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E160 – Lecture 10 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Spring 2016 

Figures courtesy of Siegwart & Nourbakhsh 
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Kilobots 

 
 
 
 
 
 
 

https://www.youtube.com/watch?v=2IAluwgAFD0 
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Control Structures 
Planning Based Control 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 

!
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 
4.  Using the particles 

2.  PFL Application Example 
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What is a particle? 

§  Like Markov localization, PFs represent the 
belief state with a set of discrete possible 
states, and assigning a probability of being in 
each of the possible states. 

§  Unlike Markov localization, the set of possible 
states are not constructed by discretizing the 
configuration space, they are a randomly 
generated set of “particles”.  
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What is a particle? 

§  A particle is an individual state estimate. 
§  A particle is defined by its:  

1.  State values that determine its location in the 
configuration space, e.g. x = [ x y θ ] 

2.  A probability that indicates it’s likelihood. 
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What is a particle? 

§  Particle filters use many particles to for 
representing the belief state. 
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What is a particle? 

§  Example: 
§  A Particle filter uses 3 particles to represent the 

position of a (white) robot in a square room. 
§  If the robot has a perfect compass, each particle is 

described as: 
  x[1] = [ x1 y1 ] 
  x[2] = [ x2 y2 ] 
  x[3] = [ x3 y3 ] 

x[1] 

x[2] 

x[3] 

x0 
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What is a particle? 

§  Example: 
§  Each of the particles x[1], x[2], x[3] also have 

 associated weights w[1], w[2], w[3]. 

§  In the example below, x[2] should have the highest 
weight if the filter is working. 

x[1] 

x[2] 

x[3] 

x0 
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What is a particle? 

§  The user can choose how many particles to 
use: 
§  More particles ensures a higher likelihood of 

converging to the correct belief state 
§  Fewer particles may be necessary to ensure real-

time implementation 
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 
4.  Using the particles 

2.  PFL Application Example 
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Markov Localization 
Particle Filter 

§  Algorithm (Initialize at t =0): 
§  Randomly draw N states in the work space and add 

them to the set X0. 
  
   X0 ={x0

[1], x0
[2], …, x0

[N]} 
 
§  Iterate on these N states over time (see next slide). 
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Markov Localization 
Particle Filter 

§  Algorithm (Loop over time step t ): 

1.  For i = 1 … N 
2.      Pick xt-1

[i] from Xt-1 

3.      Draw xt
[i] with probability P( xt

[i] | xt-1
[i] , ot ) 

4.      Calculate wt
[i] = P( zt | xt

[i] ) 
5.      Add xt

[i] to Xt
Predict 

6.  For j = 1 … N 
7.      Draw xt

[j] from Xt
Predict with probability wt

[j]  
8.      Add xt

[j] to Xt 

Prediction 

Correction 
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 
4.  Using the particles 

2.  PFL Application Example 
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Particle Filter Example 

§  Provided is an example where a robot 
(depicted below), starts at some unknown 
location in the bounded workspace. 

x0 
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Particle Filter Example 

§  At time step t0: 
§  We randomly pick N=3 states represented as  

X0 ={x0
[1], x0

[2], x0
[3]} 

§  For simplicity, assume known heading 

x0
[1] 

x0
[2] 

x0
[3] 

x0 
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Particle Filter Example 

§  The next few slides provide an example of 
one iteration of the algorithm, given X0. 
§  This iteration is for time step t1. 
§  The inputs are the measurement z1, odometry o1 

x0
[1] 

x0
[2] 

x0
[3] 

x0 
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Particle Filter Example 

§  For Time step t1: 
§  Randomly generate new states by propagating 

previous states X0 with o1 

                        X1
 Predict ={x1

[1], x1
[2], x1

[3]} 

x1
[1] 

x1
[2] 

x1
[3] 

x1 
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Particle Filter Example 

§  For Time step t1: 
§  To get new states, use the motion model from 

lecture 3 to randomly generate new state x1
[i]. 

§  Recall that given some Δsr and Δsl we can 
calculate the robot state in global coordinates: 
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Particle Filter Example 

§  For Time step t1: 
§  If you add some random errors εr and εl to Δsr and 
Δsl, you can generate a new random state that 
follows the probability distribution dictated by the 
motion model.  

§  So, in the prediction step of the PF, the ith particle 
can be randomly propagated forward using 
measured odometry o1 = [ Δsr Δsl ] according to: 
        Δsr

[i]= Δsr + rand(‘norm’, 0, σs )  
             Δsl

[i]
 = Δsl + rand(‘norm’, 0 , σs )   
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Particle Filter Example 

§  For Time step t1: 
§  For example:  

x0
[i] 

x1
[i] 

o1
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Particle Filter Example 

§  Example Prediction Steps 

Yiannis, McGill University, PF Tutorial 
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Particle Filter Example 

§  Example Prediction Steps 

Yiannis, McGill University, PF Tutorial 
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Particle Filter Example 

§  For Time step t1: 
§  We get a new measurement z1, e.g. a forward 

facing range measurement. 

x1
[1] 

x1
[2] 

x1
[3] 

x1 

z1 
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Particle Filter Example 

§  For Time step t1: 
§  Using the measurement z1, and expected 

measurements µ1
[i], calculate the weights  

 w[i]
 = P( z1 | x1

[i] ) for each state. 

