

E160 – Lecture 10 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2016

Figures courtesy of Siegwart & Nourbakhsh

Kilobots

https://www.youtube.com/watch?v=2IAluwgAFD0

Control Structures Planning Based Control

Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 4. Using the particles
- 2. PFL Application Example

- Like Markov localization, PFs represent the belief state with a set of **discrete** possible states, and assigning a **probability** of being in each of the possible states.
- Unlike Markov localization, the set of possible states are not constructed by discretizing the configuration space, they are a randomly generated set of "particles".

- A particle is an individual state estimate.
- A particle is defined by its:
 - 1. State values that determine its location in the configuration space, e.g. $\mathbf{x} = [x \ y \ \theta]$
 - 2. A probability that indicates it's likelihood.

 Particle filters use many particles to for representing the belief state.

- Example:
 - A Particle filter uses 3 particles to represent the position of a (white) robot in a square room.
 - If the robot has a perfect compass, each particle is described as:

$$\mathbf{x}^{[1]} = [x^{1} y^{1}]$$
$$\mathbf{x}^{[2]} = [x^{2} y^{2}]$$
$$\mathbf{x}^{[3]} = [x^{3} y^{3}]$$

- Example:
 - Each of the particles x^[1], x^[2], x^[3] also have associated weights w^[1], w^[2], w^[3].
 - In the example below, $\mathbf{x}^{[2]}$ should have the highest weight if the filter is working.

- The user can choose how many particles to use:
 - More particles ensures a higher likelihood of converging to the correct belief state
 - Fewer particles may be necessary to ensure realtime implementation

Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 4. Using the particles
- 2. PFL Application Example

Markov Localization Particle Filter

- Algorithm (Initialize at t = 0):
 - Randomly draw N states in the work space and add them to the set X₀.

$$\mathbf{X}_{0} = \{ \mathbf{x}_{0}^{[1]}, \ \mathbf{x}_{0}^{[2]}, \ \dots, \ \mathbf{x}_{0}^{[N]} \}$$

Iterate on these N states over time (see next slide).

Markov Localization Particle Filter

- Algorithm (Loop over time step t):
 - **1.** For $i = 1 \dots N$
 - 2. Pick $\mathbf{x}_{t-1}^{[i]}$ from \mathbf{X}_{t-1}
 - 3. Draw $\mathbf{x}_t^{[i]}$ with probability $P(\mathbf{x}_t^{[i]} | \mathbf{x}_{t-1}^{[i]}, o_t)$
 - 4. Calculate $w_t^{[i]} = P(z_t | \mathbf{x}_t^{[i]})$
 - 5. Add $\mathbf{x}_t^{[i]}$ to $\mathbf{X}_t^{Predict}$
 - 6. For $j = 1 \dots N$
 - 7. Draw $\mathbf{x}_t^{[j]}$ from $\mathbf{X}_t^{Predict}$ with probability $w_t^{[j]}$
 - 8. Add $\mathbf{x}_t^{[j]}$ to \mathbf{X}_t

Prediction

Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 4. Using the particles
- 2. PFL Application Example

 Provided is an example where a robot (depicted below), starts at some unknown location in the bounded workspace.

- At time step t_0 :
 - We randomly pick *N*=3 states represented as

$$\mathbf{X}_{0} = \{ \mathbf{x}_{0}^{[1]}, \ \mathbf{x}_{0}^{[2]}, \ \mathbf{x}_{0}^{[3]} \}$$

For simplicity, assume known heading

- The next few slides provide an example of one iteration of the algorithm, given X₀.
 - This iteration is for time step t_I .
 - The inputs are the measurement z_I , odometry o_I

- For Time step t_1 :
 - Randomly generate new states by propagating previous states X₀ with o₁

$$\mathbf{X}_{1}^{Predict} = \{ \mathbf{x}_{1}^{[1]}, \mathbf{x}_{1}^{[2]}, \mathbf{x}_{1}^{[3]} \}$$

- For Time step t_1 :
 - To get new states, use the motion model from lecture 3 to randomly generate new state $\mathbf{x}_{I}^{[i]}$.
 - Recall that given some Δs_r and Δs_l we can calculate the robot state in global coordinates:

 $\Delta x = \Delta s \cos(\theta + \Delta \theta / 2)$

$$\Delta y = \Delta s \sin(\theta + \Delta \theta / 2)$$

$$\Delta \Theta = \frac{\Delta s_r - \Delta s_l}{b}$$
$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

- For Time step t_1 :
 - If you add some random errors ε_r and ε_l to Δs_r and Δs_l , you can generate a new random state that follows the probability distribution dictated by the motion model.
 - So, in the prediction step of the PF, the i^{th} particle can be randomly propagated forward using measured odometry $o_1 = [\Delta s_r \Delta s_l]$ according to:

$$\Delta s_r^{[i]} = \Delta s_r + \text{rand}(\text{'norm'}, 0, \sigma_s)$$

$$\Delta s_l^{[i]} = \Delta s_l + \text{rand}(\text{'norm'}, 0, \sigma_s)$$

- For Time step t_1 :
 - For example:

Example Prediction Steps

Yiannis, McGill University, PF Tutorial

Example Prediction Steps

Yiannis, McGill University, PF Tutorial

- For Time step t_1 :
 - We get a new measurement z₁, e.g. a forward facing range measurement.

- For Time step t_1 :
 - Using the measurement z_1 , and expected measurements $\mu_1^{[i]}$, calculate the weights $w^{[i]} = P(z_1 | \mathbf{x}_1^{[i]})$ for each state.

