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E160 – Lecture 13 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Spring 2016 

Figures courtesy of Probabilistic Robotics (Thrun et. Al.) 
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Control Structures 
Planning Based Control 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 
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Introduction to Motion Planning 

1. MP Overview 
2. The Configuration Space 
3. General Approach to MP 
4. Metrics  
5. PRMs 
6. Single Query PRMs 
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MP Overview 

Deformable Objects, Kavraki 

Assembly Planning, Latombe Cross-Firing of a Tumor, Latombe 

Tomb Raider 3 (Eidos Interactive) 
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MP Overview 

§  Goal of robot motion planning: 

To construct a collision-free path from some initial 
configuration to some goal configuration for a robot 
within a workspace containing obstacles. 



6 

MP Overview 

§  Example: 

Start 
Configuration 

Goal 
Configuration 

Trajectory 
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MP Overview 

§  Inputs 
§  Geometry of robots and obstacles 
§  Kinematics/Dynamics of robots 
§  Start and Goal configurations 

§  Outputs 
§  Continuous sequence of configurations connecting 

the start and goal configurations 
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§  Extensions 
§  Moving obstacles 
§  Multiple robots 
§  Movable objects 
§  Assembly planning 
§  Goal is to acquire 

information by sensing 
§  Nonholonomic constraints 
§  Dynamic constraints 
§  Stability constraints 

§  Uncertainty in model, 
control and sensing 

§  Exploiting task mechanics 
(under-actuated systems) 

§  Physical models and 
deformable objects 

§  Integration with higher-
level planning 

MP Overview 
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Introduction to Motion Planning 

1. MP Overview 
2. The Configuration Space 
3. General Approach to MP 
4. Metrics  
5. PRMs 
6. Single Query PRMs 
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The Configuration Space 

§  To facilitate motion planning, the 
configuration space was defined as a tool 
that can be used with planning algorithms.  

  
 
 

     (Latombe 1991) 
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The Configuration Space 

§  A configuration q will completely define the 
state of a robot (e.g. mobile robot  x, y, θ) 

§  The configuration space C, is the space of all 
possible configurations of the robot. 

§  The free space F   C, is the portion of the free 
space which is collision-free. 
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The Configuration Space 

§  The goal of motion planning then, is to find a 
path in F that connects the initial configuration 
qstart to the goal configuration qgoal 
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The Configuration Space 

§  Example 1: 2DOF manipulator: 
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The Configuration Space 

§  Example 2: Mobile Robot 

Workspace 
X 

Y 

θ 

Configuration Space 

F 

¬F 

Obstacle 
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The Configuration Space 

§  Example 3: Mobile Robot with moving obstacle 

Workspace 
X 

Y 

t 

Configuration Space 

F 

Obstacle 

¬F 
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Introduction to Motion Planning 

1. MP Overview 
2. The Configuration Space 
3. General Approach to MP 
4. Metrics  
5. PRMs 
6. Single Query PRMs 
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General Approach to MP 

§  Motion planning is usually done with three 
steps: 

1.  Define C 
2.  Discretize C 
3.  Search C 
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1. Define C 

§  Each planning problem may have a different 
definition of C. 

§  Example 1: Include 3DOF for a mobile robot in 
static environment - (x,y,θ).  

§  Example 2: Include only 2DOF for a mobile robot 
in static environment - (x,y). 

