
E160 – Autonomous Robot Navigation 
 
Exam Solutions 2018 
 
1. a) 
Assuming we know the mass, buoyancy and can accurately measure w, we set uV according to 
 
uV = 1/CV [Fdragw+mg-FB+K(wdes - w)] 
 
 
2 points – having the P control term K(wdes - w)] 
2 points – having the other terms that will cancel out the gravity, buoyancy, drag. 
 
 
 
 
b)  
Substituting uV into the V term of the dynamics equation for rotation yields: 
 
w_dot = K(wdes - w)] 
 
defining error as  
 
e = wdes – w 
 
Now, noting that w wdes_dot = 0, we get  
 
e_dot  = wdes_dot - w_dot 
 = 0 – Ke 
 
so  
e_dot = -Ke 
 
This will drive the error to zero, or let us attain a desired rotational velocity if K > 0. 
 
 
 
2 points – substituting in the control 
2 points – obtaining an equation of the form e_dot = Ae 
2 points – selecting an appropriate control gain for stability 
 
 
 
 
  



2. a) 
𝑥" =

$
%
− 𝜌"cos	(𝑧. + 𝛼")   

𝑦" can not really be determined from this particular measurement   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 points for xi 
2 points for yi 
1 point for diagram having global coordinate frame and local coordinate frame 
1 point for lines being drawn appropriately. 
2 point for labeling all variables 
 
 
b) 
Since the sonar beam is conical and not linear, there will be reflections from the bottom of the 
tank which may mislead the algorithm into thinking that a wall is closer than it is. 
2 points  
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3. a) 
State is 1x7 or 7x1 
𝑋 = [𝑥	𝑦	𝜃	𝑥	𝑦	𝜃	𝑧] 
 
Covariance is 7x7 

𝑃 = 	
𝜎99 𝜎:9 …
𝜎9: 𝜎:: …
… … 𝜎..

 

 
2 points – state vector and covariance matrix 
 
 
b) 
Predicting the horizontal states with the dynamics equations: 
𝑋<′ = 𝑓(𝑋<?@, 𝒖<, ∆𝑡) 
 
Predicting the vertical states with the dynamics equations: 
𝑧<′ = 𝑔(𝑧<?@, 𝒖<, ∆𝑡) 
 
Predict the covariance using previous covariance matrix Pt-1, and the covariance matrix Qu,t 
associated with the uncertainty in control thrust effects. Specifically, we will assume the 
Vertical, Right, and Left control thrusts will have independent variance terms: 

𝑄G,< = 	
𝜎GH% 0 0
0 𝜎GJ% 0
0 0 𝜎GK%

 

 
Now the predicted covariance Matrix is: 
𝑃<L = 𝐹N,<𝑃<?@𝐹N,<O + 𝐹G,<𝑄G,<𝐹G,<O  
 
 
In this case 𝐹N,< is the Jacobian that relates previous states to current states and will contain terms 
like P9QL

P:QRS
 and PTQL

P9QRS
. 

 
Similarly, 𝐹G,< is the Jacobian that relates the input thrust values to current states and will contain 
terms like P9QL

PGU,Q
 and PTQL

PGV,Q
. 

 
 
1 point – state vector update equations 
1 point – covariance matrix update equation 
1 point – explanation of Jacobians 
 
  



c)  
The innovation in this case is 
𝑣< = 𝐙𝒕 − 𝐙Z9[,< 
 
Where 𝐙𝒕 is the vector of measurements extracted in questions 2. a) 
𝐙𝒕 = [x@	x%	y^	y_ …	x`] 
 
Note that in the measurement vector above, each measurement i only yields an xi OR yi value, 
not both. Depending on the time step, and which wall a laser beam is hitting, you  
 
The expected measurement then, will just be the predicted x or y value. 
𝐙𝒆𝒙𝒑,𝒕 = [x<′	x<′	y<′	y<′ …	x<′] 
 
The innovation’s covariance can then be described by: 
Σe`,< = 𝐻9g,<P<L𝐻9g,<

O + 𝐿j,<R<L 𝐿j,<O  
 
Where 𝐻9g,< is the Jacobian is that relates previous states to the innovation vector and will 
contain terms like PlS

P:QL
 and Plm

P:QL
. Note that 𝐙Z9[,< is a function of 𝑥<′ and 𝑦<′, while 𝐙< is a function 

of 𝜃<′. 
 