                         
x1

[1], w1
[1] 

x1
[2], w1

[2] 

x1
[3], w1

[3] 

x1 

z1 

µ1
[1] µ1

[3] 

µ1
[2] 
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Particle Filter Example 

§  For Time step t1: 
§  To calculate P( z1 | x1

[i] ) we use the sensor 
probability distribution of a single Gaussian of mean 
µ1

[i] that is the expected range for the particle 
§  The Gaussian variance is obtained from experiment. 

µ1
[i] z1 

P(z1 | x1
[i]) 
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Particle Filter Example 

§  For Time step t1: 
§  Resample from the temporary state distribution 

based on the weights w1
[2] > w1

[1] > w1
[3] 

                        X1 ={x1
[2], x1

[2], x1
[1]} 

x1
[1] 

x1
[2] 

x1 
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Particle Filter Example 

§  For Time step t1: 
§  How do we resample? 

§  Exact Method 
§  Approximate Method 
§  Others… 
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Particle Filter Example 

§  An Exact Method 
 wtot =  Σj  wj 
 for i=1..N 
  r = rand(‘uniform’)*wtot 
  j =1 
  wsum = w1 

  while (wsum < r) 
   j =j+1 
   wsum = wsum + wj 
  xi =xj

Predict  
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Particle Filter Example 

§  An Approximate Method 
 wtot =  maxj  wj 
 for i =1..N 
  wi = wi / wtot 
  if wi <0.25 
   add 1 copy of xi

Predict to XTEMP 

  else if wi <0.50 
   add 2 copies of xi

Predict to XTEMP 

  else if wi <0.75 
   add 3 copies of xi

Predict to XTEMP 

  else if wi <1.00 
   add 4 copies of xi

Predict to XTEMP 
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Particle Filter Example 

§  An Approximate Method (cont’) 
  

 for i =1..N 
  r = (int) rand(‘uniform’)*size(XTEMP) 
  xi = xr

TEMP 
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Particle Filter Example 

§  NOTE: 
 
 

 We should only resample when we get NEW 
 measurements. 
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Particle Filter Example 

§  For Time step t2: 
§  Iterate on previous steps to update state belief at 

time step t2 given (X1, o2, z2). 
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 
4.  Using the particles 

2.  PFL Application Example 
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Additional Notes 

§  How do we use the belief? 
§  To control the robot, we often distill the belief into a 

lower dimension representation. 
§  Examples: 

    x1
 = Σi w1

[i] x1
[i] 

     Σi w1
[i]  

 
    x1

 = { x1
[i] |  w1

[i] > w1
[j]  ∨ j ≠ i   } 
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Additional Notes 

§  How do we use the belief? 
§  Sometimes we have several clusters 
§  Lets introduce a new algorithm… 
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Additional Notes 

§  K-means Clustering 
§  Given:  

  A set of N data points X = { x[1], x[2], .. x[N] } 
  The number of clusters k ≤ N 

§  Find:  
  The k hyperplanes which best divide the data points 
  into k clusters  
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Additional Notes 

§  Subtractive Clustering 
§  Given:  

  A set of N data points X = { x[1], x[2], .. x[N] } 
  Neighborhood Radius rA 

§    Find:  
  The k data points which  best divide the data points 
   into k clusters  

     
c1 

c2 
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Additional Notes 

§  Subtractive Clustering Algorithm (initialization) 
 

 // Calculate Potential Values Pi 

 for i = 1..N 

  Pi =  Σj exp(  -||x[i] - x1
[j]||2 / (0.5 rA )2) 

 

 // Define first centroid center c1 

 c1
 = { x1

[m] |  Pm
 > Pj

  ∨ j ≠ m   } 
 PotVal(c1 ) = Pm 

 
   

Chen, Qin, Jia Weighted Mean Subtractive Clustering Algorithm (2008) 
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Additional Notes 

§  Subtractive Clustering Algorithm (iterations) 
k =1 
while ( ! stoppingCriteria) 
        

 // Update Potential Values 
 for i = 1..N 
      Pi = Pi – PotVal(ck) exp(  -||x[i] – ck||2 / (0.75 rA)2) 

  
 // Calculate kth centroid 
 ck

 = { x1
[m] |  Pm

 > Pj
  ∨ j ≠ m   } 

 PotVal(ck ) = Pm 

 k=k+1 
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Additional Notes 

§  Subtractive Clustering Algorithm (iterations) 
§  The stoppingCriteria can take on many forms: 

   
   maxi( Pi ) < threshold 
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Additional Notes 

§  Subtractive Clustering Algorithm Example for 
N =7 

  
   

     c1 

c2 
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Particle Filter Localization: Outline 
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Markov Localization 

Courtesy of S. Thrun 
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Markov Localization 

Courtesy of S. Thrun 
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Markov Localization 
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Markov Localization 
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Markov Localization 


