
1

E160 – Lecture 15
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Spring 2016

Figures courtesy of Probabilistic Robotics (Thrun et. Al.)

2

MP: Outline

https://www.youtube.com/watch?

v=Dw0WxPlyWlI

3

Control Structures
Planning Based Control

Perception

Localization Cognition

Motion Control

Prior Knowledge Operator Commands

!

4

MP: Outline

1.  Multi-Query PRMs
2.  Graph Search
3.  Artificial Potential Fields

5

MP: Outline

1.  Multi-Query PRMs
2.  Graph Search
3.  Artificial Potential Fields

6

Multi-Query PRMs

§  Multi-Query Strategy
1.  Learning Phase:

§  Generate the PRM with two steps:
§  Construction
§  Expansion

2.  Query Phase:
§  Connect start and goal configurations to PRM
§  Perform a graph search to find path

7

Multi-Query PRMs

free space

mb

mg

milestone

[Kavraki, Svetska, Latombe,Overmars, 95]

local path

8

Multi-Query PRMs

§  Nomenclature

 R=(N, E) RoadMap
 N Set of Nodes
 E Set of edges
 c Configuration
 e edge

9

Multi-Query PRMs
Learning Phase

§  Construction Step Algorithm

Start with empty R=(N, E)
while (not done)
{

 Generate a random free config c and add to N
 Choose a subset Nc of candidate neighbors around c from N
 Try to connect c to each node in Nc with local planner in the
 order of increasing distance from c
 Add the edge found to E

}

10

Multi-Query PRMs
Learning Phase

§  Construction Step

•  Efficiency-driven
•  Robots with many dofs (high-dim C-spaces)
•  Static environments

Collision !

Courtesy of C. Allocco

11

Multi-Query PRMs
Learning Phase

§  Local Planner
§  Used to connect two nodes.
§  Must contain collision-check.
§  For good performance, the LP must be:

1.  Deterministic - Eliminates the need for storing local plans.
2.  Fast - To ensure quick planning queries.

12

Multi-Query PRMs
Learning Phase

§  Expansion Step
1.  Find the nodes in ‘difficult’ regions using heuristic

weight function w(c)
2.  Expand c using random-bounce walks
3.  Repeat as necessary

13

Multi-Query PRMs
Learning Phase

§  Expansion Step
§  Several options to define weight function w(c)

§  Inversely proportional to the “number of nodes within
some predefined distance from c”

§  Inversely proportional to the “distance from c to the
nearest connected component not containing c”

§  Proportional to the “failure ratio of the local planner”

14

Multi-Query PRMs
Learning Phase

§  Expansion Step

1.  Loop
1.  Pick a random direction of motion in C-space
2.  Move in the direction until an obstacle is hit
3.  Check for connection with another node
4.  Repeat until the path can be connected to another node

15

Multi-Query PRMs
Learning Phase

§  Expansion Step

•  Efficiency-driven
•  Robots with many dofs (high-dim C-spaces)
•  Static environments

0.33

1.00

0.25 0.50

0.33

0.50 0.25

0.33

0.50

0.50 0.50 1.00 0.50 0.50 1.00

1.00

0.50 1.00

0.33

0.50 0.50

•  Efficiency-driven
•  Robots with many dofs (high-dim C-spaces)
•  Static environments

Courtesy of C. Allocco

16

Multi-Query PRMs
Learning Phase

§  Expansion Step

1.  Loop
1.  Pick a random direction of motion in C-space
2.  Move in the direction until an obstacle is hit
3.  Check for connection with another node
4.  Repeat until the path can be connected to another node

2.  Store the final config n and the edge (c, n) in R
3.  Store the computed path (non-deterministic)
4.  Record that n belongs to the same connected

component as c

17

Multi-Query PRMs
Query Phase

§  Query Phase Algorithm

1.  Given the start and goal configurations s and g,
calculate feasible paths Ps and Pg to the nodes s
and g on the roadmap (w/ LP)

2.  Calculate the path P from s to g using the roadmap
and a tree search planner

~
~

18

Multi-Query PRMs
Query Phase

§  Efficiency-driven
§  Robots with many dofs (high-dim C-spaces)
§  Static environments

s

g

s ~

g ~

Courtesy of C. Allocco

19

Probabilistic Road Maps

§  Two Tenets:
1.  Checking sampled configurations and connections

between samples for collision can be done
efficiently.

