## E160 - Lecture 10 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2016

## Kilobots



2

## Control Structures Planning Based Control

Prior Knowledge


## Particle Filter Localization: Outline

1. Particle Filters
2. What are particles?
3. Algorithm Overview
4. Algorithm Example
5. Using the particles
6. PFL Application Example

## What is a particle?

- Like Markov localization, PFs represent the belief state with a set of discrete possible states, and assigning a probability of being in each of the possible states.
- Unlike Markov localization, the set of possible states are not constructed by discretizing the configuration space, they are a randomly generated set of "particles".


## What is a particle?

- A particle is an individual state estimate.
- A particle is defined by its:

1. State values that determine its location in the configuration space, e.g. $\mathbf{x}=\left[\begin{array}{lll}x y & \theta\end{array}\right]$
2. A probability that indicates it's likelihood.

## What is a particle?

- Particle filters use many particles to for representing the belief state.



## What is a particle?

- Example:
- A Particle filter uses 3 particles to represent the position of a (white) robot in a square room.
- If the robot has a perfect compass, each particle is described as:

$$
\begin{aligned}
& \mathbf{x}^{[1]}=\left[\begin{array}{ll}
\left.x^{l} y^{l}\right] \\
\mathbf{x}^{[2]}=\left[\begin{array}{ll} 
& y^{2}
\end{array} y^{2}\right] \\
\mathbf{x}^{[3]}=\left[\begin{array}{l} 
\\
x^{3}
\end{array} y^{3}\right]
\end{array}\right.
\end{aligned}
$$



## What is a particle?

- Example:
- Each of the particles $\mathbf{x}^{[1]}, \mathbf{x}^{[2]}, \mathbf{x}^{[3]}$ also have associated weights $w^{[1]}, w^{[2]}, w^{[3]}$.
- In the example below, $\mathbf{x}^{[2]}$ should have the highest weight if the filter is working.



## What is a particle?

- The user can choose how many particles to use:
- More particles ensures a higher likelihood of converging to the correct belief state
- Fewer particles may be necessary to ensure realtime implementation


## Particle Filter Localization: Outline

1. Particle Filters
2. What are particles?
3. Algorithm Overview
4. Algorithm Example
5. Using the particles
6. PFL Application Example

## Markov Localization Particle Filter

- Algorithm (Initialize at $t=0$ ):
- Randomly draw $N$ states in the work space and add them to the set $\mathbf{X}_{0}$.

$$
\mathbf{X}_{0}=\left\{\mathbf{x}_{0}{ }^{[1]}, \mathbf{x}_{0}{ }^{[2]}, \ldots, \mathbf{x}_{0}{ }^{[N]}\right\}
$$

- Iterate on these $N$ states over time (see next slide).


## Markov Localization Particle Filter

- Algorithm (Loop over time step $t$ ):

1. For $i=1 \ldots N$
2. Pick $\mathbf{x}_{t-1}^{[i]}$ from $\mathbf{X}_{t-1}$
3. Draw $\mathbf{x}_{t}^{[i]}$ with probability $P\left(\mathbf{x}_{t}^{[i]} \mid \mathbf{x}_{t-1}^{[i]}, o_{t}\right)$
4. Calculate $w_{t}^{[i]}=P\left(z_{t} \mid \mathbf{x}_{t}^{[i]}\right)$
5. Add $\mathbf{x}_{t}^{[i]}$ to $\mathbf{X}_{t}^{\text {Predict }}$
6. For $j=1 \ldots N$
7. Draw $\mathbf{x}_{t}^{[j]}$ from $\mathbf{X}_{t}^{\text {Predict }}$ with probability $w_{t}^{[j]}$

## Particle Filter Localization: Outline

1. Particle Filters
2. What are particles?
3. Algorithm Overview
4. Algorithm Example
5. Using the particles
6. PFL Application Example

## Particle Filter Example

- Provided is an example where a robot (depicted below), starts at some unknown location in the bounded workspace.



## Particle Filter Example

- At time step $t_{0}$ :
- We randomly pick $N=3$ states represented as

$$
\mathbf{X}_{0}=\left\{\mathbf{x}_{0}{ }^{[1]}, \mathbf{x}_{0}{ }^{[2]}, \mathbf{x}_{0}^{[3]}\right\}
$$

- For simplicity, assume known heading

$$
\begin{aligned}
& 2^{\mathbf{x}_{0}^{(I I}} 2_{0}^{\mathbf{x}_{0}^{(3)}} \\
& 2_{0}^{\mathbf{x}_{0}^{[2]}} 2_{0}^{\mathbf{x}_{0}}
\end{aligned}
$$

## Particle Filter Example

- The next few slides provide an example of one iteration of the algorithm, given $\mathbf{X}_{0}$.
- This iteration is for time step $t_{1}$.
- The inputs are the measurement $z_{1}$, odometry $o_{1}$