Also, 𝐿j,< is the Jacobian is that relates range, bearing measurements to the innovation vector and 
will contain terms like PlS

Pno
 and Plm

PpS
, and 𝑣^ is the 3rd element of the innovation vector. 

 
 
Also, 𝑅< is the NxN covariance matrix that addresses the (independent) uncertainty in raw 
range/bearing sensor measurements. 

𝑅< = 	
𝜎n@% 0 0
0 𝜎p@% 0
0 0 …

 

 
 
The Kalman gain can be calculated as: 
𝐾< = 𝑃<L𝐻9L,<O Σe`,<

?@
 

 
The final updates of the state and covariance are: 
𝑋< = 𝑋<L + 𝐾<v< 
𝑃< = 𝑃<L − 𝐾<Σe`,<𝐾<O 
 
 
1 point – for an appropriate innovation vector 
1 point – for an appropriate innovation covariance equation 
1 point – for describing jacobians and introduction of uncertainty equations (e.g. H) 
1 point - for having the last 3 equations the produce, Kt, Xt, Pt 



d) Assuming it is known that there are 4 walls, they can be estimated by extending the state 
vector to include the end points of each wall, or mid points, or slopes and intercepts, etc.. There 
are many possibilities here depending on assumptions 
 
1 point – extending the state vector and covariance matrix 
 
  



4.a) 
a particle should include Xt and weight w. 
 
1 point – state 
1 point - weight 
 
b) 
Iterate on all particles, the propagation step and the weight calculation: 
 

For propagation, use dynamic models (with randomness) to update particle position. E.g. 
for the ith particle: 

 𝑋<" = 𝑓(𝑋<?@" , 𝒖<" , ∆𝑡) 
 𝒖<" = [𝑢H,< + 𝑟𝑎𝑛𝑑𝑛 0, 𝜎GH 				𝑢J,< + 𝑟𝑎𝑛𝑑𝑛 0, 𝜎GJ 				𝑢K,< + 𝑟𝑎𝑛𝑑𝑛(0, 𝜎GK)	] 
 

where randn(𝜇, 𝜎) is a function that samples from a normal distribution of mean 𝜇 and 
standard deviation 𝜎. 

 
 Calculate weight for the ith particle: 
 𝑤<" = 𝑝(𝑋<", 𝒁<) 
  

where 𝒁< is the most recent measurement vector as defined in problem 3c) and p() is the 
weight calculation function 

 
1-point iterate 
1-point propagation equation  
1-point add randomness 
1-point calculate weight for each particle 
 
c) 
An exact or approximate algorithm can be used to randomly select a new set of N particles by 
drawing from the old set of N particles, while ensuring the likelihood of selection of the particles 
be proportional to the calculated weight of the particle. 
 
If not described above in b), the weight function p can be set according to a variety of functions, 
(that should really be determined experimentally), including: 
 

 𝑤<" = 𝑝 𝑋<", 𝒁< = exp − l�
�l�
��o

exp − (T?T�)o

��o
exp − (T�?.�)o

��
o  

 
In this case, 𝑣" is the innovation vector from question 3 (without any heading or depth), and 𝜎l% is 
the covariance associated with range sensor measurements. The second term is similar but for 
depth. The third term is similar but for bearing. 
 
2 points – description or pointer to resampling algorithm 
2 points – weight calculation. Must include a difference between measurement and expected 
measurement.  



5. 
5.1 D 
5.2 D 
5.3 A 
5.4 D 
5.5 D 
5.6 B 
 


