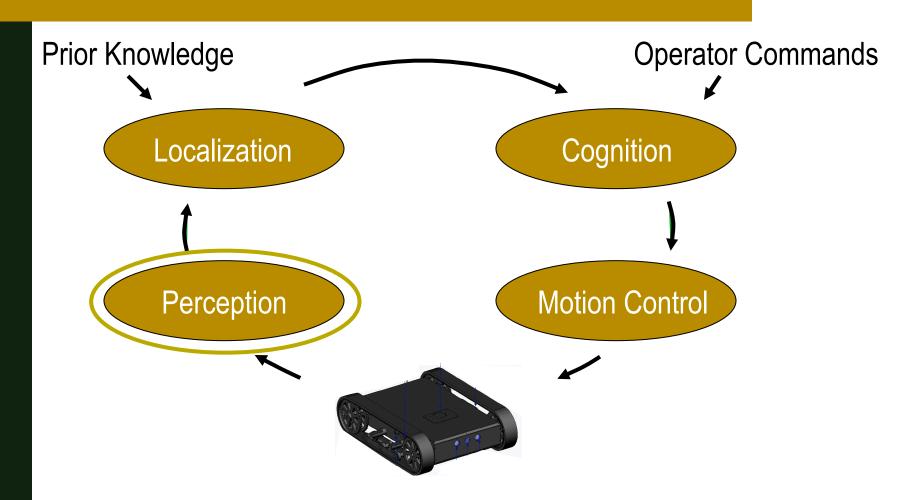


E160 – Lecture 5 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Spring 2016

Figures courtesy of Siegwart & Nourbakhsh


Superball

https://www.youtube.com/watch?v=ZBSRdGlAh5s

Control Structures Planning Based Control

Sensors

IMU Inertial Measurement Unit

Emergency Stop Button

Wheel Encoders

Omnidirectional Camera

Pan-Tilt Camera

Sonar Sensors

Laser Range Scanner

Bumper

Courtesy of Siegwart & Nourbakhsh

Sensors: Outline

1. Sensors Overview

- 1. Sensor classifications
- 2. Sensor characteristics
- 2. Sensor Uncertainty
- 3. Sensor Examples

Sensor Classifications

Proprioceptive/Exteroceptive Sensors

- Proprioceptive sensors measure values internal to the robot (e.g. motor speed, heading, ...)
- Exteroceptive sensors obtain information from the robots environment (e.g. distance to objects)

Sensors

IMU Inertial Measurement Unit

Emergency Stop Button

Wheel Encoders

Omnidirectional Camera

Pan-Tilt Camera

Sonar Sensors

Laser Range Scanner

Bumper

Courtesy of Siegwart & Nourbakhsh

Sensor Classifications

Passive/Active Sensors

- Passive sensors use energy coming from the environment (e.g. temperature probe)
- Active sensors emit energy then measure the reaction (e.g. sonar)

Sensors

IMU Inertial Measurement Unit

Emergency Stop Button

Wheel Encoders

Omnidirectional Camera

Pan-Tilt Camera

Sonar Sensors

Laser Range Scanner

Bumper

Courtesy of Siegwart & Nourbakhsh

Sensor Classifications

General classification	Sensor	PC or	A or P
(typical use)	Sensor System	EC	
Tactile sensors	Contact switches, bumpers	EC	P
(detection of physical contact or	Optical barriers	EC	A
closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC PC PC	P P A A A A A
Heading sensors	Compass	EC	P
(orientation of the robot in relation to	Gyroscopes	PC	P
a fixed reference frame)	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Sensor Classifications

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A A
Active ranging (reflectivity, time-of-flight, and geo- metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	Р

11

Range

- Lower and upper limits
- E.g. IR Range sensor measures distance between *10* and *80 cm*.

Resolution

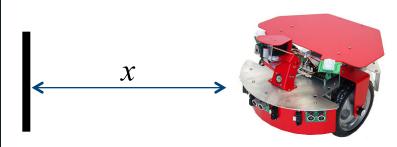
- minimum difference between two measurements
- for digital sensors it is usually the A/D resolution.
 - e.g. 5V/255 (8 bit) = 0.02 V

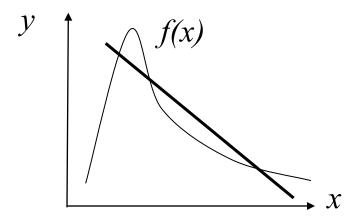
Dynamic Range

- Used to measure spread between lower and upper limits of sensor inputs.
- Formally, it is the ratio between the maximum and minimum measurable input, usually in decibals (dB) Dynamic Range = 10 log[UpperLimit / LowerLimit]
- E.g. A sonar Range sensor measures up to a max distance of 3m, with smallest measurement of 1cm.