§  Example 3: Include 5DOF for a mobile robot in 
dynamic environment - (x,y,θ,v,t).  
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1. Define C 

§  Plan paths for a point robot 
§  Instead of using a robot of fixed dimensions/size, 

“grow” the obstacles to reflect how close the robot 
can get. 
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2. Discretize C 

§  Typical Discretizations: 
 

1.  Cell decomposition 
2.  Roadmap 
3.  Potential field 
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2. Discretize C 

§  Cell decomposition 
§  Decompose the free space into simple cells and 

represent the connectivity of the free space by the 
adjacency graph of these cells 
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2. Discretize C 

§  Roadmap 
§  Represent the connectivity of the free space by a 

network of 1-D curves 
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2. Discretize C 

§  Potential field 
§  Define a function over the free space that has a 

global minimum at the goal configuration and 
follow its steepest descent 
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2. Search C 

§  Given a discretization of C, a search can be 
carried out using a Graph Search or gradient 
descent, etc. 
§  Example: Find a path from D to G 

D G 

A 

C 

B 

E 

F 

D 

B E 

A C F G 
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Introduction to Motion Planning 

1. MP Overview 
2. The Configuration Space 
3. General Approach to MP 
4. Metrics  
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Metrics 

§  Metrics for which to compare planning 
algorithms: 
1.  Speed or Complexity 
2.  Completeness 
3.  Optimality 
4.  Feasibility of solutions 
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Metrics 

1. Speed or Complexity 
§  Often, planners are compared based on the 

running time of an algorithm. 
§  Must specify the hardware when reporting, (e.g. processor 

type, …) 

§  Example:  
§  Planner A outperformed Planner B in that it took half the 

time to solve the same planning problem. 
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Metrics 

1. Speed or Complexity 
§  Planners are also compared based on the 

algorithm’s run time complexity  
§  i.e. the number of steps or operations an algorithm must 

take as a function of the size of the input. 
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Metrics 

1. Speed or Complexity 
§  Example: For M particles and N sensors, calculate 

the weights assuming expected measurements are 
known 

 
 for (int i=0; i<M; i++) { 

  w(i) = 0.0001; 

  for (int j=0; j<N; j++){ 

   w(i) *= gauss(z-z_exp(i,j)); 

  } 

 } 

 

§ In this example there are on the order of MxN operations, i.e O(MN) 
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Metrics 

2. Completeness 
§  A complete algorithm is one that is guaranteed to 

find a solution if one exists, or determine if no 
solution exists. 

§  Time Consuming! 
§  An exhaustive search will search every possible path to 

see if it is a feasible solution. 
§  A complete planner usually requires exponential time in the 

number of degrees of freedom, objects, etc. 
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Metrics 

2. Completeness 
§  A resolution complete planner discretizes the 

space and returns a path whenever one exists in the 
discretized representation. 

No Solution    Solution! 
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Metrics 

2. Completeness 
§  A probabilistically complete planner returns a 

path with high probability if a path exists. It may not 
terminate if no path exists. 

§  E.g.       P(failure) è 0     as       time è ∞  

§  Weaker form of completeness, but usually faster. 
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Metrics 

3. Optimality 
§  Resolution of Discretization can lead to sub-optimal 

solutions 
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Metrics 

3. Optimality 
§  Some algorithms will only guarantee sub-optimal 

solutions (e.g. Greedy Search). 

Sub-Optimal     R. Optimal 
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Metrics 

4. Feasibility of Solutions 
§  Not all planners take into account the exact model 

of the robot or environment. 
§  E.g. Non-differential drive robot 

Feasible Infeasible 
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Metrics 

§  We are left with… 

§  Theoretical algorithms   
§  Strive for completeness and minimal worst-case complexity 
§  Difficult to implement 

§  Heuristic algorithms 
§  Strive for efficiency in common situations 
§  Use simplifying assumptions 
§  Weaker completeness 
§  Exponential algorithms that work in practice 
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Motion Planning: 
Searching the Configuration Space 

§  Example: Multi Robot MP  
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Introduction to Motion Planning 

1. MP Overview 
2. The Configuration Space 
3. General Approach to MP 
4. Metrics  
5. PRMs 
6. Single Query PRMs 
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Probabilistic Road Maps 

§  Definition: 
§  A probabilistic road map is a discrete 

representation of a continuous configuration space 
generated by randomly sampling the free 
configurations of the C-space and connecting 
those points into a graph.  
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Probabilistic Road Maps 