2.  A relatively small number of milestones and local
paths are sufficient to capture the connectivity of
the free space.

20

Probabilistic Road Maps:
Discrete and Continous Planning

Courtesy of T. Bretl

21

MP: Outline

1.  Multi-Query PRMs
2.  Graph Search
3.  Artificial Potential Fields

22

Graph Search

§  Cell decomposition
§  Decompose the free space into simple cells and

represent the connectivity of the free space by the
adjacency graph of these cells

23

Graph Search

§  Given a discretization of C, a search can be
carried out using a Graph Search or gradient
descent, etc.
§  Example: Find a path from D to G

D G

A

C

B

E

F

D

B E

A C F G

24

Tree Search

§  Tree nomenclature:

§  Algorithms differ in the order in which they
search the branches (edges) of the tree

Parent Node

Child Node

25

Data Structures

§  The Fringe or Frontier is the collection of
nodes waiting to be expanded.

Fringe

26

Tree Search

§  Search Algorithms
1.  Breadth First Search
2.  Depth First Search
3.  A*

27

§  All the nodes at depth d in the search tree are
expanded before nodes at depth d+1

Breadth-First

28

Breadth-First Snapshot 1
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

Fringe: [] + [2,3]

29

Breadth-First Snapshot 2 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

Fringe: [3] + [4,5]

30

Breadth-First Snapshot 3 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

Fringe: [4,5] + [6,7]

31

Breadth-First Snapshot 4 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9

Fringe: [5,6,7] + [8,9]

32

Breadth-First Snapshot 5 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11

Fringe: [6,7,8,9] + [10,11]

33

Breadth-First Snapshot 6 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13

Fringe: [7,8,9,10,11] + [12,13]

34

Breadth-First Snapshot 7 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fringe: [8,9.10,11,12,13] + [14,15]

35

Breadth-First Snapshot 8 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 Fringe: [9,10,11,12,13,14,15] + [16,17]

36

Breadth-First Snapshot 9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 Fringe: [10,11,12,13,14,15,16,17] + [18,19]

37

Breadth-First Snapshot 10 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21

Fringe: [11,12,13,14,15,16,17,18,19] + [20,21]

38

Breadth-First Snapshot 11 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

Fringe: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [22,23]

39

Breadth-First Snapshot 12 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

Fringe: [13,14,15,16,17,18,19,20,21] + [22,23]

Note:
The goal node
is “visible”
here, but we can
not perform the
goal test yet.

40

Breadth-First Snapshot 13 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

Fringe: [14,15,16,17,18,19,20,21,22,23,24,25] + [26,27]

41

Breadth-First Snapshot 14 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27] + [28,29]

42

Breadth-First Snapshot 15 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] + [30,31]

43

Breadth-First Snapshot 16 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]

44

Breadth-First Snapshot 17 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [18,19,20,21,22,23,24,25,26,27,28,29,30,31]

45

Breadth-First Snapshot 18 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [19,20,21,22,23,24,25,26,27,28,29,30,31]

46

Breadth-First Snapshot 19 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [20,21,22,23,24,25,26,27,28,29,30,31]

47

Breadth-First Snapshot 20 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [21,22,23,24,25,26,27,28,29,30,31]

48

Breadth-First Snapshot 21 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [22,23,24,25,26,27,28,29,30,31]

49

Breadth-First Snapshot 22 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [23,24,25,26,27,28,29,30,31]

50

Breadth-First Snapshot 23 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [24,25,26,27,28,29,30,31]

51

Breadth-First Snapshot 24 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [25,26,27,28,29,30,31]

Note:
The goal test is
positive for this
node, and a
solution is
found in 24
steps.

