoder_measurements variable will not be set properly. An easy hack is to set
the diffEncoder variables to 0 if the calculated jump is > 1000.

4. Calculate Wheel Distances
Within update_odometry(), calculate the distance traveled by each wheel and store

them in variables named wheelDistanceR and wheelDistanceL.

You will need to make use of the fact that the encoder has maximum 1440 pulses,
set as constant self.encoder_resolution. You will also need the wheel’s radius,

set as the constant self.wheel_radius. You may want to double check this value to

make sure it is accurate for your robot.

5. Calculate the Angle and Distance Travelled
Using the distance each wheel travelled, we can calculate the distance the center of
the robot travelled delta_s, as well as the change in orientation delta_theta. The

equations required are presented in lecture. You will need the constant self.radius.

This is the last code to be added to the function update_odometry().

6. Update Robot States
The function self.update_state() should return the new state (position and

orientation) of the robot: x, y, theta. Make sure all angles remain between –π and π.
The 2D graphics window should reflect the robot’s movement.

7. Characterize Errors
Setup a series of experiments to determine the types of errors that are usually
encountered with your robot. For example, run the robot through several tests that
move the robot straight ahead d meters, where d takes on values 0.5, 1.0, 1.5, 2.0,
2.5, …, 5.0. Repeat the test many times for each value of d. At the end of each test,
record the predicted position of the robot (from odometry), and the actual measured
position (use a ruler). For each value of d, calculate the mean error in the x, y, t
coordinate directions. Be sure to log your data.

Run similar tests where d remains constant at 0, but there are various changes in
orientation.

This part of the lab is meant to be open ended. You may perform different tests and
get different results than other groups.

DELIVERABLES

1. Demonstration
Before the end of the final day of this lab (Feb. 11th 2018), you must demonstrate to
the Instructor that your odometry is working properly. In both simulation and
hardware mode, the 2D graphics window should show the robot and estimate
movement according to the motion control commands.

2. Submit
Write a report (2-10 pages) describing your findings from the error characterization
step. Be sure to include the following sections: abstract, introduction, background,
problem definition, control design, results, conclusion. Be sure that your results
section includes plots of robot trajectories, odometry errors, etc.

Note, all lab documents in this class will follow the template found here. The report is
due 1 week after the final day of this lab (04:00pm on Sunday, Feb. 18th).

http://www.ieee.org/conferences_events/conferences/publishing/templates.html