§  Goal of PRMs: 

§  Quickly generate a small roadmap of the Free 
Space F that has good coverage and 
connectivity 
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Probabilistic Road Maps 

§  PRMS have proven to useful in mapping free 
spaces that are difficult to model, or have 
many degrees of freedom. 
§  This can facilitate fast planning for these situations 

§  Trade-off 
§  PRMs often sacrifice completeness for speed 
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Probabilistic Road Maps 

Moving Objects, Kindel 
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Probabilistic Road Maps 

§  Two Main Strategies: 

1.  Multi-Query:  
§  Generate a single roadmap of F which can be used many 

times. 

2.  Single-Query:  
§  Use a new roadmap to characterize the subspace of F 

which is relevant to the search problem. 
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Introduction to Motion Planning 

1. MP Overview 
2. The Configuration Space 
3. General Approach to MP 
4. Metrics  
5. PRMs 
6. Single Query PRMs 
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Motion Planning: 
Probabilistic Road Maps 

§  Single-Query PRMs (a.k.a. Rapidly Exploring 
Random Trees - RRTs) 
§  Try to only sample a subspace of F that is relevant 

to the problem. 
§  Probabilistically complete assuming C is expansive 

[Hsu et. al. 2000]. 
§  Very fast for many applications (allow for on-the-fly 

planning). 
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Motion Planning: 
Probabilistic Road Maps 

§  Two approaches: 

1.  Single Directional: 
§  Grow a milestone tree from start configuration until the 

tree reaches the goal configuration 

2.  Bi-Directional: 
§  Grow two trees, one from the start configuration and one 

from the goal configuration, until the two trees meet.  
§  Can’t consider time in the configuration space 
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Single Query PRMs: Outline 

1.  Introduction 
2.  Algorithm Overview 
3.  Sampling strategies 
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MP Overview 

§  Example: 

Start 
Configuration 

Goal 
Configuration 

Trajectory 
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Motion Planning 

§  Example: Iteration 1 
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Motion Planning 

§  Example: Iteration 2 
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Motion Planning 

§  Example: Iteration 3 
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Motion Planning 

§  Example: Iteration 11 
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Motion Planning 

§  Example: Construct Path 
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Motion Planning 

§  Example: Construct Path 
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Probabilistic Road Maps: 
Learning Phase 

§  Nomenclature 

         R=( N, E )                RoadMap  
         N                             Set of Nodes  
         E                             Set of edges 
         c                              Configuration  
         e                              edge  
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Motion Planning: 
Probabilistic Road Maps 

§  Algorithm 
1.  Add start configuration cstart to R( N, E ) 
2.  Loop 
3.       Randomly Select New Node c to expand 
4.       Randomly Generate new Node c’ from c 
5.       If edge e from c to c’ is collision-free 
6.            Add (c’, e) to R 
7.            If c’ belongs to endgame region, return path 
8.       Return if stopping criteria is met 



57 

Single Query PRMs: Outline 

1.  Introduction 
2.  Algorithm Overview 
3.  Sampling strategies 

§  Node Selection (step 3) 
§  Node Generation (step 4) 
§  Endgame Region (step 7) 
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Motion Planning: 
PRM Node Selection 

§  One could pick the next node for expansion 
by picking from all nodes in the roadmap with 
equal probability. 

§  This is easy to implement, but leads to poor 
expansion       Clustering 
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Motion Planning: 
PRM Node Selection 

§  Cont’ 

§  Method is to weight the random selection of nodes 
to expand, this can greatly affect the roadmap 
coverage of the configuration space. 

§  Want to pick nodes with probability proportional to 
the inverse of node density. 
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Motion Planning: 
PRM Node Selection 

§  Example: 
§  Presented is a 2DOF configuration space where 

the initial node in the roadmap is located in the 
upper right corner.  

§  After X iterations, the roadmap produced from an 
unweighted expansion has limited coverage. 