52

Breadth First Search

§  Complete
§  Optimal if cost is increasing with path depth.
§  Computational complexity O(bd), where b is

the branching factor and d is the depth
§  Space (memory) complexity O(bd)

53

Tree Search

§  Search Algorithms
1.  Breadth First Search
2.  Depth First Search
3.  A*

54

§  Expands one of the nodes at the deepest level
of the tree

Depth-First

55

Depth-First Snapshot 1 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

56

Depth-First Snapshot 2 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

57

Depth-First Snapshot 3 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

8 9

58

Depth-First Snapshot 4 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

8 9

16 17

59

Depth-First Snapshot 5 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

8 9

16 17

60

Depth-First Snapshot 6 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

8 9

16 17

61

Depth-First Snapshot 7 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

8 9

16 17 18 19

62

Depth-First Snapshot 8 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

8 9

16 17 18 19

63

Depth-First Snapshot … Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13

16 17 18 19 20 21 22 23 24 25

64

Depth First Search

§  Complete if finite depth
§  NOT Optimal if we take first goal found
§  Computational complexity O(bm), where b is

the branching factor and m is the depth
§  Space (memory) complexity O(bm)

65

Graph Search: Outline

§  Search Algorithms
1.  Breadth First Search
2.  Depth First Search
3.  A*

66

Motion Planning:
A* Search

§  There are a set of algorithms called “Best-
First Search”
§  They try to search the children of the “best” node

to expand.

§  A* is a best first search algorithm
§  It attempts to make the best node the one that will

find the optimal solution and do so in less time.

67

Motion Planning:
A* Search

§  A* is optimal and complete, but can take
time…
§  Its complexity depends on the heuristic, but is

exponential with the size of the graph.

68

Motion Planning:
A* Search

§  We evaluate a node n for expansion based on
the function:

 f(n) = g(n) + h(n)
§  Where
 g(n) = path cost from the start node to n
 h(n) = estimated cost of the cheapest
 path from node n to the goal

69

Motion Planning:
A* Search

§  Example: Cost for one particular node
 f(n) = g(n) + h(n)

 g(n) = 1
 h(n) = 2
 nstart n

ngoal

70

Motion Planning:
A* Search

§  Example: Cost for each node
 f(n) = g(n) + h(n)

nstart

g=1

h=√2

ngoal

g=2

h=1

g=1

h=2

g=2

h=√3

g=3

h=√2

g=4

h=1

71

Motion Planning:
A* Search

§  The strategy is to expand the node with the
cheapest path (lowest f).

§  This is proven to be complete and optimal, if
h(n) is an admissible heuristic.

72

Motion Planning:
A* Search

§  Here, h(n) is an admissible heuristic is one
that never overestimates the cost to the goal

§  Example: the Euclidean distance.

73

Motion Planning:
A* Search

§  Search example: Iteration 1
 Fringe set = { f1 = 2.4, f2 = 3}

nstart f=2.4

ngoal f=3

74

Motion Planning:
A* Search

§  Search example: Iteration 2
 Fringe set = {f2 = 3, f3 = 3}

nstart f=2.4

ngoal

f=3

f=3

75

Motion Planning:
A* Search

§  Search example: Iteration 3
 Fringe set = {f3 = 3, f4 = 3.8}

nstart f=2.4

ngoal

f=3

f=3

f=3.8

76

Motion Planning:
A* Search

§  Search example: Iteration 4

nstart f=2.4

ngoal

f=3

f=3

f=3.8

77

Motion Planning:
Final Notes

§  A * is often used as a global planner
§  Planner that considers kinematic/dynamic

constraints is used for local planning.