Dynamic Range = 10 *log*[3 / 0.01]

$$= 24.8 dB$$


Linearity


- A measure of how linear the relationship between the sensor's output signal and input signal.
- Linearity is less important when signal is treated after with a computer

Linearity Example

- Consider the range measurement from an IR range sensor.
- Let x be the actual measurement in meters, let y be the output from the sensor in volts, and y = f(x).

Bandwidth or Frequency

- The speed with which a sensor can provide a stream of readings
- Usually there is an upper limit depending on the sensor and the sampling rate
 - E.g. sonar takes a long time to get a return signal.
- Higher frequencies are desired for autonomous control.
 - E.g. if a GPS measurement occurs at 1 Hz and the autonomous vehicle uses this to avoid other vehicles that are 1 meter away.

Sensitivity

- Ratio of output change to input change
 - E.g. Range sensor will increase voltage output 0.1 V for every cm distance measured.
- Sensitivity itself is desirable, but might be coupled with sensitivity to other environment parameters.

Cross-sensitivity

- Sensitivity to environmental parameters that are orthogonal to the target parameters
 - E.g. some compasses are sensitive to the local environment.

- Accuracy
 - The difference between the sensor's output and the true value (i.e. error = m v).

$$accuracy = 1 - |m - v|$$

$$v$$

$$m = measured value$$

$$v = true value$$

- Precision
 - The reproducibility of sensor results.

$$\frac{precision}{\sigma} = \frac{range}{\sigma}$$

 σ = standard deviation

Systematic Error

- Deterministic
- Caused by factors that can be modeled (e.g. optical distortion in camera.)

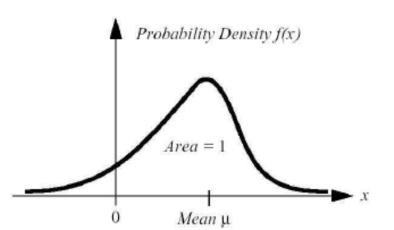
Random Error

- Non-deterministic
- Not predictable
- Usually described probabilistically

- Measurements in the real-world are dynamically changing and error-prone.
 - Changing illuminations
 - Light or sound absorbing surfaces
- Systematic versus random errors are not welldefined for mobile robots.
 - There is a cross-sensitivity of robot sensor to robot pose and environment dynamics
 - Difficult to model, appear to be random

Sensors: Outline

- 1. Sensors Overview
- 2. Sensor Uncertainty
- 3. Sensor Examples



- How can it be represented?
 - With probability distributions ...

Representation

- Describe measurement as a random variable X
- Given a set of n measurements
- Characterize statistical properties of X with a probability density function f(x)

• Expected value of *X* is the mean μ

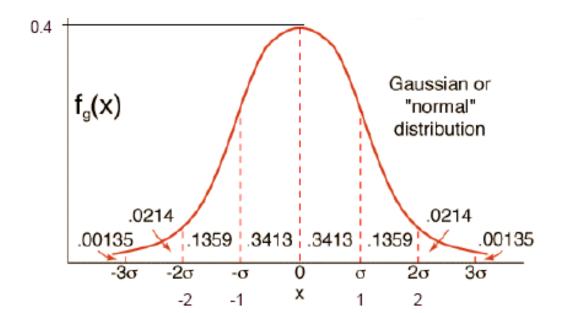
$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

• The variance of *X* is σ^2

$$\sigma^2 = Var[X] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

• Expected value of *X* is the mean μ

$$\mu = E[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$


• The variance of *X* is σ^2

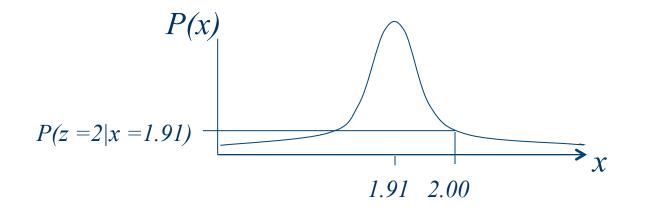
$$\sigma^2 = Var[X] = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Use a Gaussian Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• How do we use the Gaussian?