## Particle Filter Example

- For Time step $t_{1}$ :
- Randomly generate new states by propagating previous states $X_{0}$ with $o_{1}$

$$
\mathbf{X}_{l} \text { Predict }=\left\{\mathbf{x}_{l}{ }^{[1]}, \mathbf{x}_{l}^{[2]}, \mathbf{x}_{l}^{[3]}\right\}
$$



## Particle Filter Example

- For Time step $t_{l}$ :
- To get new states, use the motion model from lecture 3 to randomly generate new state $\mathbf{x}_{l}{ }^{[i]}$.
- Recall that given some $\Delta s_{r}$ and $\Delta s_{l}$ we can calculate the robot state in global coordinates:

$$
\begin{aligned}
& \Delta x=\Delta s \cos (\theta+\Delta \theta / 2) \\
& \Delta y=\Delta s \sin (\theta+\Delta \theta / 2) \\
& \Delta \theta=\frac{\Delta s_{r}-\Delta s_{l}}{b} \\
& \Delta s=\frac{\Delta s_{r}+\Delta s_{l}}{2}
\end{aligned}
$$

## Particle Filter Example

- For Time step $t_{1}$ :
- If you add some random errors $\varepsilon_{r}$ and $\varepsilon_{l}$ to $\Delta s_{r}$ and $\Delta s_{l}$, you can generate a new random state that follows the probability distribution dictated by the motion model.
- So, in the prediction step of the PF, the $i^{\text {th }}$ particle can be randomly propagated forward using measured odometry $o_{l}=\left[\Delta s_{r} \Delta s_{l}\right]$ according to:

$$
\begin{aligned}
& \Delta s_{r}^{[i]}=\Delta s_{r}+\operatorname{rand}\left(\text { 'norm' }, 0, \sigma_{s}\right) \\
& \Delta s_{l}^{[i]}=\Delta s_{l}+\operatorname{rand}\left(\text { 'norm' }, 0, \sigma_{s}\right)
\end{aligned}
$$

## Particle Filter Example

- For Time step $t_{l}$ :
- For example:


21

## Particle Filter Example

## - Example Prediction Steps



22

Yiannis, McGill University, PF Tutorial

## Particle Filter Example

## - Example Prediction Steps



23

Yiannis, McGill University, PF Tutorial

## Particle Filter Example

- For Time step $t_{l}$ :
- We get a new measurement $z_{1}$, e.g. a forward facing range measurement.



## Particle Filter Example

- For Time step $t_{1}$ :
- Using the measurement $z_{l}$, and expected measurements $\mu_{I}{ }^{[i]}$, calculate the weights $w^{[i]}=P\left(z_{l} \mid \mathbf{x}_{l}^{[i]}\right)$ for each state.



## Particle Filter Example

- For Time step $t_{1}$ :
- To calculate $P\left(z_{l} \mid \mathbf{x}_{l}^{[i]}\right)$ we use the sensor probability distribution of a single Gaussian of mean $\mu_{I}{ }^{[i]}$ that is the expected range for the particle
- The Gaussian variance is obtained from experiment.



## Particle Filter Example

- For Time step $t_{l}$ :
- Resample from the temporary state distribution based on the weights $w_{l}^{[2]}>w_{l}^{[1]}>w_{l}{ }^{[3]}$

$$
\mathbf{X}_{l}=\left\{\mathbf{x}_{l}{ }^{[2]}, \mathbf{x}_{l}^{[2]}, \mathbf{x}_{l}^{[1]}\right\}
$$

27

$$
{ }^{\mathbf{x}_{1}^{[2]}} 2 x^{\mathbf{x}_{1}}
$$

## Particle Filter Example

- For Time step $t_{1}$ :
- How do we resample?
- Exact Method
- Approximate Method
- Others...


## Particle Filter Example

- An Exact Method

$$
\begin{aligned}
& w_{t o t}=\sum_{j} w_{j} \\
& \text { for } i=1 \ldots N \\
& \qquad \begin{array}{c}
r=\operatorname{rand}\left(\text { 'uniform' }^{\prime}\right) * w_{t o t} \\
j=1 \\
w_{\text {sum }}=w_{1} \\
\text { while }\left(w_{\text {sum }}<r\right) \\
j=j+1 \\
w_{\text {sum }}=w_{\text {sum }}+w_{j} \\
\mathbf{x}_{i}=\mathbf{x}_{j}^{\text {Predict }}
\end{array}
\end{aligned}
$$

## Particle Filter Example

- An Approximate Method

$$
\begin{aligned}
& w_{\text {tot }}=\max _{j} w_{j} \\
& \text { for } i=1 . . N
\end{aligned} \quad \begin{aligned}
& w_{i}=w_{i} / w_{\text {tot }} \\
& \text { if } w_{i}<0.25 \\
& \text { add } 1 \text { copy of } \mathbf{x}_{i}^{\text {Predict }} \text { to } \mathbf{X}^{\text {TEMP }} \\
& \text { else if } w_{i}<0.50 \\
& \quad \operatorname{add} 2 \text { copies of } \mathbf{x}_{i}^{\text {Predict }} \text { to } \mathbf{X}^{\text {TEMP }} \\
& \text { else if } w_{i}<0.75 \\
& \text { add } 3 \text { copies of } \mathbf{x}_{i}^{\text {Predict }} \text { to } \mathbf{X}^{\text {TEMP }} \\
& \text { else if } w_{i}<1.00 \\
& \text { add } 4 \text { copies of } \mathbf{x}_{i}^{\text {Predict }} \text { to } \mathbf{X}^{\text {TEMP }}
\end{aligned}
$$