Unweighted Weighted 
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Motion Planning: 
PRM Node Selection Technique 1 

§  The workspace was divided up into cells to 
form a grid [Kindel 2000]. 
§  Algorithm: 

1.  Randomly pick an occupied cell from the grid. 
2.  Randomly pick a milestone in that cell. 



62 

Motion Planning: 
PRM Node Selection Technique 2 

§  Commonly used in Rapidly exploring Random 
Trees (RRTs) [Lavalle] 
§  Algorithm: 

1.  Randomly pick configuration crand from C. 
2.  Find node c from R that is closest to node crand 

3.  Expand from c in the direction of crand 



63 

Single Query PRMs: Outline 

1.  Introduction 
2.  Algorithm Overview 
3.  Sampling strategies 

§  Node Selection (step 3) 
§  Node Generation (step 4) 
§  Endgame Region (step 7) 
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Motion Planning: 
PRM Milestone Generation 

§  Use random control inputs to propagate robot 
from previous node c to new configuration c’ 

 
§  Algorithm: 

1.  Randomly select controls u and Δt 
2.  Use known dynamics/kinematics equation f of robot to 

generate new configuration                                                                                                    
   c’ = f (c, u, Δt) 

3.  If path from c to c’ is collision-free, then add c’ to R 
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c’ 

Motion Planning: 
PRM Milestone Generation 

§  Example: Differential drive robot 
1.  Randomly select controls φleft, φright and Δt 
2.  Propagate: 

1.  Get Δsleft and Δsright 
2.  Calculate new state c’ with:  

3.  Use iterative search to check for collisions on path. 

.    .   
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Motion Planning: 
PRM Milestone Generation 

§  Example: Differential drive robot (cont’) 
§  Iterative Collision checking is simple but not 

always efficient: 
§  Algorithm: 

1.  Calculate distance d to nearest obstacle 
2.  Propagate forward distance d along path from c to c’  
3.  If d is too small, return collision 
4.  If c reaches or surpasses c’, return collision-free 

c 
c’ 

d 

d 
d 

d 

d 

d 

d 

d 
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Single Query PRMs: Outline 

1.  Introduction 
2.  Algorithm Overview 
3.  Sampling strategies 

§  Node Selection (step 3) 
§  Node Generation (step 4) 
§  Endgame Region (step 7) 
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Motion Planning: 
PRM Endgame Region 

§  We define the endgame region E, to be the set 
of configurations that have a simple 
connection to the goal configuration. 
§  For each planning problem, we can define a unique 

method of making simple connections. 
§  This method will inherently define E. 

F 
C 

goal 
configuration 

E 
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Motion Planning: 
PRM Endgame Region 

§  Given the complexity of most configuration 
spaces, it is very difficult to model E.   

§  In practice, we develop a simple admissibility test to 
calculate if a configuration c’ belongs to the E 

§  At every iteration of the algorithm, this test is used 
to determine if newly generated configurations are 
connected to the goal configuration. 
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Motion Planning: 
PRM Endgame Region 

§  In defining E, we need two things for good 
performance: 

 
1.  The region E should be large: this increases the 

chance that a newly generated milestone will 
belong to E and provide us a solution. 

2.  The admissibility test to be as fast as possible. This 
test is conducted at every iteration of the algorithm 
and will greatly affect the algorithm running time.  
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Motion Planning: 
PRM Endgame Region 

§  Several endgame definitions exist: 
1.  The set of all configurations within some radius r of 

the goal configuration  
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Motion Planning: 
PRM Endgame Region 

§  Several endgame definitions exist: 
1.  The set of all configurations within some radius r of 

the goal configuration  
2.  The set of all configurations that have “simple”, 

collision-free connection with the goal configuration. 
§  Example: Use circular arc for differential drive robots. 

c’ 
cgoal 

C’’ 
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PRMs 
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PRMs 
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PRMs 



76 

PRMs 