- Learn the variance of sensor measurements ahead of time.
- Assume mean measurement is equal to actual measurement.

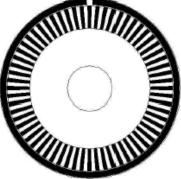

Example:

If a robot is 1.91 meters from a wall, what is the probability of getting a measurement of 2 meters?

Example cont':

- Answer if the sensor error is modeled as a Gaussian, we can assume the sensor has the following probability distribution:
- Then, use the distribution to determine P(z = 2|x = 1.91).

Sensors: Outline

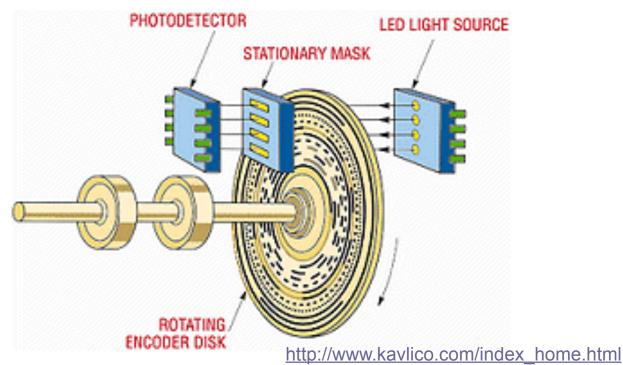

- 1. Sensors Overview
- 2. Sensor Uncertainty
- 3. Sensor Examples
 - Encoders
 - Range Sensors

- A digital optical encoder is a device that converts motion into a sequence of digital pulses. By counting a single bit or by decoding a set of bits, the pulses can be converted to relative or absolute position measurements.
 - Optical encoders are Proprioceptive sensors
 - Can integrate signal to obtain robot position

 Most encoders are composed of a glass or plastic code part with a photographically deposited pattern organized in tracks. As lines in each track interrupt the beam between a photoemitter-detector pair, digital pulses are produced.

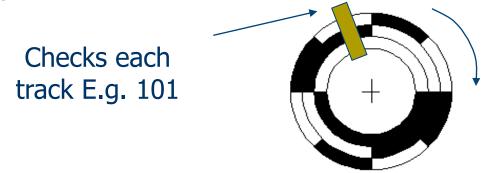
- There are two main types
 - 1. Absolute encoders which measure the current orientation of a wheel.
 - 2. Incremental encoders which measure the change in orientation of a wheel.

Absolute Encoder


 The optical disk of the absolute encoder is designed to produce a digital word that distinguishes N distinct positions of the shaft.

Absolute Encoder

• 12 track example:


Absolute Encoder

 The resolution of the encoder will depend on the number of tracks. Each track is either clear or black (1 or 0), giving 2^T possible combinations for T tracks.

Absolute Encoder

For the example above, there are 3 tracks, yielding 8 possible combinations of track readings. Divided among 360 degrees, this leaves a resolution of 360/8 = 45 degrees.

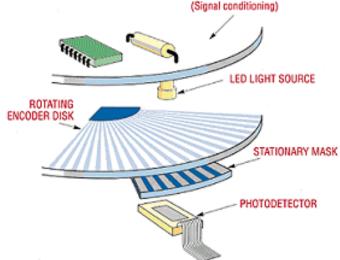
• *Note*: Needs a larger disk or strip for higher resolution

- Gray Code:
 - The most common types of numerical encoding used in the absolute encoder are gray and binary codes
 - Gray code uses an ordering of binary numbers such that only one bit changes from one entry to the next.
 - Gray codes for 4 or more bits are not unique.

Gray Code:

Gray Co	de	Binary
0000		0000
0001		0001
0011		0010
0010		0011
0110		0100
0111	n Ar an an an an an an an an	0101
0101		0110
0100		0111
1100		1000
1101		1001
1111		1010
1110		1011
1010		1100
1011		1101
1001		1110
1000		1111

Gray codes for 4 or more bits are not unique

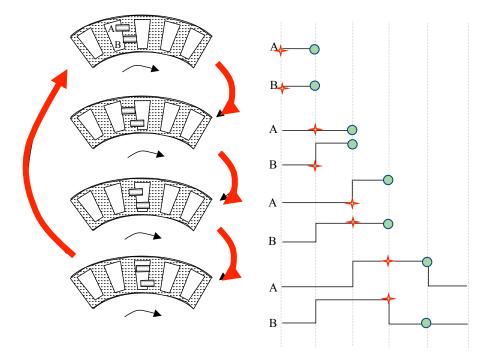

Why Gray Code?