## Particle Filter Example

- An Approximate Method (cont')

$$
\begin{aligned}
& \text { for } i=1 . . N \\
& \qquad \begin{aligned}
& N=(\text { int }) \text { rand( 'uniform' }) * \text { size }\left(\mathbf{X}^{\text {TEMP }}\right) \\
& \mathbf{x}_{i}=\mathbf{x}_{r} \text { TEMP }
\end{aligned}
\end{aligned}
$$

## Particle Filter Example

## - NOTE:

We should only resample when we get NEW measurements.

## Particle Filter Example

- For Time step $t_{2}$ :
- Iterate on previous steps to update state belief at time step $t_{2}$ given ( $\mathbf{X}_{1}, o_{2}, z_{2}$ ).


## Particle Filter Localization: Outline

1. Particle Filters
2. What are particles?
3. Algorithm Overview
4. Algorithm Example
5. Using the particles
6. PFL Application Example

## Additional Notes

- How do we use the belief?
- To control the robot, we often distill the belief into a lower dimension representation.
- Examples:

$$
\begin{aligned}
& \widehat{\mathbf{x}}_{1}=\frac{\sum_{i} w_{l}^{[i]} \mathbf{x}_{l}^{[i]}}{\sum_{i} w_{l}^{[i]}} \\
& \widehat{\mathbf{x}}_{1}=\left\{\mathbf{x}_{l}^{[i]} \mid w_{l}^{[i]}>w_{l}^{[j]} \forall j \neq i\right\}
\end{aligned}
$$

## Additional Notes

- How do we use the belief?
- Sometimes we have several clusters
- Lets introduce a new algorithm...



## Additional Notes

- K-means Clustering
- Given:

A set of $N$ data points $\mathbf{X}=\left\{\mathbf{x}^{[1]}, \mathbf{x}^{[2]}, . . \mathbf{x}^{[N]}\right\}$
The number of clusters $k \leq N$

- Find:

The $k$ hyperplanes which best divide the data points into $k$ clusters

## Additional Notes

- Subtractive Clustering
- Given:

A set of $N$ data points $\mathbf{X}=\left\{\mathbf{x}^{[1]}, \mathbf{x}^{[2]}, . . \mathbf{x}^{[N]}\right\}$
Neighborhood Radius $r_{A}$

- Find:

The $k$ data points which best divide the data points into $k$ clusters


## Additional Notes

- Subtractive Clustering Algorithm (initialization)
// Calculate Potential Values $\mathbf{P}_{i}$
for $i=1$.. $N$

$$
\mathrm{P}_{i}=\sum_{j} \exp \left(-\left\|\mathbf{x}^{[i]}-\mathbf{x}_{l}[j]\right\|^{2} /\left(0.5 r_{A}\right)^{2}\right)
$$

// Define first centroid center $\mathbf{c}_{\boldsymbol{1}}$
$\mathbf{c}_{l}=\left\{\mathbf{x}_{l}{ }^{[m]} \mid \mathrm{P}_{m}>\mathrm{P}_{j} \forall j \neq m\right\}$
$\operatorname{PotVal}\left(\mathbf{c}_{l}\right)=\mathrm{P}_{m}$

## Additional Notes

- Subtractive Clustering Algorithm (iterations)
$k=1$
while (! stoppingCriteria)
// Update Potential Values
for $i=1$..N

$$
\mathrm{P}_{i}=\mathrm{P}_{i}-\operatorname{PotVal}\left(\mathrm{c}_{\mathrm{k}}\right) \exp \left(-\left\|\mathbf{x}^{[i]}-\mathbf{c}_{k}\right\|^{2} /\left(0.75 r_{A}\right)^{2}\right)
$$

// Calculate $\boldsymbol{k}^{\text {th }}$ centroid

$$
\begin{aligned}
& \mathbf{c}_{k}=\left\{\mathbf{x}_{l}{ }^{[m]} \mid \mathrm{P}_{m}>\mathrm{P}_{j} \forall j \neq m\right\} \\
& \operatorname{PotVal}\left(\mathbf{c}_{k}\right)=\mathrm{P}_{m} \\
& k=k+1
\end{aligned}
$$

## Additional Notes

- Subtractive Clustering Algorithm (iterations)
- The stoppingCriteria can take on many forms:

$$
\max _{i}\left(\mathrm{P}_{i}\right)<\text { threshold }
$$

## Additional Notes

- Subtractive Clustering Algorithm Example for $N=7$



## Particle Filter Localization: Outline

1. Particle Filters
2. What are particles?
3. Algorithm Overview
4. Algorithm Example
5. Using the particles
6. PFL Application Example




E190Q Autonomous Robot Navigation





