


E160 – Lecture 13 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2016

Figures courtesy of Probabilistic Robotics (Thrun et. Al.)

Control Structures Planning Based Control

Format

- Multiple Choice
- Short Answer
- Long Answer

Format

- Know the algorithms
 - How to iterate through examples
 - Trade-offs
- Know the math
 - Kinematics
 - Trigonometry

Multiple Choice

- Particle Filtering should be used instead of Kalman Filtering
 - a) When 100000 particles minimum are needed.
 - b) When the initial robot position is unknown.
 - c) When the robot is operating in an environment without any locations that produce identical sensor measurements.
 - d) None of the above

No Cheat Sheet

Some Equations that might be useful:

d = c t/2 $\lambda = c/f$ D = f l / x $p(A \land B) = p(A \mid B) p(B)$ $E[X_1 X_2] = E[X_1] E[X_2]$ $\Delta \theta = (\Delta s_{right} - \Delta s_{left}) / b$ $\Delta s = (\Delta s_{right} + \Delta s_{left}) / 2$ $p(x_t | o_t) = \sum_{x'} p(x_t | x'_{t-1}, o_t) p(x'_{t-1})$ $p(x_t \mid z_t) = \frac{p(z_t \mid x_t) p(x_t)}{p(z_t)}$ $x = \frac{b(x_l + x_r)/2}{(x_l - x_r)}$ $y = \frac{b(y_l + y_r)/2}{(x_l - x_r)}$ $z = bf/(x_l - x_r)$

 $p(x'_{i,t}) = \Sigma p(x_{i,t} | x_{j,t-1}, o_t) p(x_{j,t-1})$

Q1: Coordinate Frames

- An X80 robot has been equipped with two cameras c₁ and c₂, both placed at the center of the robot. They are facing in the respective direction angles of α, -α relative the X axis of the robot's local coordinate frame.
 - If the robot is located at state (x, y, θ) in the global coordinate frame, and c₂ detects a landmark at range ρ and angle of β with respect to the direction of the camera, what is the position of the landmark with respect to the robot's local coordinate frame?
 - What is the position of the landmark with respect to Global coordinate frame?
 - Use a figure with all variables labeled.

Q2: P-Control

A robot's error states follow the following equations.

$$de_1/dt = -2e_1 + 6e_2$$

$$\frac{de_2}{dt} = e_1 - e_2$$

- Show all errors will not be driven to zero if they follow these equations.
- If the first error equation can be modified by adding a P-Control term (*Ke*₂), show how the error states can be driven to zero.

Q3: Wall Mapping

- An X80 robot's range sensors are all broken except a left facing IR range sensor. It drives beside a wall and measures the range ρ_i to the wall from 3 position/ orientations (hence *i*=1..3). Each measurement has it's own associated error variance σ_i².
 - If the robots odometry is perfect, calculate the locations (x_i, y_i) where the range sensor hit the wall.
 - Use these locations to describe the wall as a line of the form
 y = mx + b.