- For Time step t_1 :
 - To calculate $P(z_1 | \mathbf{x}_1^{[i]})$ we use the sensor probability distribution of a single Gaussian of mean $\mu_1^{[i]}$ that is the expected range for the particle
 - The Gaussian variance is obtained from experiment.

- For Time step t_i :
 - Resample from the temporary state distribution based on the weights $w_1^{[2]} > w_1^{[1]} > w_1^{[3]}$

$$\mathbf{X}_{1} = \{ \mathbf{x}_{1}^{[2]}, \mathbf{x}_{1}^{[2]}, \mathbf{x}_{1}^{[1]} \}$$

$$\mathbf{x}_{1}^{[1]}$$

$$\mathbf{x}_{1}^{[2]}$$

$$\mathbf{x}_{1}^{[2]}$$

$$\mathbf{x}_{2}^{\mathbf{x}_{1}}$$

- For Time step t_1 :
 - How do we resample?
 - Exact Method
 - Approximate Method
 - Others...

An Exact Method

$$w_{tot} = \sum_{j} w_{j}$$

for $i=1..N$
 $r = rand(`uniform')*w_{tot}$
 $j = 1$
 $w_{sum} = w_{1}$
 $while (w_{sum} < r)$
 $j = j+1$
 $w_{sum} = w_{sum} + w_{j}$
 $\mathbf{x}_{i} = \mathbf{x}_{j}^{Predict}$

An Approximate Method

```
w_{tot} = max_j \ w_j
for i = 1..N
w_i = w_i / w_{tot}
if w_i < 0.25
add 1 copy of \mathbf{x}_i^{Predict} to \mathbf{X}^{TEMP}
else if w_i < 0.50
add 2 copies of \mathbf{x}_i^{Predict} to \mathbf{X}^{TEMP}
else if w_i < 0.75
add 3 copies of \mathbf{x}_i^{Predict} to \mathbf{X}^{TEMP}
else if w_i < 1.00
add 4 copies of \mathbf{x}_i^{Predict} to \mathbf{X}^{TEMP}
```


An Approximate Method (cont')

for i = 1..N $r = (int) rand(`uniform')*size(\mathbf{X}^{TEMP})$ $\mathbf{x}_i = \mathbf{x}_r^{TEMP}$

NOTE:

We should only resample when we get NEW measurements.

- For Time step t_2 :
 - Iterate on previous steps to update state belief at time step t₂ given (X₁, o₂, z₂).

Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 4. Using the particles
- 2. PFL Application Example

- How do we use the belief?
 - To control the robot, we often distill the belief into a lower dimension representation.
 - Examples:

$$\widehat{\mathbf{x}}_{l} = \frac{\sum_{i} w_{l}^{[i]} \mathbf{x}_{l}^{[i]}}{\sum_{i} w_{l}^{[i]}}$$

 $\widehat{\mathbf{x}}_{l} = \{ \mathbf{x}_{l}^{[i]} \mid w_{l}^{[i]} > w_{l}^{[j]} \forall j \neq i \}$

- How do we use the belief?
 - Sometimes we have several clusters
 - Lets introduce a new algorithm...

- K-means Clustering
 - Given:

A set of *N* data points $\mathbf{X} = \{ \mathbf{x}^{[1]}, \mathbf{x}^{[2]}, \dots \mathbf{x}^{[N]} \}$ The number of clusters $k \leq N$

• Find:

The k hyperplanes which best divide the data points into k clusters

- Subtractive Clustering
 - Given:

A set of *N* data points $\mathbf{X} = \{ \mathbf{x}^{[1]}, \mathbf{x}^{[2]}, \dots \mathbf{x}^{[N]} \}$ Neighborhood Radius r_A

• Find:

The k data points which best divide the data points into k clusters

Subtractive Clustering Algorithm (initialization)

// Calculate Potential Values P_i

for i = 1..N

$$\mathbf{P}_{i} = \sum_{j} exp(-||\mathbf{x}^{[i]} - \mathbf{x}_{I}^{[j]}||^{2} / (0.5 r_{A})^{2})$$

// Define first centroid center \mathbf{c}_{1} $\mathbf{c}_{1} = \{ \mathbf{x}_{1}^{[m]} | \mathbf{P}_{m} > \mathbf{P}_{j} \forall j \neq m \}$ PotVal $(\mathbf{c}_{1}) = \mathbf{P}_{m}$

Chen, Qin, Jia Weighted Mean Subtractive Clustering Algorithm (2008)

Subtractive Clustering Algorithm (iterations)
 k =1

while (! stoppingCriteria)

// Update Potential Values

for i = 1..N $\mathbf{P} = \mathbf{P}$ PotVal(c) $exp(-||\mathbf{x}^{[i]}| - \mathbf{x}^{[i]})$

 $\mathbf{P}_{i} = \mathbf{P}_{i} - \text{PotVal}(\mathbf{c}_{k}) \exp(-||\mathbf{x}^{[i]} - \mathbf{c}_{k}||^{2} / (0.75 r_{A})^{2})$

// Calculate k^{th} centroid $\mathbf{c}_k = \{ \mathbf{x}_1^{[m]} | P_m > P_j \forall j \neq m \}$ PotVal $(\mathbf{c}_k) = P_m$ k=k+1

- Subtractive Clustering Algorithm (iterations)
 - The *stoppingCriteria* can take on many forms:

 $max_i(P_i) < threshold$

• Subtractive Clustering Algorithm Example for N=7

Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 4. Using the particles
- 2. PFL Application Example