- Gray code is used is to eliminate errors that occur due to timing inconsistencies.
- When a disk moves from one position to the next, the different bit flips will occur at different times.
- Example:
 - When changing from 0011 to 0100, three different bits get flipped. If these happen at different times, the encoder could spit out 0011, 0111, 0101, 0100. This gives 2 erroneous measurements.

Incremental Encoders

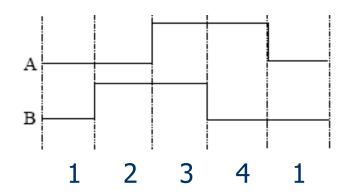
Incremental encoders operate by means of a grating moving between a light source and a detector.

http://www.kavlico.com/index_home.html

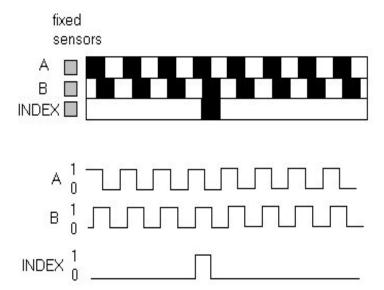

Incremental Encoders

- They need a reference for position measurement.
- Higher resolution can be obtained more easily.
- Needs a decoder to detect direction and position/ velocity.

Incremental Encoders


4X Decoding:

Incremental Encoders


 4X Decoding: Resolution is 360/4N, where N is the number of gratings.

Incremental Encoders

- Example:
 - Encoder with 2 tracks instead of 2 sensor positions.
 - Home position track.

Sensors: Outline

- 1. Sensors Overview
- 2. Sensor Uncertainty
- 3. Sensor Examples
 - Encoders
 - Range Sensors

Sensors: Range Sensors

- Range sensors make use of propagation speed of sound or electromagnetic waves respectively.
- Distance traveled by a wave is given by:

$$d = c t$$

d = distance traveled
c = speed of wave propagation
t = time of flight

Sensors: Range Sensors

- For sound, v = 0.3 m/ms
- For electromagnetic signals, v = 0.3 m/ns
- If distance = 3 m:
 - $t_{ultrasonic} = 10 ms$
 - $t_{laser} = 10 \ ns$
 - *t*_{laser} is difficult to measure, laser range sensors are expensive and difficult

Sensors: Range Sensors

- Quality depend on:
 - Uncertainties of time of arrival of reflected signal
 - Inaccuracies in time of flight measure (laser)
 - Opening angle of transmitted beam (sound)
 - Interaction with the target (specular reflections)
 - Variation of propagation speed

 Sensor transmits a packet of ultrasonic pressure waves

$$d = c t / 2$$

• The speed of sound *c* (340 *m/s*) in air is:

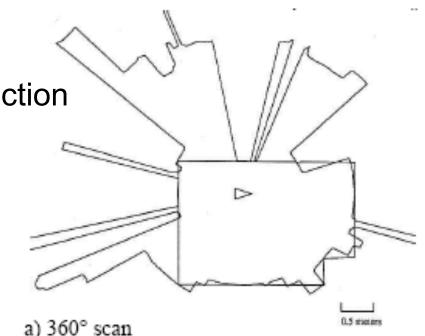
$$c = \sqrt{\gamma R T}$$

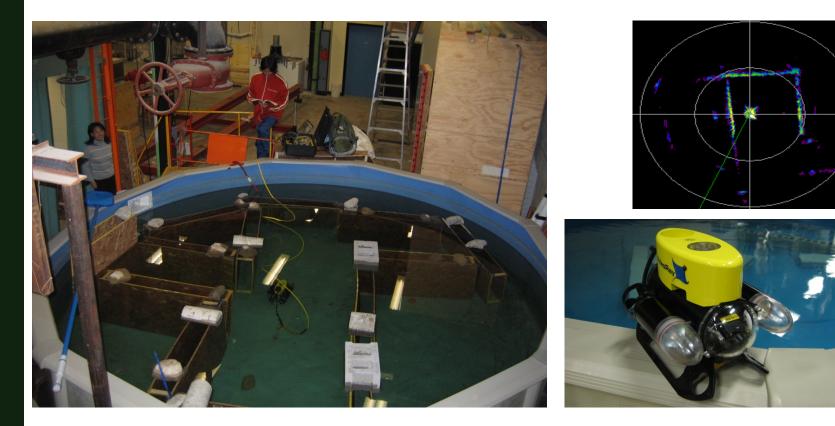
$$\gamma = ratio \ of \ specific \ heats$$