78

MP: Outline

1.  Multi-Query PRMs
2.  Graph Search
3.  Artificial Potential Fields

79

Artificial Potential Fields

§  Potential field
§  Define a function over the free space that has a

global minimum at the goal configuration and
follow its steepest descent

80

Artificial Potential Fields

§  Electric Potentials
§  The electric potential VE (J

C-1) created by a point
charge Q, at a distance r
from the charge (relative to
the potential at infinity), can
be shown to be

 VE = 1 Q
 4πε0 r

81

Artificial Potential Fields

§  Electric Fields
§  The electric field intensity E

is defined as the force per
unit positive charge that
would be experienced by a
point charge

§  It is obtained by taking the
negative gradient of the
electric potential
 E = - VE

82

Artificial Potential Fields

§  Electric Potential Fields
§  Different arrangements of charges can lead

to various fields

83

Artificial Potential Fields

§  In APFs, the robot is treated as a point under
the influence of an artificial potential field.
§  Electrical analogy: The generated robot movement

is similar to an electric charge under the force of
an electric field

§  Mechanical analogy: The generated robot
movement is similar to a ball rolling down the hill

84

Artificial Potential Fields

§  In APFs

§  Goals generates attractive force

§  Obstacles generate repulsive forces

85

Artificial Potential Fields

§  For a given configuration space and desired
goal, place potentials on obstacles and goals

qgoal

q

86

Artificial Potential Fields

§  For a given configuration space and desired
goal, place potentials on obstacles and goals

qgoal

q

87

Artificial Potential Fields

qgoal

q

§  For any robot configuration q, the forces felt
by the robot can be calculated to steer the
robot towards the goal.

Fattraction

88

Artificial Potential Fields

89

Potential Field Generation

§  Given potential functions U, Generate artificial
force field F(q)

§  Sum all potentials (repulsive and attractive).
§  Differentiate to determine forces
§  Note: functions must be differentiable

 F(q) = - U(q)
 = - Uatt(q) - Urep(q)
 = - δU/ δx
 - δU/ δy

90

Attractive Potential Fields

§  Parabolic function representing the Euclidean
distance ρgoal (q) = || q - qgoal || to the goal.

 Uatt(q) = 1 katt ρ2

goal (q)
 2

§  Attracting force converges linearly towards 0
(goal)
 Fatt (q) = - Uatt(q)
 = - katt (q - qgoal)

91

Repulsive Potential Fields

§  Generate a barrier around the obstacle

§  Does not influence robot if far from the obstacle
 Urep(q) = 1 krep 1 - 1 2 if ρ(q) ≤ ρ0
 2 ρ(q) ρ0
 0 if ρ(q) > ρ0

§  Where ρ(q) = || q - qobst || is the minimum distance
to the object

92

Repulsive Potential Fields

§  Field is positive or zero and tends to infinity as
q gets closer to the object

 Frep(q) = - Urep(q)
 = krep 1 - 1 q - qobst if ρ(q) ≤ ρ0
 ρ(q) ρ0 ρ3(q)
 0 if ρ(q) > ρ0

93

Artificial Potential Fields

§  Given current configuration of the robot q
1.  Sum total force vectors F(q) generated by the

potential fields.
2.  Set desired robot velocity (v, w) proportional to the

force F(q)

Frepulsion

Fattraction

qgoal

q

Ftotal

94

Artificial Potential Fields

§  Local minimums

§  If objects are not convex (i.e. concave), there exist
situations where several minimal distances exist
and can result in oscillations

§  Not complete

qgoal

95

Artificial Potential Fields

§  Extended Potential Fields
§  Many modifications to potential fields have been

done in order to improve completeness, optimality.
§  Example: Orientation based potentials

§  Can increase potential depending on orientation of robot

Robot

Repulsion force

Object

96

Artificial Potential Fields

§  Extended Potential Fields
§  Also, can use rotational fields in one direction

Linear source Rotational source

97

Artificial Potential Fields

§  Example:
http://www.youtube.com/watch?v=r9FD7P76zJs