$$R = gas \ constant$$

$$T = temperature \ in \ Kelvin$$

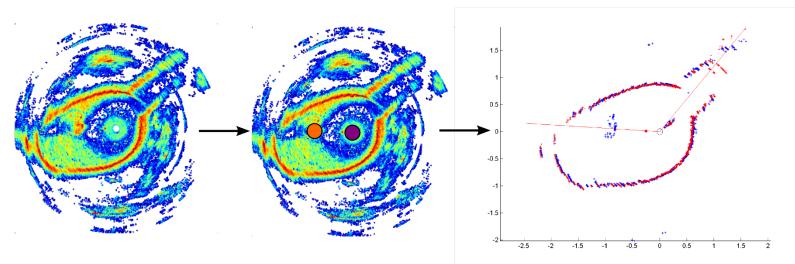
Signals of an ultrasonic sensor


- Frequency typically 40 180 kHz
- Wave generated by piezo transducer
- Receiver may coincide with transmitter
 - Problem with objects too close, Blanking time!
- Sound beam propagates in cone, not points

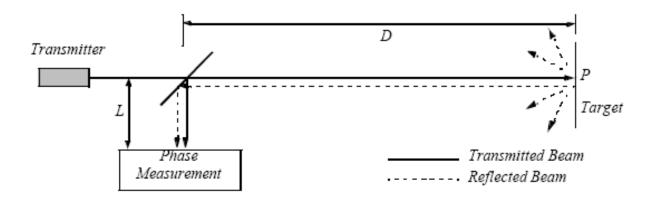

Other problems

- Soft surfaces that absorb most of sound energy
- Surfaces that are not perpendicular to the direction of sound, get specular reflection
- Low Bandwidth

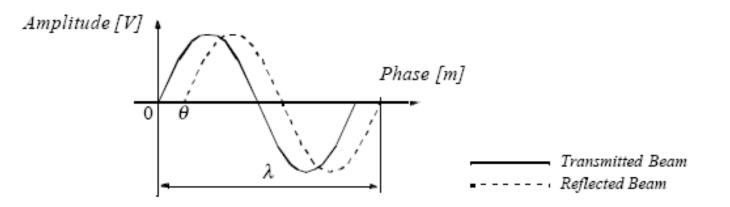
Sensors: Example Application 1



Clark, Cal Poly SLO

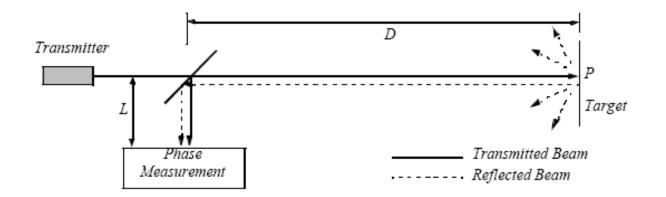

Dual Robot Deployments

leap-frog scanning



- Transmitted and received beams coaxial
- Transmitter illuminates target with beam
- Receiver detects time needed for round-trip

- Methods for measuring time of flight:
 - Use pulsed laser and measure time of flight directly OR
 - Measure the phase shift

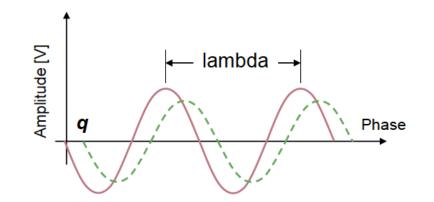


- Phase Shift Measurement:
 - Wavelength λ relates to modulating freq. *f* as:

$$\lambda = c/f$$

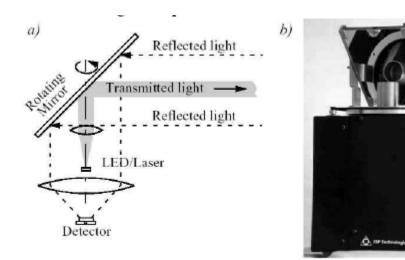
Total distance is:

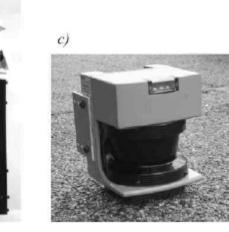
$$D' = L + 2D$$



We want to measure the distance to target

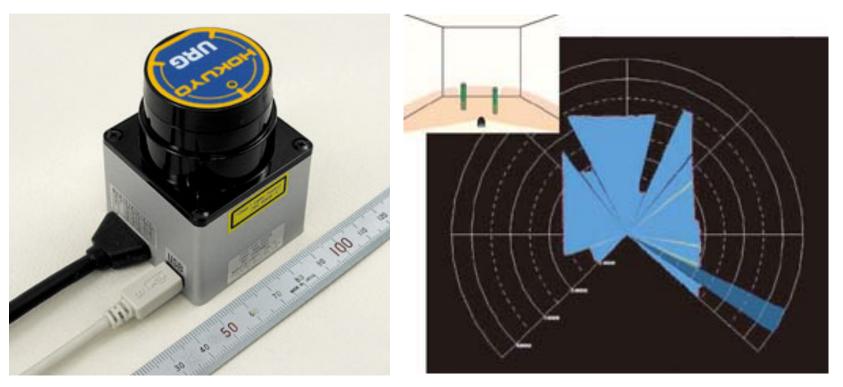
 $2D = \lambda \theta / 2\pi$


• Where θ is the phase difference between the transmitted and received beams.



Note there is theoretical ambiguity in range estimates

Schematic and examples:

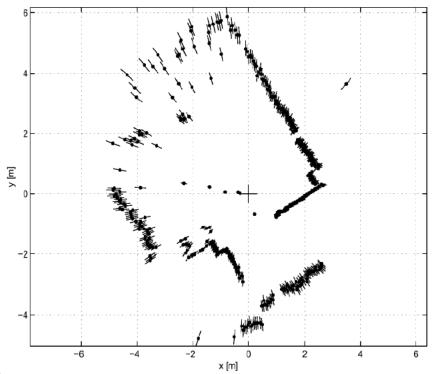


a) Schematic

b) EPS Technologies c) SICK

Schematic and examples (cont'):

d) Hokuyo URG Scanning laser range finder

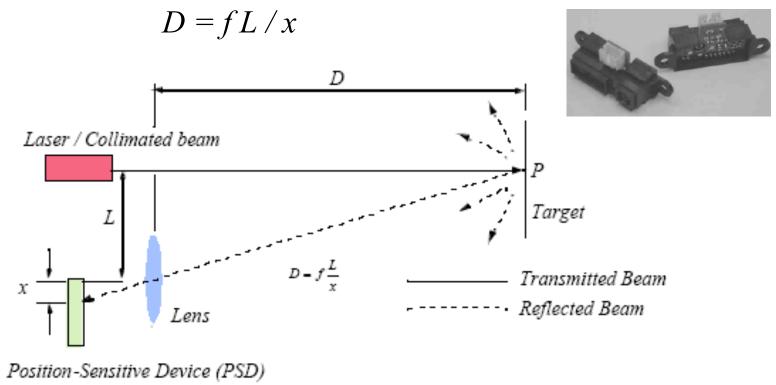


Specifications		
Voltage	5.0 V ± 5 %	
Current	0.5 A (Rush current 0.8 A)	
Detection Range	0.02 m to approximately 4 m	
Laser wavelength	785 nm, Class 1	
Scan angle	240°	
Scan time	100 ms/scan (10.0 Hz)	
Resolution	1 mm	
Accuracy	Distance 20 ~ 1000 mm: ±10 mm	
	Distance 1000 ~ 4000 mm: ±1 % of measurement	
Angular Resolution	0.36°	
Interface	USB 2.0, RS232	
Weight	141 gm (5.0 oz)	

d) Hokuyo URG Scanning laser range finder

- Uncertainty
 - Uncertainty of the range is inversely proportional to the square of the received signal amplitude.
 - Dark, distant objects will not produce such good range estimated as closer brighter objects ...

Schematic and examples (cont'):



Sensors: Triangulation Laser Range Sensors

Distance is inversely proportional to x

or Linear Camera